Generalized fractional calculus of the multiindex Bessel function

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Generalized fractional calculus of the multiindex Bessel function"

Transcript

1 Available online at Math. Nat. Sci., , Research Article Journal Homepage: Generalized ractional calculus o the multiindex Bessel unction. L. Suthar a, S.. Purohit b,, R. K. Parmar c a epartment o Mathematics, Wollo University, essie, Ethiopia. b epartment o HEAS Mathematics, Rajasthan Technical University, Kota , Rajasthan, ndia. c epartment o Mathematics, Government College o Engineering and Technology, Bikaner , ndia. Communicated by O. K. Matthew Abstract The present paper is devoted to the study o the ractional calculus operators to obtain a number o key results or the generalized multiindex Bessel unction involving Saigo hypergeometric ractional integral and dierential operators in terms o generalized Wright unction. Various particular cases and consequences o our main ractional-calculus results as classical Riemann-Liouville and Erdélyi-Kober ractional integral and dierential ormulas are deduced. c 2017 All rights reserved. Keywords: Fractional calculus operators, multiindex Bessel unction, Wright unction MSC: 26A33, 33E12, 33C ntroduction Recently, the generalized multiindex Bessel unction is deined by Choi et al. 1 as ollows: J j m,γ β j m, k z n 0 γ k n m j 1 Γ j n + β j + 1 zn, m N, 1.1 n! where j, β j, γ C, j 1,, m, Rγ > 0, Rβ > 1, m j1 R j > max{0; Rk 1}, k > 0. The Pohhammer symbol is deined or γ C as ollows see 8, p.2 and p.5: { 1, n 0, γ n γγ γ + n + 1, n N, Γγ + n, γ C/Z 0, Γγ and Γ being the Gamma unction. Some important special cases o this unction are enumerated below: Corresponding author addresses: dlsuthar@gmail.com. L. Suthar, sunil_a_purohit@yahoo.com S.. Purohit, rakeshparmar27@gmail.com R. K. Parmar doi: /mns Received

2 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , i we put k 0, m 1, 1 1, β 1 υ and replace z by z 2/ 4 in 1.1, we obtain J 1, γ υ, 0 z υ J υ z, z where J υ z is a well-known Bessel unction o the irst kind deined or complex z C, z 0 and υ C, Rυ > 1, by 3, see also 5 ii J j m,γ β j m z, k has the orm: J υ z k 0 J j m,γ β j m, k z 1 Γγ 1 ψ m 1 k Γυ + k + 1 z/2 υ+2k ; k! γ, 1 β 1 + 1, 1,..., β m + 1, m z. A detail account o Bessel unction, the reader may be reerred to the earlier extensive works by Erdélyi et al. 3 and Watson 9. The generalized Wright hypergeometric unction p ψ q z, or z C, complex a i, b j C, and i, β j R, i, β j 0; i 1, 2,, p; j 1, 2,, q is deined as ollows: ai, pψ q z p ψ i 1, p q z b j, β j 1, q k0 p i1 Γa i + i kz k q j1 Γb j + β j kk!. 1.2 Wright 10 introduced the generalized Wright unction 4 and proved several theorems on the asymptotic expansion o p ψ q z or instance, see or all values o the argument z, under the condition: q β j j1 p i > 1. i1 The generalized hypergeometric unction or complex a i, b j C and b j 0, 1, i 1, 2,, p;, j 1, 2,, q is given by the power series 2, Section 4.1 1: pf q a 1,, a p ; b 1,, b q ; z r0 a 1 r a p r z r b 1 r b q r r!, 1.3 where or convergence, we have z < 1 i p q + 1 and or any z i p q. The unction 1.3 is a special case o the generalized Wright unction 1.2 or 1 p β 1 β q 1 q j1 pf q a 1,, a p ; b 1,, b q ; z Γb j ai, 1 p i1 Γa i p ψ 1, p q z. b j, 1 1, q The object o this paper is to derive ractional integral and derivative o generalized multiindex Bessel unction 1.1 and the let and right sided operators o Saigo ractional calculus 6. The results derived in this paper are believed to be new. 2. Fractional calculus operators approach The Riemann-Liouville ractional integral and derivative operators are deined by see Samko, Kilbas and Marichev 7, Sect. 2 or > 0: x 1 x t dt, 2.1 Γ 0 x t 1

