Reccurence Relation of Generalized Mittag Lefer Function

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Reccurence Relation of Generalized Mittag Lefer Function"

Transcript

1 Palestine Journal of Mathematics Vol. 6(2)(217), Palestine Polytechnic University-PPU 217 Reccurence Relation of Generalized Mittag Lefer Function Vana Agarwal Monika Malhotra Communicated by Ayman Badawi MSC 21 Classications: 33E12, 33B15, 11R32. Keywords phrases: Generalized Mittag-Lefer function; Recurrence relation: Wiman's function. The authors are thankful to Prof. Kantesh Gupta, Malviya National Institute of Technology, Jaipur for her valuable help constant encouragement. Abstract. The aim of the present paper is to investigate a recurrence relation an integral representation of generalized Mittag- Lefer function,p which can be reduced to H-function Hyper geometric function. In the end several special cases have also been discussed. 1 Introduction The Swedish Mathematician Gosta Mittag- Lefer [3] in 193, introduced the function E α (z), dened as E α (z) = (z) n, {α, z C; Re(α) > } (1.1) G(αn + 1) where z C G(z) is the Gamma function: α.the Mittag- Lefer function in (1.1) reduces immediately to the exponential function e z = E 1 (z) when α = 1. Mittag- Lefer function naturally occurs as the solution of fractional order differential equation or fractional order integral equation. In 195, Wiman [8] studied a function E (z),generalization of E α (z) dened as follows: E (z) = The function E (z) is known as Wiman function. (z) n, {α, β, z C; Re(α) >, Re(β) > } (1.2) G(αn + β) Prabhakar [4] introduced the function E γ (z) in the form of (see also Kilbas et al.[2]) E γ (z) = (γ) n G(αn + β) where (γ) n is the pochammer symbol (γ) n = G(γ + n) G(γ) (z) n, {α, β, γ, z C; Re(α) >, Re(β) >, Re(γ) > } (1.3) n! = N being the set of positive integers. { 1 (n =, γ ) γ(γ + 1)...(γ + n 1) (n N, γ C) Shukla Prajapati [6] dened investigated the function, E γ,q (z) as E γ,q (z) = (γ) qn (z) n G(αn + β) n! (1.4) {α, β, γ, z C; Re(α) >, Re(β) >, Re(γ) >, q (, 1) N}

2 Reccurence Relation of Generalized Mittag Lefer Function 563 (γ) qn = q qn q ( γ + r 1 ) n (q N, n N := N {}) q r=1 In the sequel of this study, Tariq Ahmad [5] dened the function,p (z) = (γ) qn (z) n (1.5) G(αn + β) (δ) pn {α, β, γ, z C; min{re(α), Re(β), Re(γ), Re(δ) > }, p, q >, q Re(α) + p} It is easily seen that (1.5) is an obvious generalization of (1.1) to (1.4) Setting δ = p = 1 it reduces to (1.4 ) dened by Shukla Prajapati [6], in addition to that if q = 1, then we get eq. (1.3) dened by Prabhakar [4]. On putting γ = δ = p = q = 1 in (1.5 ) it reduces to Wiman's function, moreover if β = 1, Mittag-Lefer function E α (z) will be the result. 2 Recurrence Relation Theorem 1 For (R(α + a) >, R(β + s) >, R(c) >, p, q (, 1) N), we get α+a,β+s+1,p (cz) Eγ,δ,q (cz) = (β + s)(β + s + 2)Eγ,δ,q (cz) +(α + a) 2 z 2 Ë γ,δ,q (cz) + (α + a)(α + a + 2(β + s + 1))z (cz) (2.1) Where,p (z) = d dz Eγ,δ,q,p (z) Ë γ,δ,q d2,p (z) = dz 2 Eγ,δ,q,p (z) By putting α + a = k β + s = m in this theorem, we get the following corollary Corollary 1

3 564 Vana Agarwal Monika Malhotra k,m+1,p (cz) Eγ,δ,q k,m+2,p (cz) = m(m + 2)Eγ,δ,q k,m+3,p (cz) + k2 z 2 Ë γ,δ,q k,m+3,p (cz) Proof of Theorem 1 +k(k + 2m + 2)z k,m+3,p (cz) (2.2) By the fundamental relation of Gamma function G(z + 1) = zgz to (1.5), we can write α+a,β+s+1,p (cz) = (2.3) {(α + a)n + β + s}g((α + a)n + β + s)(δ) pn (cz) = Equation (2.4) can be written as follows: {(α + a)n + β + s + 1}{(α + a)n + β + s}g((α + a)n + β + s)(δ) pn (2.4) (cz) = (cz) = Eγ,δ,q α+a,β+s+1,p 1 [ G((α + a)n + β + s)(δ) pn {(α + a)n + β + s} 1 {(α + a) + β + s + 1} ] For convenience we denote summation in (2.5) by S, {(α + a)n + β + s + 1}G((α + a)n + β + s)(δ) pn (2.5) S = Applying a simple identity {(α + a)n + β + s + 1}G((α + a)n + β + s)(δ) pn (2.6) = α+a,β+s+1,p (cz) Eγ,δ,q (cz) 1 u = 1 u(u + 1) + 1 u + 1 to (2.6) u = ((α + a)n + β + s + 1) + S = {(α + a)n + β + s} {(α + a)n + β + s}{(α + a)n + β + s + 1}

4 Reccurence Relation of Generalized Mittag Lefer Function 565 S = (α + a) +(β + s) +(α + a) 2 +u +v n n 2 n where u = (α + a)(2β + 2s + 1) v = (β + s)(β + s + 1) (2.7) Now express each summation on right h side of (2.7) as follows: From (2.8) we get d 2 dz 2 (z2 ) = (n + 2)(n + 1) (2.8) Considering n 2 = z 2 Ë γ,δ,q (cz) + 4z (cz) n 3 (2.9) G{(α + a)n + β + s + 3}(δ) pn Similarly we get d dz (zeγ,δ,q α+a,β+s+1,p ) = (n + 1) (2.1) Using (2.9) (2.11) we have n = z (cz) (2.11) n 2 = z 2 Ë γ,δ,q G((α + a)n + β + s + 3)(δ) (cz) + z (cz) (2.12) pn Using (2.11) (2.12) in (2.7), we get

5 566 Vana Agarwal Monika Malhotra S = (α + a) 2 [z 2 Ë γ,δ,q (cz) + z (cz)] +(α + a + u)z (cz) (β + s + v)eγ,δ,q (cz) (2.13) From (2.6) (2.13) we get the proof of theorem 1 3 Integral Representation Theorem 2 We get t β+s α+a,β+s,p (tα+a )dt = 1 c n [Eγ,δ,q α+a,β+s+1,p (c) Eγ,δ,q (c)] (3.1) (R(α + a) >, R(β + s) >, R(γ) >, q (, 1) N) Setting α + a = k N β + s = m N in (3.1) yields Corollary 2 Where t m k,m,p (tk )dt = 1 c n [Eγ,δ,q k,m+1,p (c) Eγ,δ,q k,m+2,p (c)] (3.2) k, m N Proof Putting z=1 in (2.6) gives It is easy to nd that (γ) qn (c) n G((α + a)n + β + s){(α + a)n + β + s + 1)}(δ) pn = [ α+a,β+s+1,p (c) Eγ,δ,q (c)] (3.3) t β+s α+a,β+s,p (tα+a )dt = For z = 1 in (3.4) (γ) qn (z) (α+a)n+β+s+1 {(α + a)n + β + s + 1)}G((α + a)n + β + s)(δ) pn (3.4) t β+s α+a,β+s,p (tα+a )dt = (γ) qn {(α + a)n + β + s + 1)}G((α + a)n + β + s)(δ) pn (3.5) On comparing (3.3) with the identity obtained in (3.5) is seen to yields (3.1) in theorem 3

6 Reccurence Relation of Generalized Mittag Lefer Function Special Cases (i) Setting α = 1, q = 1, p = 1, δ = 1, a = in (2.1) we get the following interesting relation (β + s + 2)(β + s + 1) F [γ, β + s + 1, cz] F [γ, β + s + 2, cz] = (β + s)(β + s + 2) F [γ, β + s + 3, cz] z 2 F [γ, β + s + 3, cz] +{1 + 2(β + s + 1)}z F [γ, β + s + 3, cz] (4.1) (ii) Setting δ = p = c = 1 in (2.1), we get a known recurrence relation of E γ,q (z) by Shukla Prajapati [[7],p.134,eq(2.1)]. where E γ,q (z) Eγ,q (z) = (β + s)(β + s + 2)Eγ,q (z) α+a,β+s+1 α+a,β+s+2 α+a,β+s+3 +(α + a) 2 z 2 Ë γ,q (z) + (α + a)(α + a + 2(β + s + 1))z E γ,q (z) (4.2) α+a,β+s+3 α+a,β+s+3 E γ,q (z) = d dz Eγ,q (z) Ë γ,q d2 (z) = dz 2 Eγ,q (z) (iii) Putting a =, δ = γ = q = 1; β + s = m N, p = 1 in (2.1), reduces to a known recurrence relation by Gupta Debnath [1] of E (z) Where E α,m+1 (z) = E α,m+2 (z) + m(m + 2)E α,m+3 (z) + α 2 z 2 Ë α,m+3 (z) +α(α + 2m + 2)z E α,m+3 (z) (4.3) E (z) = d dz E (z) Ë (z) = d2 dz 2 E (z) (iv) Substituting δ = 1, c = 1, p = 1 in (3.1), we get integral representation of E γ,q (z) by Shukla Prajapati [7] t β+s E γ,q α+a,β+s (tα+a )dt = [E γ,q (1) Eγ,q (1)] (4.4) α+a,β+s+1 α+a,β+s+2 (v) Substituting γ = 2, q = 1, α = 1, a =, β + s = 1, c = 1, z = 1, p = 1, δ = 1 in (3.1),we get te 2,1,1 1,1,1 (t)dt = [E2,1,1 1,2,1 (1) E2,1,1(1)] (4.5) 1,3,1 Putting γ = 1, δ = 1, q = 1, c = 1, k = 1, m = 1, p = 1 in (3.1) we get

7 568 Vana Agarwal Monika Malhotra or te 1,1,1 1,1,1 (t)dt = E1,1,1 1,2,1 (1) E1,1,1(1) (4.6) 1,3,1 te t dt = E 1,2 (1) E 1,3 (1) (4.7) References [1] I. S. Gupta L. Debnath, Some properties of the Mittag-Lefer functions, Integral Trans. Spec. Funct., 18(5) (27), [2] A. A. Kilbas, M. Siago, R.K. Saxena, Generalized Mittag-Lefer function generalized fractional calculus operators, Integral Transforms Spec. Funct. ; 15(24), [3] G. M. Mittag-Lefer, Sur la nouvelle function EÎś(x), C. R. Acad. Sci. Paris No 137 (193), [4] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Lefer function in the Kernel,Yokohama Math. J.; 19 (1971), [5] T.O. Salim A.W.Faraj, A generalization of Mittag-Lefer function integral operator associated with fractional calculus, J. of Fract. Calc. Appl., 3 (212), [6] A.K. Shukla J.C. Prajapati, On a generalization of Mittag-Lefer function its properties, Math. Anal. Appl., 336 (27), [7] A. K. Shukla J. C. Prajapati, On a Recurrence Relation of Generalized Mittag-Lefer function, Surveys in Mathematics its Applications; 4(29), , [8] A. Wiman, Uber de fundamental satz in der theorie der funktionen EÎś(x), Acta Math. No. ; 29 (195), MR JFM Author information Vana Agarwal Monika Malhotra, Department of Mathematics, Vivekana Institute of Technology, Jaipur, India. vanamnit@gmail.com Received: December 12, 215. Accepted: October 1, 216.

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

The k-fractional Hilfer Derivative

The k-fractional Hilfer Derivative Int. Journal of Math. Analysis, Vol. 7, 213, no. 11, 543-55 The -Fractional Hilfer Derivative Gustavo Abel Dorrego and Rubén A. Cerutti Faculty of Exact Sciences National University of Nordeste. Av. Libertad

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013 Palestine Journal of Matheatics Vol. ( (03, 86 99 Palestine Polytechnic University-PPU 03 On Subclasses of Multivalent Functions Defined by a Multiplier Operator Involving the Koatu Integral Operator Ajad

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES

FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES FURTHER EXTENSION OF THE GENERALIZED HURWITZ-LERCH ZETA FUNCTION OF TWO VARIABLES KOTTAKKARAN SOOPPY NISAR* Abstract. The main aim of this paper is to give a new generaliation of Hurwit-Lerch Zeta function

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

The k-mittag-leffler Function

The k-mittag-leffler Function Int. J. Contemp. Math. Sciences, Vol. 7, 212, no. 15, 75-716 The -Mittag-Leffler Function Gustavo Abel Dorrego and Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda.

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3 Dedicated to Professor Megumi Saigo, on the occasion of his 7th birthday

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS

Διαβάστε περισσότερα

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ) IFSCOM016 1 Proceeding Book No. 1 pp. 155-161 (016) ISBN: 978-975-6900-54-3 SOME RESULTS ON S α,β AND T α,β INTUITIONISTIC FUZZY MODAL OPERATORS GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums

Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums Normalization of the generalized K Mittag-Leffler function ratio to its sequence of partial sums H. Rehman, M. Darus J. Salah Abstract. In this article we introduce an operator L k,α (β, δ)(f)(z) associated

Διαβάστε περισσότερα

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 4, No. 2, 2, 62-73 ISSN 37-5543 www.ejpam.com Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k,

SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS. f(z) = 1 z + a k z k, Acta Math. Univ. Comenianae Vol. LXXVIII, 2(2009), pp. 245 254 245 SOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS ASSOCIATED WITH A FAMILY OF INTEGRAL OPERATORS C. SELVARAJ

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

On class of functions related to conic regions and symmetric points

On class of functions related to conic regions and symmetric points Palestine Journal of Mathematics Vol. 4(2) (2015), 374 379 Palestine Polytechnic University-PPU 2015 On class of functions related to conic regions and symmetric points FUAD. S. M. AL SARARI and S.LATHA

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Generalized fractional calculus of the multiindex Bessel function

Generalized fractional calculus of the multiindex Bessel function Available online at www.isr-publications.com/mns Math. Nat. Sci., 1 2017, 26 32 Research Article Journal Homepage:www.isr-publications.com/mns Generalized ractional calculus o the multiindex Bessel unction.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS MATEMATIQKI VESNIK 65, 1 (2013), 14 28 March 2013 originalni nauqni rad research paper CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS M.K.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Inclusion properties of Generalized Integral Transform using Duality Techniques

Inclusion properties of Generalized Integral Transform using Duality Techniques DOI.763/s4956-6-8-y Moroccan J. Pure and Appl. Anal.MJPAA Volume 22, 26, Pages 9 6 ISSN: 235-8227 RESEARCH ARTICLE Inclusion properties of Generalied Integral Transform using Duality Techniques Satwanti

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα