SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS"

Transcript

1 Electronic Journal of Differential Equation, Vol , No. 296, pp. 77. ISSN: URL: or SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS YUJI LIU Abtract. Firtly we prove exitence and uniquene of olution of Cauchy problem of linear fractional differential equation LFDE with two variable coefficient involving Caputo fractional derivative, Riemann-Liouville derivative, Caputo type Hadamard derivative and Riemann-Liouville type Hadamard fractional derivative with order q [n, n by uing the iterative method. Secondly we obtain exact expreion for piecewie continuou olution of the linear fractional differential equation with a contant coefficient and a variable one. Thee reult provide new method to tranform an impulive fractional differential equation IFDE to a fractional integral equation FIE. Thirdly, we propoe four clae of boundary value problem of ingular fractional differential equation with impule effect. Sufficient condition are given for the exitence of olution of thee problem. We allow the nonlinearity ptft, x in fractional differential equation to be ingular at t,. Finally, we point out ome incorrect formula of olution in cited paper. A new Banach pace and the compact propertie of ubet are proved. By etablihing a new framework to find the olution for impulive fractional boundary value problem, the exitence of olution of three clae boundary value problem of impulive fractional differential equation with multi-term fractional derivative are etablihed. Content. Introduction 2 2. Related definition 9 3. Preliminarie Baic theory for linear fractional differential equation Exact piecewie continuou olution of LFDE Preliminarie for BVP Preliminarie for BVP Preliminarie for BVP Preliminarie for BVP Solvability of BVP Mathematic Subject Claification. 34A8, 26A33, 39B99, 45G, 34B37, 34B5, 34B6. Key word and phrae. Higher order ingular fractional differential ytem; impulive boundary value problem; Riemann-Liouville fractional derivative; Caputo fractional derivative; Riemann-Liouville type Hadamard fractional derivative; Caputo type Hadamard fractional derivative; fixed point theorem. c 26 Texa State Univerity. Submitted February 24, 25. Publihed November 8, 26.

2 2 Y. LIU EJDE-26/ Application of main reult Impulive multi-point boundary value problem Impulive Sturm-Liouville boundary value problem Impulive anti-periodic boundary value problem Comment on ome publihed article Corrected reult from [ Corrected reult from [ Corrected reult from [ Corrected reult from [2, Corrected reult from [ Corrected reult from [67, 3, Corrected reult from [28, 29, Application of impulive fractional differential equation 68 Acknowledgment 72 Reference Addendum poted February 3, Introduction One know that the fractional derivative Riemann-Liouville fractional derivative, Caputo fractional derivative and Hadamard fractional derivative and other type ee [58 are actually nonlocal operator becaue integral are nonlocal operator. Moreover, calculating time fractional derivative of a function at ome time require all the pat hitory and hence fractional derivative can be ued for modeling ytem with memory. Fractional order differential equation are generalization of integer order differential equation. Uing fractional order differential equation can help u to reduce the error ariing from the neglected parameter in modeling real life phenomena. Fractional differential equation have many application ee [88, Chapter, and book [58, 57, 88, 94. In recent year, there have been many reult obtained on the exitence and uniquene of olution of initial value problem or boundary value problem for nonlinear fractional differential equation, ee [25, 27, 74, 8, 85, 86, 93, 8, 25, 38. Dynamic of many evolutionary procee from variou field uch a population dynamic, control theory, phyic, biology, and medicine. undergo abrupt change at certain moment of time like earthquake, harveting, hock, and o forth. Thee perturbation can be well approximated a intantaneou change of tate or impule.thee procee are modeled by impulive differential equation. In 96, Milman and Myhki introduced impulive differential equation in their paper [82. Baed on their work, everal monograph have been publihed by many author like Samoilenko and Peretyuk [95, Lakhmikantham et al. [6, Bainov and Simeonov [2, 2, Bainov and Covachev [9, and Benchohra et al. [28. Fractional differential equation were extended to impulive fractional differential equation, ince Agarwal and Benchohra publihed the firt paper on the topic [4 in 28. Since then many author [6, 39, 42, 55, 72, 68, 66, 84, 93, 7, 8, 24, 73, 7 tudied the exitence or uniquene of olution of impulive initial

3 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 3 or boundary value problem for fractional differential equation. For example, impulive anti-periodic boundary value problem ee [5, 6, 4, 69,, impulive periodic boundary value problem ee [5, 26, 5, impulive initial value problem ee [3, 38, 83, 98, two-point, three-point or multi-point impulive boundary value problem ee [2, 47, 6, 36, 6, 34, impulive boundary value problem on infinite interval ee [3. Feckan and Zhou [43 pointed out that the formula of olution for impulive fractional differential equation in [3,, 24, 29 i incorrect and gave their correct formula. In [6,, the author etablihed a general framework to find the olution for impulive fractional boundary value problem and obtained ome ufficient condition for the exitence of the olution to a kind of impulive fractional differential equation. In [3, the author illutrated their comprehenion for the counterexample in [43 and criticized the viewpoint in [43, 6,. Next, in [44, Feckan et al. expanded for the counterexample in [43 and provided further explanation in the paper. In a fractional differential equation, there exit two cae concerning the derivative: the fir cae i D α D α, i.e., the fractional derivative ha a ingle tart point t. The other cae i D α D α, i.e., the fractional derivative ha a t i multiple tart point t t i i N[, m. There have been many author concerning the exitence and uniquene of olution of boundary value problem of impulive fractional differential equation with multiple tart point t t i i N[, m. Recently, Wang [ conider the econd cae in which D α ha multiple tart point, i. e., D α D α. They tudied the exitence and uniquene of olution of t i the following initial value problem of the impulive fractional differential equation C D α ut ft, ut, t i t t i, t i, i N[, p, u j u j, j N[, n, u j t i I ji ut i, i N[, p, j N[, n,. where α n, n with n being a poitive integer, C D α repreent the tandard t i Caputo fractional derivative of order α, N[a, b {a, a,..., b} with a, b being integer, t < t < < t p < t p, I ji CR, R i N[, p, j N[, n, f : [, T R R i a continuou function. Henderon and Ouahab [5 tudied the exitence of olution of the following problem and C D α ut ft, ut, t i t t i, t i, i N[, p, u j u j, j N[,, u j t i I ji ut i, i N[, p, j N[,, C D α ut ft, ut, t t t i, t i, i N[, p, i u j u j b, j N[,, u j t i I ji ut i, i N[, p, j N[,,

4 4 Y. LIU EJDE-26/296 where α, 2, b >, t < t < < t p < t p b, f : [, b R R, I ji : R R are continuou function. Reader hould alo refer [4. Zhao and Gong [32 tudied exitence of poitive olution of the nonlinear impulive fractional differential equation with generalized periodic boundary value condition C D q ut ft, ut, t, T \ {t t,..., t p }, i ut i I i ut i, u t i J i ut i, i N[, p, αu βu, αu βu,.2 where q, 2, C D q repreent the tandard Caputo fractional derivative of t i order q, α > β >, t < t < < t p < t p, N[a, b {a, a,..., b} with a, b being integer,i i, J i C[,, [, i N[, p, f : [, [, [, i a continuou function. Wang, Ahmad and Zhang [2 tudied the exitence and uniquene of olution of the periodic boundary value problem for nonlinear impulive fractional differential equation C D α ut ft, ut, t, T \ {t t,..., t p }, i ut i I i ut i, u t i Ii ut i, i N[, p, u θ ut but, u θ ut,.3 where α, 2, C D α repreent the tandard Caputo fractional derivative of t i order α, θ, 2, N[a, b {a, a,..., b} with a, b being integer, t < t < < t p < t p T, I i, Ii CR, R i N[, p, f : [, T R R i a continuou function. Zou and Feng, Li and Shang [3, 64, 39 tudied the exitence of olution of the nonlinear boundary value problem of fractional impulive differential equation C D α xt wtft, xt, x t, t, \ {t t,..., t p }, i xt i I i xt i, x t i J i xt i, i N[, p, α x β u g x, α 2 x β 2 x g 2 x,.4 where α, 2, C D α repreent the tandard Caputo fractional derivative of t i order α, α, α 2, β, β 2 R with α α 2 α β 2 α 2 β, N[a, b {a, a,..., b} with a, b being integer, t < t < < t p < t p, I i, J i CR, R i N[, p, f : [, T R 2 R i continuou, w : [, [, i a continuou function, g, g 2 : P C, R are two continuou function.