3 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , x 1 Γ x t dt, 2.2 t x 1 d +1 x 1 1 Γ1 {} x, d +1 x 0 t dt, x t {} 2.3 d +1 x 1 1 Γ1 {} x, +1 d x t dt, t x {} where means the maximal integer not exceeding and {} is the ractional part o. A useul generalization o the Riemann-Liouville and Erdélyi-Kober ractional integral has been introduced by Saigo 6 in terms o Gauss hypergeometric unction. Let C and x R +, then the generalized ractional integration and ractional dierentiation operators associated with Gauss hypergeometric unction are deined as ollows: x x β Γ x 1 Γ x x 0 x 2.4 x t 1 2F 1 + β, γ; ; 1 t/x tdt, 2.5 t x 1 t β 2F 1 + β, γ; ; 1 x/t tdt, 2.6 β, +γ x R > 0; k R + 1, d k +k, β k, +γ k x, 2.7 x β, +γ x d k +k, β k, +γ x, 2.8 R > 0; k R + 1. Thereore, i we set β in 2.5, 2.6, 2.7, 2.8, reduce to 2.1, 2.2, 2.3, 2.4, o the let and right hand sided Riemann-Liouville ractional integral and derivative operators Let-sided ractional integration o generalized multiindex Bessel unction n this section, we establish image ormulas or the generalized multiindex Bessel unction involving let sided operators o Saigo ractional integral operators 2.1, in term o the generalized Wright unction. Theorem 2.1. Let m 1 be an integer, R µ j > 0, η j i 1,, m are arbitrary parameters and. be the Saigo let-sided ractional integral operator 2.5, then the ollowing result holds: t ρ 1 J µ j m, τ η j m, k a tυ x xρ β 1 Γτ The conditions or validity o 2.9 are i, R > 0 and a are any complex numbers; 3 ψ m+2 ρ β+γ, υ, ρ, υ, τ, k ρ β, υ, ρ++γ, υ, η j + 1, µ j m 1 ii ρ and υ are arbitrary, such that Rρ + υ n > 0 and Rρ + γ β + υ n > 0. a x υ. 2.9

4 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , Proo. enote L.H.S. o Theorem 2.1 by 1, then 1 t ρ 1 J µ j m, τ η j m, k a tυ x, by virtue o 1.1 and 2.5, we have x β Γ x 0 x t 1 2F 1 + β, γ; ; 1 t/x t ρ 1 J µ j m,τ η j m,k a tυ dt, now, interchanging the order o integration and summation is permissible under the conditions stated with the theorem due to convergence o the integrals involved in the process and evaluating the inner integral by beta-unction, it gives xρ β 1 Γτ xρ β 1 Γτ which completes the proo o Theorem 2.1. Γρ β + γ + υ n Γρ + υ n Γτ + kn Γρ β + υ n Γρ + + γ + υ nγ η n0 j µ j n a tυ n n! ρ β+γ, υ, ρ, υ, τ, k 3ψ m+2 ax υ, ρ β, υ, ρ++γ, υ, η j + 1, µ j m 1 Corollary 2.2. Let m 1 be an integer, R µ j > 0, η j i 1,, m are arbitrary parameters and. be the Riemann-Lioville let-sided ractional integral operator 2.1, then the ollowing result holds: t ρ 1 J µ j m, τ η j m, k a tυ x xρ+ 1 Γτ The conditions or validity o 2.10 are i, R > 0 and a are any complex numbers; ii ρ and υ are arbitrary, such that Rρ + υn > 0. 2 ψ m+1 ρ, υ, τ, k ρ β, υ, η j + 1, µ j m Right-sided ractional integration o generalized multiindex Bessel unction a x υ n this section, we establish image ormulas or the generalized multiindex Bessel unction involving right sided operators o Saigo ractional integral operators 2.6, in term o the generalized Wright unction. Theorem 2.3. Let m 1 be an integer, Rµ j > 0, η j i 1,, m are arbitrary parameters and the Saigo s right-sided ractional integral operator 2.6, then the ollowing result holds: t ρ J µ j m, τ η j m, k a t x xρ β Γτ 3 ψ m+2 The conditions or validity o 2.11 are i, R > 0 and a are any complex numbers; β ρ, υ, γ ρ, υ, τ, k ρ, υ, +β+γ ρ, υ, η j +1, µ j m 1 ii ρ and υ are arbitrary such that Rβ ρ + υn > 0 and Rγ ρ + υ n > 0. Proo. enote L.H.S. o Theorem 2.3 by 2, then 2,β,γ t ρ J µ j m, τ η j m, k a t x,. be a x using the deinition o generalized multiindex Bessel unction 1.1, ractional integral ormula 2.6 and proceeding similarly to the proo o Theorem 2.1, we obtain

5 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , xρ β Γτ n0 xρ β Γτ 3 ψ m+2 which completes the proo o Theorem 2.3. Γβ ρ + υ n Γγ ρ + υ n Γτ + kn Γ ρ + υ n Γ + β + γ ρ + υ nγ η j µ j n a t n n! β ρ, υ, γ ρ, υ, τ, k a x, ρ, υ, +β+γ ρ, υ, η j 1,,µ j m 1 Corollary 2.4. Let m 1 be an integer, Rµ j > 0, η j i 1,, m are arbitrary parameters and. be the Riemann Liouville right-sided ractional integral operator 2.2, then the ollowing result holds: t ρ J µ j m, τ η j m, k a t x xρ+ Γτ 2 ψ m+1 The conditions or validity o 2.12 are i, R > 0 and a are any complex numbers; ii ρ and υ are arbitrary such that R ρ + υn > 0. ρ, υ, τ, k ρ, υ, η j + 1, µ j m 1 a x Let-sided ractional dierentiation o generalized multiindex Bessel unction n this section, we establish image ormulas or the generalized multiindex Bessel unction involving let sided o Saigo ractional dierentiation operators 2.7, in term o the generalized Wright unction. Theorem 2.5. Let m 1 be an integer, Rµ j > 0, η j i 1,, m are arbitrary parameters and. be the Saigo let-sided ractional dierentiation operator 2.7, then the ollowing result holds: t ρ 1 J µ j m, τ η j m, k a tυ x xρ+β 1 ρ++β+γ, υ, ρ, υ, τ, k 3ψ m+2 ax υ Γτ The conditions or validity o 2.13 are i, R > 0 and a are any complex numbers; ρ+β, υ, ρ+γ, υ, η j +1, µ j m 1 ii ρ and υ are arbitrary such that Rρ + υ n > 0 and Rρ + + β + γ + υn > 0. Proo. enote L.H.S. o Theorem 2.5 by 3, then 3 t ρ 1 J µ j m, τ η j m, k a tυ x, by virtue o 1.1 and 2.7, we have d k d k x +β Γ + k +k, β k, +γ k x t ρ 1 J µ j m, τ η j m, k a tυ dt, 0 t ρ 1 J µ j m, τ η j m, k a tυ, x t +k 1 2F 1 β, γ + k; + k; 1 t/x now, interchanging the order o integration and summation is permissible under the conditions xρ+β 1 Γτ xρ+β 1 Γτ which completes the proo o Theorem 2.5. Γρ + + β + γ + υ n Γρ + υ n Γτ + kn Γρ + β + υ n Γρ + γ + υ nγ η n0 j µ j n a tυ n n! ρ++β+γ, υ, ρ, υ, τ,k 3ψ m+2 ax υ, ρ+β, υ, ρ+γ, υ, η j + 1, µ j m 1

6 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , Corollary 2.6. Let m 1 be an integer, Rµ j > 0, η j i 1,, m are arbitrary parameters and,. be the Riemann Liouville let-sided ractional dierentiation operator 2.3, then the ollowing result holds: t ρ 1 J µ j m, τ η j m, k a tυ x xρ 1 ρ, υ, τ, k 2ψ m+1 ax υ Γτ The conditions or validity o 2.14 are i, R > 0 and a are any complex numbers; ii ρ and υ are arbitrary such that Rρ + υn > 0. ρ,υ,η j + 1,µ j m Right-sided ractional dierentiation o generalized multiindex Bessel unction n this section, we establish image ormulas or the generalized multiindex Bessel unction involving right sided operators o Saigo ractional dierentiation operators 2.8, in term o the generalized Wright unction. Theorem 2.7. Let m 1 be an integer, R µ j > 0, η j i 1,, m are arbitrary parameters and. be the Saigo let-sided ractional dierentiation operator 2.8, then the ollowing result holds: t ρ J µ j m, τ η j m, k a t x x+β+ρ β ρ, υ, γ ρ, υ, τ, k 3ψ m+2 ax Γτ The conditions or validity o 2.15 are i, R > 0 and a are any complex numbers; ρ, υ, γ β, ρ υ, η j + 1, µ j m 1 ii ρ and υ are arbitrary, such that Rγ ρ + υn > 0 and R β ρ + υn > 0. Proo. enote L.H.S. o Theorem 2.7 by 4, then 4 t ρ J µ j m, τ η j m, k a t x, by virtue o 1.1 and 2.8, we have d k d +k, β k, +γ k x +β Γ + k t ρ J µ j m,τ η j m, k a t dt, x t ρ J µ j m, τ η j m, k a t, t x +k 1 t +β 2F 1 β, γ ; + k; 1 x/t now, interchanging the order o integration and summation is permissible under the conditions x+β+ρ Γτ x+β+ρ Γτ which completes the proo o Theorem 2.7. Γ β ρ + υ n Γγ ρ + υ n Γτ + kn Γ ρ + υ n Γγ β ρ + υ nγ η n0 j µ j n a t n n! β ρ, υ, γ ρ, υ, τ, k 3ψ m+2 ax, ρ, υ, γ β, ρ υ, η j + 1, µ j m 1 Corollary 2.8. Let m 1 be an integer, Rµ j > 0, η j i 1,, m are arbitrary parameters and,. be the Riemann Liouville let-sided ractional dierentiation operator 2.8, then the ollowing result holds: t ρ J µ j m, τ η j m, k a t x xρ Γτ 2 ψ γ ρ, υ, τ, k m+1 ax The conditions or validity o 2.16 are γ+, ρ υ, η j + 1, µ j m 1

7 . L. Suthar, S.. Purohit, R. K. Parmar, Math. Nat. Sci., , i, R > 0 and a are any complex numbers; ii ρ and υ are arbitrary, such that Rγ ρ + υn > 0. Reerences 1 J. Choi, P. Agarwal, A note on ractional integral operator associated with multiindex Mittag-Leler, Filomat, , A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Vol., Mc Graw-Hill, New York, A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, Vol., Mc Graw-Hill, New York, A. A. Kilbas, H. M. Srivastava, J. J. Trijullo, Theory and application o ractional dierential equations, Elsevier, North- Holland Mathematics studies 204, Amsterdam, London, New York and Tokyo, F. W. L. Olver,. W. Lozier, R. F. Boisvert, C. W. Clark, NST Handbook o Mathematical Functions, Cambridge University Press, Cambridge, M. Saigo, A remark on integral operators involving the Gauss hypergeometric unctions, Math. Rep. Kyushu Univ., , , 2 7 S. G. Samko, A. A. Kilbas, O.. Marichev, Fractional integrals and erivatives - Theory and Applications, Gordon and Breach, Longhorne, Penn., USA, H. M. Srivastava, J. Choi, Zeta and q-zeta unctions and Associated Series and ntegrals, Elsevier Sciences Publishers, Amsterdam, London and New York, G. N. Watson, A Treatise on the Theory o Bessel unctions, 2 nd edi., Cambridge Mathematical Library Edition, Cambridge University Press, Cambridge, E. M. Wright, The asymptotic expansion o the generalized hypergeometric unctions, J. London Math. Soc., , E. M. Wright, The asymptotic expansion o integral unctions deined by Taylor series, Philos. Trans. Roy. Soc. London, , E. M. Wright, The asymptotic expansion o the generalized hypergeometric unction, Proc. London Math. Soc., s ,

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES Commun. Korean Math. Soc. (, No., pp. 1 https://doi.org/1.4134/ckms.c1739 pissn: 1225-1763 / eissn: 2234-324 EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES Muhammad Arshad, Shahid Mubeen, Kottakkaran

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

THE Mittag-Leffler (M-L) function, titled as Queen -

THE Mittag-Leffler (M-L) function, titled as Queen - nternational Journal of Matheatical and Coputational Sciences Vol:4, No:8, 2 Rieann-Liouville Fractional Calculus and Multiinde zrbashjan-gelfond-leontiev ifferentiation and ntegration with Multiinde Mittag-Leffler

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES

FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES KOTTAKKARAN SOOPPY NISAR* Abstract. The main aim of this paper is to give a new generaliation of Hurwit-Lerch Zeta function

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

The k-mittag-leffler Function

The k-mittag-leffler Function Int. J. Contemp. Math. Sciences, Vol. 7, 212, no. 15, 75-716 The -Mittag-Leffler Function Gustavo Abel Dorrego and Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda.

Διαβάστε περισσότερα

The k-fractional Hilfer Derivative

The k-fractional Hilfer Derivative Int. Journal of Math. Analysis, Vol. 7, 213, no. 11, 543-55 The -Fractional Hilfer Derivative Gustavo Abel Dorrego and Rubén A. Cerutti Faculty of Exact Sciences National University of Nordeste. Av. Libertad

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values

Διαβάστε περισσότερα

Reccurence Relation of Generalized Mittag Lefer Function

Reccurence Relation of Generalized Mittag Lefer Function Palestine Journal of Mathematics Vol. 6(2)(217), 562 568 Palestine Polytechnic University-PPU 217 Reccurence Relation of Generalized Mittag Lefer Function Vana Agarwal Monika Malhotra Communicated by Ayman

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

FRACTIONAL CALCULUS FORMULAS INVOLVING H-FUNCTION AND SRIVASTAVA POLYNOMIALS

FRACTIONAL CALCULUS FORMULAS INVOLVING H-FUNCTION AND SRIVASTAVA POLYNOMIALS Commun. Korean Math. Soc. 31 2016 No. 4 pp. 827 844 http://dx.doi.org/10.4134/ckms.c150251 pissn: 1225-1763 / eissn: 2234-3024 FRACTIONAL CALCULUS FORMULAS INVOLVING H-FUNCTION AND SRIVASTAVA POLYNOMIALS

Διαβάστε περισσότερα

Divergence for log concave functions

Divergence for log concave functions Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

A Summation Formula Tangled with Hypergeometric Function and Recurrence Relation

A Summation Formula Tangled with Hypergeometric Function and Recurrence Relation Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 12 Issue 10 Version 1.0 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Research Article Some Properties of Certain Class of Integral Operators

Research Article Some Properties of Certain Class of Integral Operators Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 211, Article ID 53154, 1 pages doi:1.1155/211/53154 Research Article Some Properties of Certain Class of Integral Operators

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

arxiv: v1 [math.ca] 16 Jul 2016

arxiv: v1 [math.ca] 16 Jul 2016 On Chebyshev type Inequalities using Generalized k-fractional Integral Operator arxiv:1607.04727v1 math.ca 16 Jul 2016 V aijanath L.Chinchane Department of Mathematics, Deogiri Institute of Engineering

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Foundations of fractional calculus

Foundations of fractional calculus Foundations of fractional calculus Sanja Konjik Department of Mathematics and Informatics, University of Novi Sad, Serbia Winter School on Non-Standard Forms of Teaching Mathematics and Physics: Experimental

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1

Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1 M a t h e m a t i c a B a l k a n i c a New Series Vol. 2, 26, Fasc. 3-4 Boundedness of Some Pseudodifferential Operators on Bessel-Sobolev Space 1 Miloud Assal a, Douadi Drihem b, Madani Moussai b Presented

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα