Comment on the 2nd Order Seiberg Witten Maps
|
|
- Πυθις Κολιάτσος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Comment on the 2nd Order Seiberg Witten Maps Josip Trampetić Michael Wohlgenannt ienna, Preprint ESI October 11, 2007 Supported by the Austrian Federal Ministry of Education, Science and Culture Available via
2 Comment on the 2nd order Seiberg-Witten maps Josip Trampetić 1 and Michael Wohlgenannt 2 1 Theoretical Physics Division, Rudjer Bošković Institute, Zagreb, Croatia 2 Erwin Schrödinger International Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria Dated: October 11, 2007 In this comment, we discuss the Seiberg-Witten maps up to the second order in the noncommutative parameter θ. They add to the recently published solutions in [1]. Expressions for the vector, fermion and Higgs fields are given explicitly. PACS numbers: Nx, q, i The main purpose of this comment is to complete the second order Seiberg-Witten SW maps constructed in [1, 2]. We consider canonically deformed space-time. The commutator of coordinates is given by the constant antisymmetric matrix θ µν, [x µ, x ν ] x µ x ν x ν x µ = iθ µν, 1 where we have used the Weyl-Moyal star product { i f gx = exp } 2 θµν fygx y µ x ν. 2 y x A prescription for constructing arbitrary gauge theories on a NC space-time was presented in [3]. Seiberg- Witten SW maps [3, 4] relate noncommutative NC gauge fields and ordinary fields in commutative theory via a power series expansion in θ. In simplest possible approach to the construction of NC gauge field theories all field products are replaced by -products. This approach, however, fails for general gauge theories. For example for SUN gauge theories, the -commutator of two infinitesimal gauge transformations does not close in the SUN Lie algebra. This is the reason one has to go to the enveloping algebra [5] of the Lie algebra of a given group. Higher-order SW terms are now expressed in terms of the zeroth-order commutative fields, and as a consequence we do have the same number of degrees of freedom as in the commutative case. The SW maps are not unique. The free parameters are chosen such that the non-commutative gauge fields are hermitian and the action is real. Still, there is some remaining freedom including the freedom of classical field redefinition and noncommutative gauge transformation. As already remarked in [1], the second order solution for the gauge field - and therefore also for the field strength - given in [2] are not correct. We will provide the corrected expressions. Most importantly, in this comment we want to add the second order expansion of the hybrid SW map for the Higgs field to the work [1]. This is necessary if one wants to consider the Noncommutative Standard Model NCSM [6 8] including the Yukawa couplings. We have computed a special solution and not the most general one, because of the complexness. The SW map of the gauge parameter is a solution of the relation i α Λ i Λ α + [ Λ α, Λ ] = i Λ α. 3 This relation has to be solved order by order. Therefore, we expand the noncommutative gauge parameter Λ α in θ and in terms of the commutative gauge parameter α, Λ α = α + Λ θ α[ ] + Λ θ2 α [ ] + Oθ 3. Noncommutative fields and gauge parameters are denoted by a hat throughout the paper. To first order in θ, the equivalence condition 3 reads i α Λ θ Λ θ + [α, Λθ ] + [Λθ α, ] iλθ α 4 and to second order = i 2 θµν { µ α, ν }, Λ 2 = 1 8 θµν θ κλ [ µ κ α, ν λ ] [Λ θ α, Λ θ ] i 2 θµν { µ Λ θ α, ν} { ν α, µ Λ θ }, 5 with α = i[α, ]. This is an inhomogeneous equation. The homogeneous part to order k is given by Λ k := i α Λ θk Λ θk α +[α, Λ θk ]+[Λ θk α, ] iλ θk α = 0. 6 The most general solution to first order, is given by Λ θ α = 1 2 θµν { ν, µ α} c, 7 where {A, B} c ca B + 1 cb A. The requirement of hermiticity fixes the free parameter c to c = 1/2. In this case, the general solution 7 becomes Λ θ α[ ] = 1 4 θµν { ν, µ α}. 8 A special solution for the second order equation reads: Λ θ2 α [ ] = 1 32 θµν θ κλ 9 { µ, { ν κ, λ α}} + { µ, { κ, ν λ α}} + {{ µ, ν κ }, λ α}} {{F µκ, ν }, λ α} 2i[ µ κ, ν λ α],
3 with the field strength F α = α α i[ α, ]. The NC gauge field transforms as α µ = µ Λ α i[ µ, Λ α ]. 10 The enveloping algebra valued gauge potential is therefore determined by the following consistency relations in first and second order α θ σ = σλ θ α i[ σ, Λ θ α ] θµν { µ σ, ν α}, 11 α θ2 σ = σ Λ θ2 α i[ σ, Λ θ2 α ] i[ θ σ, Λ θ α] θµν { µ θ σ, να} θµν { µ σ, ν Λ θ α } + i 8 θµν θ κλ [ µ κ σ, ν λ α], 12 where we have again used α σ θk = α σ θk i[α, σ θk ] and the expansion of the noncommutative gauge field µ [ ] = µ + µ θ θ2 [ ] + µ [ ] + Oθ3. The general solution in first order is θ µ = 1 2 θα {, α µ } c θα {, F αµ } c. 13 Choosing a hermitian gauge parameter Λ α, we obtain θ µ [ ] = 1 4 θα { α µ + F αµ, } 14 and µ θ2 [ ] = 1 64 θα θ 4[, [ µ, α ]] + 8{ α, {F µ, F }} + 8{ α, { F µ, }} + 2i{ α, { µ, }} 2{ α, { µ, }} { µ, {F α, F }} + 8{ α µ, {, }} + 2{ µ, { α, }} + 2{ α, {, µ }} 2{ µ α, {F, }} 2{ α, { µ, }} 4{ α, { µ, }} + 8{ α µ, } + 8i[ α µ, ] 2i[ µ F α, F ] 4i[ α µ, ] 4 α µ 4 µ α + 2i α µ 4i α µ 2i α µ 2i α µ + 4i α µ 2i µ α + 2i µ α + 2i µ α 2i µ α + 2i α µ + 4F α µ F. 15 Concerning Eq. 15, the second order of the SW map, we disagree with ref. [2]. The solution given there, does not satisfy the gauge equivalence relation 12. Next, by using the SW map of the gauge parameter, the expansion of the noncommutative gauge transformation for the NC fermion fields reads where α ψ = i Λ α ψ, 16 ψ[ψ, ] = ψ + ψ θ [ψ, ] + ψ θ2 [ψ, ] + Oθ 3. This leads to the first order in θ consistency relation, α ψ θ = iλ θ ψ 1 2 θµν µ α ν ψ, 17 where α ψ θk α ψ θk iαψ θk. To second order, we obtain α ψ θ2 = iλ θ2 α ψ + iλ θ ψ θ 1 2 θµν µ Λ θ α ν ψ θµν µ α ν ψ θ i 8 θµν θ κλ µ κ α ν λ ψ. The general solution to first order is given by ψ θ = 1 2 θµν ν µ ψ + 1 c 2 θµν µ ν ψ + d θ µν F µν. 19 The hermicity requirement c = 1/2, and choice d = 1/8, leaves us with ψ θ [ψ, ] = 1 2 θα α i 4 [ α, ] ψ. 20 A solution to the second order consistency relation is given by [2] ψ θ2 [ψ, ] = 1 32 θµν θ κλ 4i κ µ ν λ + 4 κ µ ν λ 4 κ µ ν λ + 4F κµ ν λ 4 ν κ µ λ + 8 ν F κµ λ 8i µ κ ν λ + 4i µ ν κ λ 2 κ µ λ ν + κ λ µ ν + 2i κ µ λ ν 2i ν λ κ µ 2 κ µ ν λ i[[ κ µ, ν ], λ ] 4i ν F κµ λ ψ. 21 Finally we consider NC noncommutative Higgs field Φ, which is related to the commutative ones by the hybrid SW map expansion Φ Φ[Φ,, ] = Φ + Φ θ [, ] + Φ θ2 [, ] + Oθ 3. This generalizes the Seiberg-Witten maps of both gauge bosons and fermions. Φ is a functional of two gauge fields and, and it transforms covariantly under the following gauge transformations: Φ[Φ,, ] = i Λ Φ i Φ Λ, 22
4 where Λ and Λ are the corresponding gauge parameters. Hermitian conjugation yields Φ[Φ,, ] = Φ[Φ,, ]. The covariant derivative for the noncommutative Higgs field Φ is given by D µ Φ = µ Φ i µ Φ Φ µ. 23 As explained in [6], the precise representations of the gauge fields and in the Yukawa couplings are inherited from the fermions on the left ψ and on the right side ψ of the Higgs field, respectively. The hybrid SW map for the Higgs boson up to second order is of course only unique up to a solution of the homogeneous equation. The most general solution to first order reads Φ θ [Φ,, ] = 1 2 θα 24 [ α Φ i 2 a αφ Φ α + α Φ i 2 αφ bφ α a α Φ + 1 ] 4 1 bφ α Conventionally, we choose a = b = 1 and obtain to the first order in θ Φ θ [Φ,, ] = 1 2 θα 25 [ α Φ i 2 αφ Φ α + α Φ i2 ] αφ Φ α, while for the second order we have found the following lengthy expression: Φ θ2 Φ θ2 [Φ,, ] = i 32 θα θ { α 4 Φ 3i Φ + 4iΦ + 4 Φ 2iΦ [ + 4i Φ + 4 Φ + 2i Φ 2Φ + 4 Φ + 4iΦ + 3 Φ 4 Φ 4 Φ + Φ i 2 ] + 8i Φ + 5 Φ 8Φ + 4i Φ 3 Φ + Φ 4 i + i i Φ + 4 Φ + 4Φ i + i i } [ + α 4 Φ + 4i Φ + 4Φ Φ + 4Φ + 4i Φ 2i Φ 4i Φ + Φ 4i ] [ + α Φ 4i ] 8i 4i 4 + α Φ 4i 4 [ [ + Φ + 2i α i ] + α 2i 3 ]. 26 The above expression may be written in a more convenient way as Φ θ2 [Φ,, ] = Φ θ2 [ ] + Φ θ2 r [ ] i 8 θµν θ κλ i κ λ µ Φ ν κ λ µ Φ ν i κ µ λ Φ ν +i κ µ ν Φ λ κ µ λ Φ ν κ µ ν Φ λ 2 κ µ Φ λ ν + κ µ Φ ν λ + i κ µ Φ λ ν 2i κ µ Φ ν λ 2 κ λ µ Φ ν 4i κ µ Φ λ ν + i κ µ Φ ν λ + κ µ Φ λ ν + κ µ Φ ν λ 2i κ λ µ Φ ν + κ λ Φ µ ν + κ Φ µ λ ν κ Φ µ ν λ i κ Φ µ λ ν + i κ Φ µ ν λ +2 κφ µ λ ν + i κ Φ λ µ ν + κ µ λ Φ ν κ µ ν Φ λ + i κ µ λ Φ ν i κ µ ν Φ λ + i κ µ Φ ν λ κ µ Φ λ ν + 2 κ µ Φ ν λ 1 32 θµν θ κλ 2 κ λ Φ µ ν, 27 where Φ θ2 [ ] and Φ θ2 r [ ] denote the second order expansion for fermion fields 21, Φ θ2 [ ] = ψ θ2 [ψ, ]ψ Φ, 28 in the latter case the gauge fields are supposed to act from the right, Φ θ2 r [ ] = 1 32 θµν θ κλ Φ 4i κ µ ν λ + 4 κ µ ν λ
5 4 κ µ ν λ + 4F κµ ν λ 4 ν κ µ λ + 8 ν F κµ λ 8i µ κ ν λ + 4i µ ν κ λ 2 κ µ λ ν + κ λ µ ν + 2i κ µ λ ν 2i ν λ κ µ 2 κ µ ν λ i[[ κ µ, ν ], λ ] 4i ν F κµ λ. 29 The solutions representing SW maps up to second order in θ for fermion fields and Higgs fields, i.e., Eqs. 21 and 26 or 27, are identical for = 0. Higher SW expansions of the NC gauge, fermion and Higgs fields up to second order in the noncommutative parameter θ, are important due to the further extension of previously published results. Specifically those are applications of the enveloping algebra based, θ expanded, approach to higher gauge groups [7] and to particular NCSM gauge sector representations [9]. Proof that SW noncommutative gauge theories are anomaly free and the properties of the gauge anomaly for general SW mapping as well as of the U1 A anomaly in noncommutative SUN theories [10] are certainly very important. This comment is very important regarding further investigations of renormalizability properties of the θ expanded NC field theories in general [11]. Certainly, recent results [12, 13], showing that gauge theories in the θ expanded, enveloping algebra based, approach are one-loop renormalizable at first order in θ are very encouraging. They give us hope that it would be possible to investigate higher-loop renormalizability up to the second order in the noncommutative parameter θ. Clearly, one may expect that the renormalizability principle should certainly help to minimize, or even cancel most of ambiguities of SW maps disucssed in [1, 2] and in this comment. Finally, it is necessary to comment that, due to the one-loop renormalizability [10 13], the associated high energy particle physics phenomenology [14, 15] becomes more robust [16]. We want to thank Fabian Bachmaier for contributing to this work and to H. Grosse and J. Wess for many fruitful discussions. M.W. also wants to acknowledge the support from Fonds zur Förderung der wissenschaftlichen Forschung Austrian Science Fund, project P N16. The work of J.T. is supported by the project of the Croatian Ministry of Science, Education and Sport and in part by the ESF, received in the framework of the Research Networking Programme on Quantum Geometry and Quantum Gravity in the form of a short visit grant No [2] L. Möller, JHEP [3] N. Seiberg and E. Witten, JHEP [4] J. Madore, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C [5] B. Jurčo, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Eur. Phys. J. C [6] X. Calmet, B. Jurčo, P. Schupp, J. Wess and M. Wohlgenannt, Eur. Phys. J. C [7] P. Aschieri, B. Jurčo, P. Schupp and J. Wess, Nucl. Phys. B [8] B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp, and M. Wohlgenannt, Eur. Phys. J. C ; Eur. Phys. J. C [9] W. Behr, N.G. Deshpande, G. Duplančić, P. Schupp, J. Trampetić and J. Wess, Eur. Phys. J. C ; G. Duplančić, P. Schupp and J. Trampetić, Eur. Phys. J. C [10] C. P. Martin, Nucl. Phys. B 652, ; F. Brandt, C. P. Martin and F. R. Ruiz, JHEP 0307, ; C. P. Martin and C. Tamarit, Phys. Rev. D 72, [11] R. Wulkenhaar, JHEP ; J. M. Grimstrup and R. Wulkenhaar, Eur. Phys. J. C ; A. Bichl, J. Grimstrup, H. Grosse, L. Popp, M. Schweda and R. Wulkenhaar, JHEP ; H. Grosse and R. Wulkenhaar, Lett. Math. Phys. 71, ; J. Nonlin. Math. Phys. 11S1, ; Commun. Math. Phys. 256, ;. Rivasseau, F. ignes-tourneret and R. Wulkenhaar, Commun. Math. Phys. 262, ; H. Grosse and M. Wohlgenannt, Eur. Phys. J. C [12] M. Buric and. Radovanovic, JHEP ; JHEP ; Class. Quant. Grav ; M. Buric,. Radovanovic and J. Trampetic, JHEP ; D. Latas,. Radovanovic and J. Trampetic, Phys. Rev. D [13] C. P. Martin, D. Sanchez-Ruiz and C. Tamarit, JHEP ; C. P. Martin and C. Tamarit, arxiv: [hep-th]. [14] J. Trampetić, Acta Phys. Polon. B [hepph/ ]; P. Schupp, J. Trampetic, J. Wess and G. Raffelt, Eur. Phys. J. C ; P. Minkowski, P. Schupp and J. Trampetic, Eur. Phys. J. C ; B. Melic, K. Passek-Kumericki and J. Trampetic, Phys. Rev. D ; Phys. Rev. D [15] T. Ohl and J. Reuter, Phys. Rev. D ; A. Alboteanu, T. Ohl and R. Ruckl, PoS HEP [arxiv:hep-ph/ ]; Phys. Rev. D 74, ; arxiv: [hep-ph]; arxiv: [hepph]. [16] M. Buric, D. Latas,. Radovanovic and J. Trampetic, Phys. Rev. D ; J. Trampetić, arxiv: v1 [hep-ph]. [1] A. Alboteanu, Th. Ohl and R. Rückl, [hep-th].
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1
Non-commutative Gauge Theories and Seiberg Witten Map to All Orders 1 Kayhan ÜLKER Feza Gürsey Institute * Istanbul, Turkey (savefezagursey.wordpress.com) The SEENET-MTP Workshop JW2011 1 K. Ulker, B Yapiskan
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Relativistic particle dynamics and deformed symmetry
Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Tutorial problem set 6,
GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Non-Abelian Gauge Fields
Chapter 5 Non-Abelian Gauge Fields The simplest example starts with two Fermions Dirac particles) ψ 1, ψ 2, degenerate in mass, and hence satisfying in the absence of interactions γ 1 i + m)ψ 1 = 0, γ
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας
Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
SOLVING CUBICS AND QUARTICS BY RADICALS
SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο
ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΥΟΛΗ ΝΑΤΠΗΓΩΝ ΜΗΥΑΝΟΛΟΓΩΝ ΜΗΥΑΝΙΚΩΝ Γιπλυμαηική Δπγαζία «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο Σπιμελήρ Δξεηαζηική
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Modified Moyal-Weyl Star product in a Curved Non Commutative space-time
EJTP 3, No. 12 (2006 37 45 Electronic Journal of Theoretical Physics Modified Moyal-Weyl Star product in a Curved Non Commutative space-time N.Mebarki,F.Khallili, M.Boussahel, and M.Haouchine Laboratoire
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known