5 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 5 Liu and Li [7 invetigated the exitence and uniquene of olution for the nonlinear impulive fractional differential equation C D α ut ft, ut, u t, u t, t t t i, t i, i N[, p, i T u λ ut ξ q, u, u, u d, T u λ 2 u T ξ 2 q 2, u, u, u d, T u λ 3 u T ξ 3 q 3, u, u, u d, ut i A i ut i, u t i B i ut i, u t i C i ut i,.5 for i N[, p, where α 2, 3, C D α repreent the tandard Caputo fractional t i derivative of order α, N[a, b {a, a,..., b} with a, b being integer, t < t < < t p < t p T, λ i, ξ i R i, 2, 3 are contant, A i, B i, C i CR, R i N[, p, f : [, T R 3 R i continuou. Recently, in [32, to extend the problem for impulive differential equation u t λut ft, ut, u ut, u t i I i uti, in[, p to impulive fractional differential equation, the author tudied the exitence and the multiplicity of olution for the Dirichlet boundary value problem for impulive fractional order differential equation C DT α C D α xt atxt λft, xt, t [, T, t t i, i N[, m, C D α T C D α xt i µi i xt i, i N[, m, x xt,.6 where α /2,, λ, µ > are contant, N[a, b : {a, a,..., b with a b, t < t < < t m < t m T, f : [, T R R i a continuou function, I i : R Ri N[, m are continuou function, C D α or C D α T i the tandard left or right Caputo fractional derivative of order α, a C[, T and there exit contant a, a 2 > uch that a at a 2 for all t [, T, x tti lim t t xt lim i t t xt xt i xt i and xt i, xt i repreent i the right and left limit of xt at t t i repectively, a, b, x a contant with a b. One know that the boundary condition ax bxt x become x xt x a when a b, that i o called nonhomogeneou periodic type boundary condition. For impulive fractional differential equation whoe derivative have ingle tart point t, there ha been few paper publihed. In [9, author preented a new method to converting the impulive fractional differential equation with the Caputo fractional derivative to an equivalent integral equation and etablihed exitence and uniquene reult for ome boundary value problem of impulive fractional differential equation involving the Caputo fractional derivative with ingle tart point. The exitence and uniquene of olution of the following initial or boundary value problem were dicued in [9: C D α xt ft, xt, t, \ {t,..., t p }, xt i I i xt i, x t i J i xt i, i N[, p, x x, x x ;

6 6 Y. LIU EJDE-26/296 C D α xt ft, xt, t, \ {t,..., t p }, xt i I i xt i, x t i J i xt i, i N[, p, x φx x, x x ; C D β xt ft, xt, t, \ {t,..., t p }, xt i I i xt i, i N[, p, ax bx, C D α xt ft, xt, t, \ {t,..., t p }, and xt i I i xt i, x t i J i xt i, i N[, p, ax bx x, cx dx x ; C D α xt ft, xt, t, \ {t,..., t p }, xt i I i xt i, x t i J i xt i, i N[, p, x axξ x bxη, where α, 2, β,, D i the Caputo fractional derivative with order and ingle tart point t, f : [, R R, I i, J i : R R are continuou function, a, b, c, d, x, x R are contant, φ : P C, R i a functional. We oberved that in the above-mentioned work, the author all require that the fractional derivative are the Caputo type derivative, the nonlinear term f and the impule function are continuou. It i eay to ee that thee condition are very retrictive and difficult to atify in application. To the author knowledge, there ha been no paper publihed dicued the exitence of olution of boundary value problem of impulive fractional differential equation involving other fractional derivative uch a the Riemann-Liouville fractional derivative, Hadamard fractional derivative. In thi paper, we tudy the exitence of olution of four clae of impulive boundary value problem of ingular fractional differential equation. The firt cla i the impulive Dirichlet type integral boundary value problem RL D β xt λxt ptft, xt, lim t2 β xt t φg, xd, x a.e., t t i, t i, i N[, m, ψh, xd, lim t t i 2 β xt It i, xt i, RL D β t t xt i Jt i, xt i, i for i N[, m, where.7.a < β < 2, λ R, RL D β i the Riemann-Liouville fractional derivative of order β,.a2 m i a poitive integer, t < t < t 2 < < t m < t m, N[a, b {a, a, a 2,..., a n} with a, b being integer and a b,.a3 φ, ψ :, R are meaurable function,.a4 p :, R i continuou and there exit number k > and l max{ β, 2 k, uch that pt t k t l for all t,,.a5 f, G, H defined on, R are impulive II-Carathéodory function, I, J : {t i : i N[, m} R R i a dicrete II-Carathéodory function.

7 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 7 The econd cla i the impulive mixed type integral boundary value problem C D β xt λxt ptft, xt, lim xt t φg, xd, x a.e., t t i, t i, i N[, m, ψh, xd, xt i It i, xt i, x t i Jt i, xt i, i N[, m,.8 where.a6 < β < 2, λ R, C D β i the Caputo fractional derivative of order β, m, t i, N[a, b atifie.a2, φ, ψ :, R atify.a3,.a7 p :, R i continuou and there exit number k > β and l max{ β, β k, uch that pt t k t l for all t,,.a8 f, G, H defined on, R are impulive I-Carathéodory function, I, J : {t i : i N[, m} R R are dicrete I-Carathéodory function. We emphaize that much work on fractional boundary value problem involve either Riemann-Liouville or Caputo type fractional differential equation ee [8, 9,, 6. Another kind of fractional derivative that appear ide by ide to Riemann- Liouville and Caputo derivative in the literature i the fractional derivative due to Hadamard introduced in 892 [48, which differ from the preceding one in the ene that the kernel of the integral in the definition of Hadamard derivative contain logarithmic function of arbitrary exponent. Recent tudie can be een in [33, 34, 35. Thirdly we tudy the following impulive periodic type integral boundary value problem of ingular fractional differential ytem RLH D β xt λxt ptft, xt, lim t log t2 β xt xe a.e., t t i, t i, i N[, m, e lim RLH D β t xt RLH D β xe lim log t log t i 2 β xt It i, xt i, t t i φg, xd, e ψh, xd, RLH D β xt i Jt i, xt i,.9 for i N[, m, where.a9 < β < 2, λ R, RLH D β i the Hadamard fractional derivative of order β,.a m i a poitive integer, t < t < t 2 < < t m < t m e, φ, ψ :, e R are meaurable function, p :, e R i continuou and atifie pt log t k log t l with k >, l, 2 k l >, N[a, b {a, a, a 2,..., a n} with a, b being integer and a b,.a f, G, H defined on, er are impulive III-Carathéodory function, I, J : {t i : i N[, m} R R are dicrete III-Carathéodory function.

8 8 Y. LIU EJDE-26/296 Finally we tudy the following impulive Neumann type integral boundary value problem of ingular fractional differential ytem CH D β xt λxt ptft, xt, a.e., t t i, t i, i N[, m, t d dt xt t t d dt xt te lim t t i e e φg, xd, ψh, xd, xt xt i It i, xt i,. for i N[, m, where lim t d t t dt xt t d dt xt tti Jt i, xt i, i.a2 < β < 2, λ R, CH D β i the Caputo type Hadamard fractional derivative of order β, t d dt xt tx t,.a3 m, t i, N[a, b atify.a, φ, ψ :, e R are meaurable function, p :, e R i continuou and atifie pt log t k log t l with k >, l, β k l >,.A4 f, G, H defined on, e R are impulive I-Carathéodory function, I, J : {t i : i N[, m} R R are dicrete I-Carathéodory function. A function x :, R i called a olution of BVP.7 or of BVP.8 if x ti,t ii,, j N[, m i continuou, the limit below exit lim t t i 2 β xt, i N[, m, or lim t t i t t i xt i N[, m and x atifie.7 or.8. A function x :, e R i called a olution of BVP.9 or of BVP. if x ti,t ii N[, m i continuou, the limit below exit lim log t 2 β xt, i N[, m, or lim t t t i i t t i xt, i N[, m and x atifie.9 or.. To obtain olution of a boundary value problem of fractional differential equation, we firtly define a Banach pace X, then we tranform the boundary value problem into a integral equation and define a nonlinear operator T on X by uing the integral equation obtained, finally, we prove that T ha fixed point in X. The fixed point are jut olution of the boundary value problem. Three difficultie occur in known paper: one i how to tranform the boundary value problem into a integral equation; the other one i how to define and prove a Banach pace and the completely continuou property of the nonlinear operator defined; the third one i to chooe a uitable fixed point theorem and impoe uitable growth condition on function to get the fixed point of the operator. To the bet of the author knowledge, no one ha tudied the exitence of trong weak or weak olution of BVP.7.. Thi paper fill thi gap. Another purpoe of thi paper i to illutrate the imilarity and difference of thee three kind of fractional differential equation. We obtain reult on the exitence of at leat one olution for BVP.7.. For implicity we only conider the left-ided operator here. The right-ided operator can be treated imilarly. For clarity and

9 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 9 brevity, we retrict our attention to BVP with one impule, the difference between the theory of one or an arbitrary number of impule i quite imilar. The remainder of thi paper i organized a follow: in Section 2, we preent related definition. In Section 3 ome preliminary reult are given one purpoe i to etablih exitence and uniquene of continuou olution of linear fractional differential equation Subection 3., the econd purpoe i to get exact expreion of piecewie continuou olution of the linear fractional differential equation with a contant coefficient and a variable force term Subection 3.2, the third purpoe i to prove preliminary reult for etablihing exitence reult of olution of.7.in Subection 3.3, 3.4, 3.5 and 3.6, repectively, we tranform them into correponding integral equation and define completely continuou nonlinear operator. In Section 4, the main theorem and their proof are given we etablih exitence reult for olution of BVP.7.. In Section 5, we preet application of theorem obtained in Subection 3.2, the olvability of multi-point boundary value problem, Sturm-Liouville boundary value problem and anti-periodic boundary value problem for fractional differential equation with impule effect are dicued, repectively. In Section 6, ome mitake happened in cited paper are howed. Corrected expreion of olution are given. Finally, in Section 7, we urvey ome example and application of fractional differential equation in variou field: population dynamic, control theory, phyic, biology, medicine. 2. Related definition For convenience of the reader, we firtly preent the neceary definition from the fractional calculu theory. Thee definition and reult can be found in [58, 88, 94. Let the Gamma function, Beta function and the claical Mittag-Leffler pecial function be x α e x dx, Bp, q E δ,σ x k x k Γδk σ x p x q dx, repectively for α >, p >, q >, δ >, σ >. We note that E δ,δ x > for all x R and E δ,δ x i trictly increaing in x. Then for x > we have E δ,σ x < E δ,σ Γσ < E δ,σx. Definition 2. [58. Let c R. The Riemann-Liouville fractional integral of order α > of a function g : c, R i I α c gt provided that the right-hand ide exit. c t α gd, Definition 2.2 [58. Let c R. The Riemann-Liouville fractional derivative of order α > of a function g : c, R i d n RL Dc α gt Γn α dt n c g d, t α n where α < n < α, i.e., n α, provided that the right-hand ide exit.

10 Y. LIU EJDE-26/296 Definition 2.3 [58. Let c R. The Caputo fractional derivative of order α > of a function g : c, R i C D α c gt Γn α c g n d, t α n where α < n < α, i.e., n α, provided that the right-hand ide exit. Definition 2.4 [58. Let c >. The Hadamard fractional integral of order α > of a function g : [c, R i H I α c gt provided that the right-hand ide exit. c log t α g d, Definition 2.5 [58. Let c >. The Hadamard fractional derivative of order α > of a function g : [c, R i RLH D α c gt Γn α t d dt n c log t n α g d, where α < n < α, i.e., n α, provided that the right-hand ide exit. Definition 2.6 [53. Let c >. The Caputo type Hadamard fractional derivative of order α > of a function g : [c, R i CH D α c gt Γn α c log t n α d d n g d, where α < n α, i.e., n α, provided that the right-hand ide exit. Definition 2.7. We call F : m i t i, t i R R an impulive I-Carathéodory function if it atifie i t F t, u i meaurable on t i, t i i N[, m for any u R, ii u F t, u are continuou on R for almot all t t i, t i i N[, m, iii for each r > there exit M r > uch that F t, u M r, t t i, t i, u r, i N[, m. Definition 2.8. We call F : m i t i, t i R R an impulive II-Carathéodory function if it atifie i t F t, t t i β 2 u i meaurable on t i, t i i N[, m for any u R, ii u F t, t t i β 2 u are continuou on R for almot all t t i, t i i N[, m, iii for each r > there exit M r > uch that F t, t t i β 2 u M r, t t i, t i, u r, i N[, m. Definition 2.9. We call F : m i t i, t i R R an impulive III-Carathéodory function if it atifie i t F t, log t t i β 2 u i meaurable on t i, t i i N[, m for any u R, ii u F t, log t t i β 2 u are continuou on R for all t t i, t i i N[, m, iii for each r > there exit M r > uch that F t, log t t i β 2 u M r, t t i, t i, u r, i N[, m.

11 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES Definition 2.. We call I : {t i : i N[, m} R R a dicrete I-Carathéodory function if it atifie i u It i, u i N[, m are continuou on R, ii for each r > there exit M r > uch that It i, u M r, u r for i N[, m. Definition 2.. We call I : {t i : i N[, m} R R a dicrete II-Carathéodory function if it atifie i u It i, t i t i β 2 u i N[, m are continuou on R, ii for each r > there exit M r > uch that It i, t i t β 2 i u M r, u r for i N[, m. Definition 2.2. We call I : {t i : i N[, m}r R a dicrete III-Carathéodory function if it atifie i u It i, log t i log t i β n u i N[, m are continuou on R, ii for each r > there exit M r > uch that It, log ti t i β n u M r, u r for i N[, m. Definition 2.3 [79. Let E and F be Banach pace. A operator T : E F i called a completely continuou operator if T i continuou and map any bounded et into relatively compact et. Suppoe that n α < n. The following Banach pace are ued: Let a < b be contant. Ca, b denote the et of continuou function on a, b with lim t a xt exiting, and the norm x up xt. t a,b Let a < b be contant. C n α a, b the et of continuou function on a, b with lim t a t a n α xt exiting, the norm x n α up t a,b t a n α xt. Let < a < b. LC n α a, b denote the et of all continuou function on a, b with the limit lim t a log t a n α xt exiting, and the norm x up log t t a,b a n α xt. For a poitive integer m let N[, m {,, 2,..., m}, with t < t < < t m < t m. The following Banach pace are alo ued in thi paper: P m C n α, {x :, R : x ti,t i C n αt i, t i : i N[, m} with the norm x x PmC n α { max up t t i,t i } t t i n α xt : i N[, m. P m C, {x :, R : x ti,t i Ct i, t i : i N[, m} with the norm { } x x PmC, max xt : i N[.m. up t t i,t i For a poitive integer m let N[, m {,, 2,..., m}, with t < t < < t m < t m e. We alo ue the Banach pace { LP m C n α, e x :, e R : x Ct ti,t i i, t i, i N[, m,

12 2 Y. LIU EJDE-26/296 with the norm with the norm x x LPmC n α and lim log t } n α xt exit for i N[, m t t t i i { max up t t i,t i log t } n α xt, i N[, m. t i P m C, e { x :, e R : x ti,t i Ct i, t i, i N[.m } { x x PmC max up t t i,t i 3. Preliminarie } xt, i N[, m. In thi ection, we preent ome preliminary reult that can be ued in next ection for obtain olution of Baic theory for linear fractional differential equation. Lakhmikantham et al. [6, 62, 63, 59 invetigated the baic theory of initial value problem for fractional differential equation involving Riemann-Liouville differential operator of order q,. The exitence and uniquene of olution of the following initial value problem of fractional differential equation were dicued under the aumption that f C r [,. We will etablih exitence and uniquene reult for thee problem under more weaker aumption ee 3.A 3.A4 below. Suppoe that n < α < n and η j Rj N[, n, F, A :, R and B, G :, e R are continuou function. We conider the following four clae of initial value problem of non-homogeneou linear fractional differential equation: C D α xt Atxt F t, a.e. t,, RL D α lim xj t η j, j N[, n, t xt Atxt F t, a.e. t,, η n lim tn α xt t Γα n, lim RL D α j t xt η j, j N[, n, RLH D α xt Btxt Gt, lim log t n α xt t a.e. t, e, η n Γα n, lim RLH D α j t xt η j, j N[, n, CH D α xt Btxt Gt, a.e. t, e, lim d t t dt j xt η j, j N[, n where t d dt j xt t dt d dt j xt dt for j 2, 3,.... To obtain olution of 3., we need the following aumption: 3.A there exit contant k i > α n, l i with l i > max{ α, α k i }i, 2, M A and M F uch that At M A t k t l and F t M F t k2 t l2 for all t,.

13 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 3 Chooe the Picard function equence a φ i t n j η j t j j! Claim. φ i C[,. φ t Proof. One ee φ C[,. Then n j η j t j, t [,, j! t α [Aφ i F d, t,, i, 2,.... t α [Aφ F d t α [M A φ k l M F k2 l2 d t αl t αl2 M A φ k d M F k2 d w αl M A φ t αkl w k dw w αl2 M F t αk2l2 w k2 dw M A φ t Bα l, k αkl M F t Bα l 2, k αk2l2 2 a t. It follow that φ i continuou on, and lim t φ t exit. So φ C[,. By mathematical induction, we can prove that φ i C[,. Claim 2. {φ i } i convergent uniformly on [,. Proof. For t [, we have So φ t φ t t α [Aφ F d t α t α M A φ k l d M F k2 l2 d t αl t αl2 M A φ k d M F k2 d M A φ t Bα l, k αkl M F t Bα l 2, k αk2l2 2. φ 2 t φ t t α A[φ φ d

14 4 Y. LIU EJDE-26/296 t α M A k l M A φ Bα l, k αkl M F Bα l 2, k αk2l2 2 d φ MA 2 t αl Bα l, k α2kl d t αl M A M F Bα l 2, k αkk2l2 2 d φ M 2 At 2α2k2l Bα l, k M A M F t 2αkk2ll2 Bα l 2, k 2 Now uppoe that Then we have φ j t φ j t φ j t φ j t j φ M j A tjαjkjl i Bα l, α 2k l Bα l, α k k 2 l 2. Bα l, iα i k il M j A M F t jαj kk2j ll2 Bα l 2, k 2 j i Bα l, iα ik k 2 i l l 2. t α A[φ j φ j d t α j M A φ M j A jαjkjl i M j A M F jαj kk2j ll2 Bα l 2, k 2 j i Bα l, iα i k il Bα l, iα ik k 2 i l l 2 k l d t αl j M A φ M j A jαjkjl i M j A M F jαj kk2j ll2 Bα l 2, k 2 j i Bα l, iα ik k 2 i l l 2 k d Bα l, iα i k il

15 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 5 φ M j A tjαjkjl j i M j A M F t Bα l 2, k jαjkk2jll2 2 j Bα l, iα ik k 2 i l l 2. i Bα l, iα i k il Uing mathematical induction, for every i, 2,... we obtain φ i t φ i t φ M i A tiαikil i j MAM i F t Bα l 2, k iαikk2ill2 2 i Bα l, jα jk k 2 j l l 2 j φ M i A i j M i AM F Bα l 2, k 2 for t [,. Conider i i u i v i Bα l, jα j k jl i i φ M i A i j i i Bα l, jα j k jl Bα l, jα jk k 2 j l l 2, M i AM F Bα l 2, k 2 i j Bα l, iα i k il, Bα l, jα jk k 2 j l l 2. One ee that for ufficiently large n with δ, 2, u i Bα l, i α i k i l M A u i M A x αl x iαikil dx δ M A x αl x iαikil dx M A x αl dx δ M A x αl dxδ iαikil M A δ αl α l M A δ iαikil M A δ αl. α l α l δ

16 6 Y. LIU EJDE-26/296 It i eay to ee that for any ɛ > there exit δ, 2 uch that M A αl δ αl < ɛ 2. For thi δ, there exit an integer N > ufficiently large uch that M A α l δ iαikil < ɛ 2 for all i > N. So < ui u i < ɛ 2 ɛ 2 ɛ for all i > N. It follow that lim i u i /u i. Then i u i converge. Similarly we obtain i v i converge. Hence φ t [φ t φ t [φ 2 t φ t [φ i t φ i t..., t [, i uniformly convergent. Then {φ i t} i convergent uniformly on [,. Claim 3. φt lim i φ i t defined on [, i a unique continuou olution of the integral equation xt n j η j j! t α [Ax F d, t [,. 3.5 Proof. From φt lim i φ i t and the uniformly convergence, we ee that φt i continuou on [,. From t α t α [Aφ p F d [Aφ q F d t α M A φ p φ q k l d M A φ p φ q t Bα l, k αkl M A φ p φ q Bα l, k a p, q, we have φt lim φ it i lim i n j n j n j η j t j j! η j t j j! η j t j j! [ n j η j t j j! lim i t α t α [Aφ i F d t α [Aφ i F d [ A lim i φ i F d t α [Aφ F d. Then φ i a continuou olution of 3.5 defined on [,. Suppoe that ψ defined on [, i alo a olution of 3.5. Then ψt n j η j j! t α [Aψ F d, t,.

17 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 7 We need to prove that φt ψt on [,. Then ψt φ t Furthermore, t α Aψ F d φ M A t αkl Bα l, k ψt φ t M F t Bα l 2, k αk2l2 2. t α A[ψ φ d φ MAt 2 Bα l, k 2α2k2l Bα l, α 2k l M A M F t 2αkk2ll2 Bα l 2, k 2 Now uppoe that Then j ψt φ j t φ M j A tjαjkjl Hence, i Bα l, α k k 2 l 2. Bα l, iα i k il M j A M F t jαj kk2j ll2 Bα l 2, k 2 j i Bα l, iα ik k 2 i l l 2. ψt φ j t t α A[ψ φ j d j φ M j Bα l, iα i k il A tjαjkjl i M j A M F t Bα l 2, k jαjkk2jll2 2 j Bα l, iα ik k 2 i l l 2. i ψt φ i t φ M i A tiαikil i j M i AM F t iαikk2ill2 Bα l 2, k 2 Bα l, jα j k jl

18 8 Y. LIU EJDE-26/296 i j φ M i A Bα l, jα jk k 2 j l l 2 i j M i AM F Bα l 2, k 2 Bα l, jα j k jl i j for i, 2,.... Similarly we have lim φ M i i A i j Bα l, jα jk k 2 j l l 2 Bα l, jα j k jl lim M i Bα l 2, k 2 AM F i i Bα l, jα jk k 2 j l l 2. j, Then lim i φ i t ψt uniformly on [,. Then φt ψt. Then 3.5 ha a unique olution φ. The proof i complete. Theorem 3.. Suppoe that 3.A hold. Then x i a olution of IVP 3. if and only if x i a olution of the integral equation 3.5. Proof. Suppoe that x i a olution of 3.. Then lim t xt η and x r <. From 3.A, we have for t, x t α n Γα n [Ax F d t α n Γα n A d t α n F d Γα n t α n Γα n [M Ar k l M F k2 l2 d t α n Γα n [M Ar k t l M F k2 t l2 d M A r t l t αk n M F t l2 t αk2 n w α n Γα n wk dw w α n Γα n wk2 dw M A r t l t αk n Bα n, k M F t l2 t αk2 n Bα n, k 2. by t w

19 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 9 So t that lim t t α n Γα n [Ax F d i defined on,. k i > α n implie t α n t α n Axd lim F d. 3.6 Γα n t Γα n Furthermore, for t, t 2, with t < t 2 we have 2 t α [Ax F d t t 2 α Ax F d 2 t α t 2 α Ax F d [ 2 t 2 α M A r k l d t t α t 2 α k l d [ 2 t 2 α M F k2 l2 d t t α t 2 α k2 l2 d [ 2 t 2 αl M A r k d t t α t 2 α k t 2 l d [ 2 t 2 αl2 M F k2 d t t α t 2 α k2 t 2 l2 d [ M A r t αkl 2 t t 2 wαl w k dw t αl k d M F [t αk2l2 2 t t 2 t αl2 k2 d [ M A r t αkl 2 t αkl 2 t2 t t 2 t 2 αl wαl2 w k2 dw t 2 αl2 wαl w k dw t αkl w αl w k dw t 2 α [Ax F d k d k2 d w αl w k dw

20 2 Y. LIU EJDE-26/296 M F [t αk2l2 2 t αk2l2 [ M A r t αkl 2 t t 2 wαl2 w k2 dw w αl2 t t 2 w k2 dw t αk2l2 2 wαl w k dw t2 t αkl t αkl 2 Bα l, k t αkl 2 M F [t αk2l2 2 t t 2 wαl2 w k2 dw t αk2l2 t αk2l2 2 Bα l 2, k 2 t αk2l2 2 a t t 2. So t w αl2 t t2 t t2 w k2 dw wαl w k dw wαl2 w k2 dw t α [Ax F d i continuou on,, by defining t α [Ax F d lim t t We have I α C D α xt I α [Atxt F t. So t α [Ax F d. t α [Ax F d I α [Atxt F t Iα C D α xt t α w α x n wdw d Γn α interchange the order of integration Γn α Γn α uing Bα, α w t α w n α dx n wdw uing w t w u t u n u α u n α dux n wdw Γ α Γ t u n x n wdw n! [t u n x n w t n! n t u n 2 x n wdw η n n! n 2!... t u n 2 x n wdw

21 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 2 n η j j! j n x η j d xt j!. j Then x C, i a olution of 3.5. On the other hand, if x i a olution of 3.5. From Cae, 2 and 3, we have x C, and lim t x j t η j j N[, n. So x C[,. Furthermore, from 3.6 we have C D α xt Γn α Γn α t n α x n d t n α n j η j j j! w α nd [Awxw F wdw t t n α w α nd [Awxw F wdw Γn α t n α Γn α Γα n d w α n [Awxw F wdw [ t n α Γα n Γn α d w α n [Awxw F wdw [t n α w α n [Awxw F wdw t Γα n Γn α n α t n α w α n [Awxw F w dw d [ t n α Γα n Γn α w α n [Awxw F w dw d by 3.6 [ Γα n Γn α [Awxw F wdw w t n α w α n d by changing the order of integration [ u n α u α n du[awxw F wdw Γα n Γn α becaue w t w u

22 22 Y. LIU EJDE-26/296 [ [Awxw F wdw by uing Bn α, α n Γn αγα n Atxt F t in the lat equality. So x C[, i a olution of 3.. The proof i complete. Theorem 3.2. Suppoe that 3.A hold. Then 3. ha a unique olution. If there exit contant k 2 > αn, l 2 with l 2 > max{ α, α k 2 }, M F uch that F t M F t k2 t l2 for all t,, then the following problem ha a unique olution n xt η j E α,j λt α t j j C D α xt λxt F t, a.e., t,, lim t x j t η j, j N[, n 3.7 t α E α,α λt α F d, t,. 3.8 Proof. i From Claim, 2 and 3, Theorem 3. implie that 3. ha a unique olution. ii From the aumption and At λ, it i eay to ee that 3.A hold with k l and k 2, l 2 mentioned. Thu 3.7 ha a unique olution. From the Picard function equence we have φ i t n j n j n j η j t j j! η j t j j! λ λ u α η j t j j! n λ j λ 2 t α λ n j η j t j j! λ2 2 λ 2 t α t α t α φ i d n F udu d η j j! n η j λ j! tαj j u u t α F d j η j j j! λ t α F d t α F d t α j d u α φ i 2 udu u α φ i 2 u du d u α t α F u du d F d w α w j dw t α u α dφ i 2 udu t α u α df udu

23 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 23 n j η j t j j! λ Γ2α n λη j t αj Γα j j t u 2α F udu n η j t j Γα j j... n j n j t α i η j t j v t α i η j t j v λt α Γ2α λ v t αv Γvα j i v λ2 Γ2α λt α Γα j F d λi Γiα t u 2α φ i 2 udu t α F d λ v t αv F d Γv α λ v t αv Γvα j i t α n η j t j i j v v λ2 Γ2α λ i n Γiα j λ v t αv F d Γv α λ v t αv Γvα j n η j t j E α,j λt α j t u iα φ udu j v η j t αnj t u 2α φ i 2 udu t α i λ v t αv F d Γv α t α E α,α λt α F d, a m. Then xt lim i φ i t i a unique olution of 3.7. So x atifie 3.8. The proof i complete. To obtain olution of 3.2, we need the following aumption: 3.A2 There exit contant k i >, l i with l > max{ α, α k }, l 2 > max{ α, n k 2 }, M A and M F uch that At M A t k t l and F t M F t k2 t l2 for all t,. We chooe Picard function equence a φ i t n v φ t for t,, i, 2,.... Claim. φ i C n α [,. n v η v Γα v tα v η v Γα v tα v, t,, t α [Aφ i F d,

24 24 Y. LIU EJDE-26/296 Proof. It i eay to ee that φ C n α [,. We have t n α t α [Aφ F d t n α t α k l α n [ n α φ n d M F t n α t α k l t n α t αl φ αk n d M F t n α t αl2 k2 d φ t Bα l, α k αkl n M F t Bα l 2, k nk2l2 2. Then t t α lim t tn α [Aφ n F d i convergent on, and t α [Aφ n F d. We ee that φ C n α [,. By mathematical induction, we can prove that φ n C n α [,. Claim 2. {t t n α φ i t} converge uniformly on [,. Proof. A in Cae, for t [, we have So t n α φ t φ t t α [Aφ F d φ t Bα l, α k αkl n t n α φ 2 t φ t t Bα l 2, k nk2l2 2. t α A[φ φ d t n α t α M A k l α n φ Bα l, α k αkl n Bα l 2, k nk2l2 2 d M A φ t n α t αl 2α n2kl d Bα l, α k n M A M F t n α t αl αkk2l2 d Bα l 2, k 2 M A φ t 2α2k2l Bα l, 2α n 2k l M A M F t αnklk2l2 Bα l, α k k 2 l 2 Bα l, α k n Bα l 2, k 2.

25 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 25 Furthermore, t n α φ 3 t φ 2 t t α A[φ 2 φ d t n α t α M A k l α n M A φ 2α2k2l Bα l, 2α n 2k l Bα l, α k n M A M F Bα l, α k αnklk2l2 k 2 l 2 Bα l 2, k 2 d MA φ 2 t n α t αl 3α n3k2l d Bα l, 2α n 2k l Bα l, α k n MAM 2 F t n α t αl 2α2klk2l2 d Bα l, α k k 2 l 2 Bα l 2, k 2 MA φ 2 t Bα l, 3α n 3k 3α3k3l 2l Bα l, 2α n 2k l Bα l, α k n M 2 AM F t 2αn2k2lk2l2 Bα l, 2α 2k l k 2 l 2 Bα l, α k k 2 l 2 Bα l 2, k 2. Similarly by the mathematical induction, for every i, 2,... we obtain t n α φ i t φ i t M i A φ t iαikil Bα l, α k n i 2 j Bα l, j α j k jl n M m A M F t i αni ki lk2l2 Bα l 2, k 2 i 2 j Bα l, j α j k jl k 2 l 2 M i A φ Bα l, α k n

26 26 Y. LIU EJDE-26/296 i 2 j Bα l, j α j k jl n M i A M Bα l 2, k 2 F i 2 j Bα l, j α j k jl k 2 l 2, t [,. Similarly we can prove that both i i u i v i i i 2 j i i 2 j are convergent. Hence, M i A φ Bα l, α k n Bα l, j α j k jl n, M i A M Bα l 2, k 2 F Bα l, j α j k jl k 2 l 2 t n α φ tt n α [φ t φ tt n α [φ 2 t φ t t n α [φ i t φ i t..., for t [,, i uniformly convergent. Then {t t n α φ i t} i convergent uniformly on,. Claim 3. φt t α n lim i t n α φ i t defined on, i a unique continuou olution of the integral equation n η t v t α xt Γα v tα v [AxF d, t,. 3.9 v Proof. By lim i t n α φ i t t n α φt and the uniformly convergence, we ee φt i continuou on,. From t n α t α [Aφ p F d t α [Aφ q F d M A φ p φ q t n α t α k l α n d M A φ p φ q t n α t αl αk n d M A φ p φ q t Bα l, α k αkl n M A φ p φ q Bα l, α k n

27 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 27 we know that φt t α n lim i t n α φ i t t α n lim i uniformly a p, q, [t n α n v t n α t α n η v Γα v tα v v n v η v Γα v tα v η v Γα v tα v [Aφ i F d lim i t α [Aφ i F d t α [Aφ F d. Then φ i a continuou olution of 3.9 defined on,. Suppoe that ψ defined on, i alo a olution of 3.9. Then n η t v t α ψt Γα v tα v [Aψ F d, t [,. v We need to prove that φt ψt on,. Then t n α ψt φ t t n α t α Aψ F d ψ t αkl Bα l, α k n Furthermore, we have t n α ψt φ t t n α t α A[ψ φ d M A φ t 2α2k2l Bα l, 2α n 2k l M A M F t αnklk2l2 Bα l, α k k 2 l 2 Uing mathematical induction, we have t n α ψt φ i t t n α t α A[ψ φ i 2 d MA φ i t Bα l, α k iαikil n i 2 j Bα l, j α j k jl n t Bα l 2, k nk2l2 2. Bα l, α k n Bα l 2, k 2.

28 28 Y. LIU EJDE-26/296 M m A M F t i αni ki lk2l2 Bα l 2, k 2 i 2 j Bα l, j α j k jl k 2 l 2 M i A φ Bα l, α k n i 2 j Bα l, j α j k jl n M i A M Bα l 2, k 2 F i 2 j Bα l, j α j k jl k 2 l 2, t [,. Hence, t n α ψt φ i t M i A φ Bα l, α k n i 2 j Bα l, j α j k jl n M i A M Bα l 2, k 2 F i 2 j Bα l, j α j k jl k 2 l 2, for i, 2,.... Similarly we have lim i t n α φ i t t n α ψt uniformly on,. Then φt ψt on,. Then 3.9 ha a unique olution φ. The proof i complete. Theorem 3.3. Suppoe that 3.A2 hold. Then x C n α, i a olution of IVP 3.2 if and only if x C n α, i a olution of the integral equation 3.9. Proof. Suppoe that x C n α, i a olution of 3.2. Then t t n α xti continuou on, by defining t n α xt t lim t t n α xt and x r <

29 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 29. So from w u, we obtain lim lim w n α xwdw lim ξn α xξ w n α w α n w n α xwdw w n α w α n dw by mean value theorem with ξ, ξn α xξ lim u n α u α n du η n Bn α, α n. Γα n From 3.A2, we have imilarly to Cae that t n α t α [Ax F d t n α t α [A α n n α x F d t n α t α [M A r α n k l M F k2 l2 d rm A t αkl Bα l, α k n So t t n α t α lim t tn α M F t Bα l 2, k nk2l2 2. [Ax F d i defined on, and 3. t α [Ax F d. 3. Furthermore, we have imilarly to Theorem 3. that t t α [Ax F d i continuou on,. So t t n α t t α [Ax F d i continuou on [, by defining t n α t α [Ax F d t lim t tn α t α [Ax F d. We have I α RL D α xt I α [Atxt F t. So t α [Ax F d I α [Atxt F t Iα RL D α xt t t α [ Γn α w n α xwdw n d t α w n α n d xwdw Γn α

30 3 Y. LIU EJDE-26/296 t α d RL D α x t α RL D α x t Γn αγα n d w xwdw n α Γn αγα Γn αγα 2 η tα... t α 2 t α 2 n d w n α η xwdw tα t α 3 n 2d w xwdw n α η 2 Γα tα 2 Γn αγα n t α n n η v Γα v tα v v [ t α n Γn αγα n 2 w n α xwdw d w n α xwdw d n η v Γα v tα v v [t α n w n α t xwdw Γn αγα n 2 α n t α n w n α xw dw d n η v Γα v tα v uing 3. v [ t α n w n α dxwdw Γn αγα n η n Γα n tα n n v [ Γn αγα n n η v Γα v tα v t α n v xt n v η v Γα v tα v. u η v Γα v tα v w α n w n α dwxwdw Then x C n α, i a olution of 3.9.

31 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 3 On the other hand, if x C n α, i a olution of 3.9. Then 3. implie lim t t n α xt. Furthermore, we have η n Γα n RL D α xt n t n α xd Γn α t n α n η v Γn α Γα v α v v u α n [Auxu F udu d n η t v t n α α v d Γn α Γα v v t n α u α n [Auxu F u du d n η v Γn α Γα v tn v w n α w α v dw v n α uα t d[auxu F udu u n η v Γn α Γα v tn v w n α w α v dw v t u n w Atxt F t. n α wα n dw[auxu F udu n So x C n α, i a olution of IVP3.2. The proof i complete. Theorem 3.4. Suppoe that 3.A2 hold. Then 3.2 ha a unique olution. If At λ and there exit contant k 2 >, l 2 with l 2 > max{ α, n k 2 } and M F uch that F t M F t k2 t l2 for all t,, then the problem RL D α xt λxt F t, a.e. t,, lim t n α η n xt t Γα n, lim RL D α j t xt η j, j N[, n ha a unique olution n xt η v t α v E α,α v λt α t α E α,α λt α F d, 3.3 v for t,. 3.2 Proof. i From Claim, 2 and 3, and Theorem 3.3, we ee that 3.2 ha a unique olution. ii From the aumption and At λ, one ee that 3.A2 hold with k l and k 2, l 2 mentioned. Thu 3.2 ha a unique olution. From the Picard function equence we have φ i t

32 32 Y. LIU EJDE-26/296 n η t v t α t α Γα v tα v λ φ i d F d v n η t v t α n η v Γα v tα v λ v Γα v α v v u α u α λ φ i 2 udu F udu d n v λ 2 λ n v t α F d η v Γα v tα v λ u u n v η v Γα v t α α v d t α u α dφ i 2 udu t α u α t α df udu F d n η v Γ2α v t2α v η v Γα v tα v λ λ 2 v t u 2α φ i 2 udu λ Γ2α t α F d n η v t α v Γα v v... n v v t α η v t α v i j λt α Γ2α t α m j t u 2α F udu Γ2α λt α Γ2α v λ2 F d λ j t αj λ i Γjα α v j λ j t αj F d Γj α n i η v t α v λ j t αj Γjα α v n η v t α v E α,α v λt α v t u 2α φ i 2 udu Γ2α t u iα φ udu Γmα t α i λ j t αj F d Γj α j t α E α,α λt α F d. Then we obtain xt lim i φ i t i a unique olution of 3.2. Then x atifie 3.3. The proof i complete. To obtain olution of 3.3, we need the following aumption:

33 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 33 3.A3 There exit contant k i >, l i with l > max{ α, α k }, l 2 > max{ α, n k 2 }, M B and M G uch that Bt M B log t k log t l and Gt M G log t k2 log t l2 for all t, e. We chooe Picard function equence a n η v φ t Γα v log tα v, φ i t n v v η v Γα v log tα v t, e, i, 2,.... t, e, log t α [Bφ i G d, Claim. φ i LC n α, e. Proof. We have φ LC n α [, e and log t n α log t α [Bφ G d log t n α log t α [ M B φ log α n log k log l d M G log k2 log l2 log t n α M B φ log t αl log log t n α M G log t αl2 log k2 d αk n d M B φ log t αkl Bα l, α k n M G log t nkl Bα l 2, k 2 a t, we know that t t log t α [Bφ G d i continuou on, e and lim t log t n α φ t exit. Then φ LC n α [, e. By mathematical induction, we can how φ i LC n α [, e. Claim 2. {t log t n α φ i t} i convergent uniformly on [, e. Proof. A above, for t [, e we have log t n α φ t φ t log tn α log tn α log t α [Bφ G d log t α [ φ M B log α nk log l M G log k2 log l2 d M B φ log t αkl Bα l, α k n

34 34 Y. LIU EJDE-26/296 So Then M G log t Bα l 2, k nk2l2 2. log t n α φ 2 t φ t log tn α log tn α log t α B[φ φ d log t αl M B log kα n M B φ log Bα l, α n k αkl M G log nk2l2 Bα l 2, k 2 d φ M 2 Blog t 2α2k2l Bα l, 2α 2k l n Bα l, α k n M B M G log t Bα l, α k αnklk2l2 k 2 l 2 Bα l 2, k 2. log t n α φ 3 t φ 2 t log tn α log t α B[φ 2 φ d log tn α int t log t αl M B log kα n φ MBlog 2 Bα l, α 2k αn2k2l l Bα l, α k n Bα l, n k k 2 l 2 M B M G log 2nklk2l2 Bα l 2, k 2 d φ MBlog 3 t Bα l, 3α 3k 3α3k3l 2l n Bα l, 2α 2k l n Bα l, α k n M 2 BM G log t 2αn2k2lk2l2 Bα l, 2α 2k l k 2 l 2 Bα l, α k k 2 l 2 Bα l 2, k 2.

35 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 35 Furthermore, log t n α φ 4 t φ 3 t log tn α log tn α log t α B[φ 3 φ 2 d log t αl M B log kα n φ M 3 Blog α2n3k3l Bα l, α n 3k 2l Bα l, α k n Bα l, 2n 2k l k 2 l 2 Bα l, n k k 2 l 2 Bα l, α 2k l M 2 BM G log 3n2k2lk2l2 Bα l 2, k 2 d φ MBlog 4 t Bα l, 4α 4k 4α4k4l 3l n Bα l, 3α 3k 2l n Bα l, 2α 2k l n Bα l, α k n M 3 BM G log t 3αn3k3lk2l2 Bα l, 3α 3k 2l k 2 l 2 Bα l, 2α 2k l k 2 l 2 Bα l, α k k 2 l 2 Bα l 2, k 2. Similarly by mathematical induction, for every i, 2,... we obtain log t n α φ i t φ i t φ M i Blog t iαikil Bα l, α k n i j Bα l, j α j k jl n M i B M Glog t i αni ki lk2l2 Bα l 2, k 2 i j Bα l, jn jk j l k 2 l 2 φ MB i Bα l, α k n i j Bα l, j α j k jl n

36 36 Y. LIU EJDE-26/296 M i B M Bα l 2, k 2 G i j Similarly we can prove that both i i converge. Hence, Bα l, jn jk j l k 2 l 2, t, e. u i v i i i j i i j φ MB i Bα l, α k n Bα l, j α j k jl n, M m B M G Bα l 2, k 2 Bα l, jn jk j l k 2 l 2 log t n α φ t log t n α [φ t φ t log t n α [φ i t φ i t..., for t, e converge uniformly. Then {t log t n α φ i t} converge uniformly on [, e. Claim 3. φt log t α n lim i log t n α φ i t defined on [, e i a unique continuou olution of the integral equation n η v xt Γα v log tα v log t v α [Bx G d, 3.4 for t, e. Proof. From lim i log t n α φ i t log t n α φt and the uniformly convergence, we ee that φt i continuou on [, e. From log t n α log t α [Aφ p F d log t α [Bφ q G d M B φ p φ q log t n α log t αl log k log M B φ p φ q log t n α log t αl log M B φ p φ q log t nkl Bα l, α k M B φ p φ q Bα l, α k n uniformly a p, q, αk n d α n d

37 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 37 we know that φt log t α n lim log i tn α φ i t [ n η v lim log tα v i Γα v v v log t α [Bφ i G d n η t v Γα v log tα v lim i v n η v Γα v log tα v v log t α [Bφ i G d log t α [Bφ G d. Then φ i a continuou olution of 3.4 defined on, e. Suppoe that ψ defined on, e i alo a olution of 3.4. Then n η v ψt Γα v log tα v log t α [Bψ G d, for t, e. We need to prove that φt ψt on, e. Then Furthermore, log t n α ψt φ t log t n α log t α Bψ G d M B φ log t Bα l, α k αkl n M G log t Bα l 2, k nk2l2 2. log t n α ψt φ t log t n α log t α B[ψ φ d φ MBlog 2 t Bα l, 2α 2k 2α2k2l l n Bα l, α k n M B M G log t αnklk2l2 Bα l, α k k 2 l 2 By mathematical induction, we obtain log t α ψt φ i t log t n α Bα l 2, k 2. log t α B[ψ φ i d φ M i Blog t iαikil Bα l, α k n

38 38 Y. LIU EJDE-26/296 i j Bα l, j α j k jl n M i B M Glog t i αni ki lk2l2 Bα l 2, k 2 i j Bα l, jn jk j l k 2 l 2 φ MB i Bα l, α k n i j Bα l, j α j k jl n i M i B M Bα l 2, k 2 G j Bα l, jn jk j l k 2 l 2, for t, e, i, 2,.... Similarly we have lim i log t n α φ i t log t n α ψt uniformly on, e. Then φt ψt on, e. Then 3.4 ha a unique olution φ. The proof i complete. Theorem 3.5. Suppoe that 3.A3 hold. Then x i a olution of IVP 3.3 if and only if x LC n α, e i a olution of the integral equation 3.4. Proof. Suppoe that x i a olution of 3.3. Then t log t n α xti continuou on, e by defining log t n α xt t lim t log t n α xt and x r <. So lim lim log w n α xw dw w log w n α log w α n log w n α xw dw w lim log ξn α xξ log w n α log w α n dw w by the mean value theorem with ξ, lim log ξn α xξ u n α u α n du becaue log w log u η n Bn α, α n. Γα n and for v N[, n we have lim d t d n v log w n α xw dw w From 3.A3, we have log t n α Γn v α v lim t RLH D α v xt Γn αη v. log t α [Bx G d

39 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 39 log t n α log t α [M B rlog α n log k log l M G log k2 log l2 d log t n α M B r log t αl log log t n α M G log t αl2 log αk n d k2 d M B rlog t αkl Bα l, k α M G log t nkl Bα l 2, k 2. So t log t n α t log t α [Bx G d lim tn α t log i defined on, e and log t α [Bx G d. 3.5 Furthermore, imilarly to Theorem 3. we have t log t α [BxG d i continuou on, e. So t log t n α t log t α [Bx G d i continuou on [, e by defining log t n α log t α [Bx G d t. 3.6 We have H I α RLH D α xt H I α [Btxt Gt. So log t α [Bx G d H I α [Btxt Gt H I α RLH D α xt t log t Γn α α d d n log w n α xw dw d w t log t Γn α α d [ d d n log w n α xw dw w [log t Γn α α d d n log w n α xw dw t w α log t α 2 d d n log w n α xw dw d w log tα lim d Γn α t d n log w n α xw dw w t log t Γα Γn α α 2 d d n log w n α xw dw w η log tα Γα Γn α log w n α xw dw d w... v log t α 2 d d n n η v Γα v log tα v Γα n Γn α log t α n d

40 4 Y. LIU EJDE-26/296 log w α xw dw d w n v η v Γα v log tα v Γα n 2 Γn α t [ log t α n log w α xw dw w Big d n η v Γα v log tα v v [log t α n log w n α xw dw w t α n n [ v lim t η v Γn αγα n 2 t log t α n log w n α xw dw w Γα v log tα v tα n log α n u Γn αγα n 2 t d log w n α xw dw w log t α n log d n α w xwdw w n η v Γα v log tα v Γn αγα n 2 t v [ η n Bn α, α n log tα n Γα n α n xt n v u α n u n α duxw dw w η v Γα v log tα v. Then x LC n α, e i a olution of 3.4. On the other hand, if x i a olution of 3.4, Cae, 2, 3 and 3.5 imply lim t log t n α η xt n Γα n. Then x LC n α, e. Furthermore, by Definition 2.5 we have RLH D α xt Γn α t d dt n log t n α x d Γn α t d dt n[ log t n n α η v Γα v v log w α [Awxw F w dw d w n η v Γn α Γα v t d dt n log t n α log v log α v α v d

41 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 4 Γn α t d dt n n Γn α v Γn α t d dt n Γn α t d dt n Γn α t d dt n log t n α log w α [Bwxw Gw dw w η v Γα v t d dt n log t n v [Bwxw Gw dw w w n α w α v dw log t n α log w α [Bwxw Gw dw w u log t n α log w log t w n w n α w α dw Γn t d dt n log t w n [Bwxw Gw dw w Btxt Gt. α d [Bwxw Gwdw w So x LC n α, e i a olution of IVP3.3. The proof i complete. Theorem 3.6. Suppoe that 3.A3 hold. Then 3.4 ha a unique olution. If Bt λ and there exit contant k 2 >, l 2 with l 2 > max{ α, n k 2 } and M G uch that Gt M G t k2 t l2 for all t, e, then following problem RLH D α xt λxt Gt, a.e., t, e, η n lim t log tn α xt Γα n, 3.7 lim RLH D α j t xt η j, j N[, n ha a unique olution n xt η v log t α v E α,α v λlog t α v log t u α E α,α λlog t u α G d, t, e. d d 3.8 Proof. i From Claim, 2 and 3, 3.4 ha a unique olution. ii From the aumption and Bt λ, one ee that 3.A3 hold with k l and k 2, l 2 mentioned in aumption. Thu 3.7 ha a unique olution. From the Picard function equence we obtain φ i t n η v Γα v log tα v λ v n v log t α G d η v Γα v log tα v λ v log t α φ i d n η v Γα v log t α log α v d

42 42 Y. LIU EJDE-26/296 λ 2 log t α log u α φ i 2 u du u λ log t α log u α Gu du d u n η v n Γα v log η v tα v λ Γα v v v w α w α v dw λ 2 λ log t u α log u n η v n Γα v log tα v λ v λ2 Γ2α λ Γ2α n v v log t u 2α φ i 2 u du u log t u 2α Gu du u η v log t α v Γα v... n v log t u α λ Γ2α log t u α η v log t α v i j log t i u α j n η v log t α v i v j log t i u α j u d log t2α v log t α log u α d Gudu u η v log t2α v Γ2α v λlog tα Γ2α v log t α G d λ2 Γ2α G d λ j log t jα λi Γjα α v Γiα λ j Γj α log t u jα G d λ j log t jα Γjα α v λ j Γj α log t u jα G d n η v log t α v E α,α v λlog t α v log t α G d α d φ i 2u du u log t α G d log t u 2α φ i 2 u du u log t u iα φ u du u log t u α E α,α λlog t u α G d. Then xt lim i φ i t i the unique olution of 3.7. x i jut a in 3.8. The proof i complete. To obtain olution of 3.4, we need the following aumption: 3.A4 there exit contant k i > α n, l i with l i > max{ α, α k i }, M B and M G uch that Bt M B log t k log t l and Gt M G log t k2 log t l2 for all t, e.

43 EJDE-26/296 SURVEY AND NEW RESULTS ON BVPS FOR IFDES 43 We chooe the Picard function equence a φ i t n j for t, e, i, 2,.... Claim. φ i C, e. φ t n j η j j! log tj Proof. On ee that φ C[, e. From η j j! log tj, t, e, log t α [Bφ G d log t α [M B φ log k log l M G log k2 log l2 d M B φ log t α log k log M G log t α log k2 log log t α [Bφ i G d, l2 d l d M B φ log t αkl Bα l, k M G log t αk2l2 Bα l 2, k 2 a t, we obtain that lim t φ exit and φ i continuou on, e. Then φ C[, e. By mathematical induction, we ee that φ i C[, e. Claim 2. φ i converge uniformly on [, e. Proof. For t [, e we have φ t φ t φ M B log t α [Bφ G d log t α [M B φ log k log l M G log k2 log l2 d log t αl log k d φ M B log t Bα l, k αkl M G log t Bα l 2, k αk2l2 2. So φ 2 t φ t M G log t αl2 log k2 d

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Turkish Journal of I N E Q U A L I T I E S

Turkish Journal of I N E Q U A L I T I E S Turkih J Ineq, ) 7), Page 6 37 Turkih Journal of I N E Q U A L I T I E S Available online at wwwtjinequalitycom PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS M ADIL KHAN AND

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications

On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications Int. J. Dynam. Control 04) :6 84 DOI 0.007/40435-03-0040-y On mean-field tochatic maximum principle for near-optimal control for Poion jump diffuion with application Mokhtar Hafayed Abdelmadjid Abba Syed

Διαβάστε περισσότερα

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations CJMS. 4()(25), 7-24 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 735-6 Studies on Sturm-Liouville boundary value problems for multi-term

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters 32 Vol 32 2 Journal of Harbin Engineering Univerity Jan 2 doi 3969 /j in 6-743 2 23 5 2 F83 9 A 6-743 2-24-5 he martingale pricing method for pricing fluctuation concerning tock model of callable bond

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM

POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα