Almost all short intervals containing prime numbers

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Almost all short intervals containing prime numbers"

Transcript

1 ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n In 43, assming he Riemann Hypohesis, Selberg [] showed ha, for almos all n, he inerval (n, n f(n log 2 n conains a prime providing f(n as n In he same paper, he also showed ha, for almos all n, he inerval (n, n n 77 ε conains a prime In 7, Mongomery [6] improved he exponen 77 o 5 The zero densiy esimae of Hxley [7] gives he exponen 6 In 82, Harman [3] sed he sieve mehod o prove ha, for almos all n, he inerval (n, nn 0 ε conains a prime Heah-Brown [5] and Harman [4] menioned ha he exponen 2 can be achieved In [], Jia Chaoha invesigaed he problem of he excepional se of Goldbach nmbers in he shor inerval As a by-proc, he proved ha, for almos all n, he inerval (n, n n 3 ε conains prime nmbers Li Hongze [4] improved he exponen 3 o 2 27 Recenly, Jia Chaoha [2] showed ha, for almos all n, he inerval (n, n n 4 ε conains prime nmbers Wa [20] also obained he same resl Their mehods are differen In [2] only classical mehods are sed and in [20] a new mean vale esimae of Wa [2] is sed in addiion Li Hongze [5] combined hese mehods o improve he exponen 4 o 5 In his paper, we prove he following: Theorem Sppose ha B is a sfficienly large posiive consan, ε is a sfficienly small posiive consan and X is sfficienly large Then for posiive inegers n (X, 2X, excep for O(X log B X vales, he inerval (n, n n 20 ε conains a leas 0005n 20 ε log n prime nmbers Projec sppored by he Tian Yan Iem in he Naional Naral Science Fondaion of China [2]

2 22 C Jia We apply a mean vale esimae of Deshoillers and Iwaniec [2] (see Lemma 2 Using he classical mean vale esimae insead of ha of Deshoillers and Iwaniec, we can ge he exponen 8 We refer o [3] and he explanaion in [] Throgho his paper, we always sppose ha B is a sfficienly large posiive consan, ε is a sfficienly small posiive consan and ε = ε 2, δ = ε 3 We also sppose ha X is sfficienly large and ha x (X, 2X, η = 2X 20 ε Le c, c and c 2 denoe posiive consans which have differen vales a differen places m M means ha here are posiive consans c and c 2 sch ha c M < m c 2 M We ofen se M(s (M may be anoher capial leer o denoe a Dirichle polynomial of he form M(s = a(m m s, m M where a(m is a complex nmber wih a(m = O( The ahor wold like o hank Profs Wang Yan and Pan Chengbiao for heir encoragemen 2 Mean vale esimae (I Lemma Sppose ha X δ H X, MH = X, M(s is a Dirichle polynomial and H(s = Λ(h h s h H Le b = / log X, T 0 = log B ε X Then for T0 T X, we have ( min 2 η, 2T M(b ih(b i 2 η 2 log 0B x T c H<h c 2 H T P r o o f Le s = b i By he zero-free region of he ζ fncion, for 2X we have Λ(h ( h s = (c 2H s (c H s O(log 2B ε x s So, for T 0 2X, (2 H(s log B ε x According o he discssion in [6], here are O(log 2 X ses S(V, W, where S(V, W is he se of k (k =,, K wih he propery r s (r s Moreover, V M 2 M(b ik < 2V, W H 2 H(b ik < 2W,

3 Shor inervals conaining prime nmbers 23 where X M 2 V, X H 2 W and V M 2, W H 2 log B ε x Then (3 2T T M(b ih(b i 2 V 2 W 2 x log 2 x S(V, W O(x 2ε, where S(V, W is one of ses wih he above properies Assme X k H < X k, where k is a posiive ineger, k and kδ Applying he mean vale esimae (see Secion 3 of [] or Lemma 7 of [] o M(s and H k (s, we have S(V, W V 2 (M T log d x, S(V, W W 2k (H k T log d x, where d = c/δ 2 Applying he Halász mehod (see Secion 3 of [] or Lemma 7 of [] o M(s and H k (s, we have Ths, where S(V, W (V 2 M V 6 MT log d x, S(V, W (W 2k H k W 6k H k T log d x V 2 W 2 S(V, W V 2 W 2 F log d x, F = min{v 2 (M T, V 2 M V 6 MT, W 2k (H k T, I will be proved ha ( (4 min 2 η, V 2 W 2 F η 2 x log B ε x T and so We consider for cases (a F 2V 2 M, 2W 2k H k Then V 2 W 2 F V 2 W 2 min{v 2 M, W 2k H k } V 2 W 2 (V 2 M 2k (W 2k H k 2k = V k W M 2k H 2 x log B ε x ( min 2 η, V 2 W 2 F η 2 x log B ε x T (b F > 2V 2 M, 2W 2k H k Then W 2k H k W 6k H k T } V 2 W 2 F V 2 W 2 min{v 2 T, V 6 MT, W 2k T, W 6k H k T } V 2 W 2 (V 2 3 2k (V 6 M 2k (W 2k k T = M 2k T

4 24 C Jia Since k, we have H X k X k 0, M 2k X min 2 ( η, T (c F 2V 2 M, F > 2W 2k H k Then V 2 W 2 F η T x 20 T η 2 x ε 20, and so V 2 W 2 F V 2 W 2 min{v 2 M, W 2k T, W 6k H k T } V 2 W 2 (V 2 M 3k (W 6k H k T 3k MH 3 T 3k, since V M 2 As H X k X 20 min 2 ( η, T 2k ε, we have V 2 W 2 F η 2 3k T 3k x 20 3k T 3k x ε η 2 x ε (d F > 2V 2 M, F 2W 2k H k Then V 2 W 2 F V 2 W 2 min{v 2 T, V 6 MT, W 2k H k } If k 0, hen H X k ( min 2 η, T V 2 W 2 (V 2 T 3 2k (V 6 MT 2k (W 2k H k k = M 2k HT k If k =, hen X 0 H X, M X 76 min 2 ( η, T (k (k X 0(2k, M X 0(2k, and so V 2 W 2 F η k x 20 ( k η 2 x ε, and so V 2 W 2 F η 2 (x 20 ε 8 x η 2 x ε Combining he above, we obain (4 Hence, Lemma follows Lemma 2 Sppose ha N(s is a Dirichle polynomial and L(s = l s T c L<l c 2 L Le T Then 2T ( I = 4 ( 2 L 2 i N 2 i ( ( ( T N 2 T 5 2 N 4 T min L, T 2 NL 2 T 2 T ε L

5 Shor inervals conaining prime nmbers 25 P r o o f Firs we assme c L T 2 If N T, hen by he discssion in Secion 2 of [2], we have I (T N 2 T 2 N 5 4 (T L 2 T ε If N > T, he mean vale esimae yields I (L 2 N T (LN ε (T N 2 T 2 T ε Now we assme T 2 < c L 2T By he discssion in Secion 2 of [2], we ge ( ( I T N 2 T 5 2 N 4 T T 2 T ε L Lasly we assme 2T < c L I follows from Theorem on page 442 of [8] ha Hence, and c L<l c 2 L l = (c 2 2L i (c L 2 i ( 2 i 2 i O L 2 ( L 2 i L 2 L 2 L 2 2T ( I L2 2 T 4 N 2 i L2 NL2 (N T T 4 T 2 T Combining he above, we ge Lemma 2 Lemma 3 Sppose ha MNL = X, M(s, N(s are Dirichle polynomials, and L(s = l s l L Le b = / log X, T = L Assme frher ha M and N lie in one of he following regions: (5 (i M X 32, 2 N M 3 X 0 ; (ii X M X 60, 23 N X 80 ; (iii X M X 32, N M X (iv X M X 680, N M 2 X 2 20 Then for T T X, we have ( min 2 η, 2T M(b in(b il(b i 2 η 2 x 2ε T T 20 ;

6 26 C Jia P r o o f I is sfficien o show ha ( I = min 2 η, 2T ( ( ( 2 T N M 2 i 2 i L 2 i η 2 x 2ε T We shall show ha he above ineqaliy holds, providing M and N saisfy he following condiions: M 2 N X 2 20, M 2 N 3 X 6 40, M 6 N 7 X 4 0, N X 23 80, N 3 M 2 X 3 0 Using he mean vale esimae and Lemma 2, we have 2T ( ( ( 2 N M 2 i 2 i L 2 i T ( 2T ( 4 ( 2 M 2 i N 2 i 2 T ( 2T ( 4 ( 2 L 2 i N 2 i 2 T (M 2 N T 2 (T N 2 T 2 N 5 4 (T L 2 NL 2 T 2 2 T ε Hence, ( I min 2 η, (M 2 N T 2 (T N 2 T 5 2 N 4 (T L 2 2 T ε η 2 T 2 x ε T η 2 (M 2 N η 2 (η N 2 η 2 N 5 4 (η L 2 2 x ε η 2 x 2ε η 2 x 2ε In every region of (5, or condiions are saisfied So Lemma 3 follows Lemma 4 Under he assmpions of Lemma 3, (5 being replaced by he region (6 M X 2 40, N X 60, for T T X, we have ( min 2 η, 2T M(b in(b il(b i 2 η 2 x 2ε T T P r o o f I is sfficien o show ha ( I = min 2 η, 2T ( ( ( 2 T N M 2 i 2 i L 2 i η 2 x 2ε T

7 Shor inervals conaining prime nmbers 27 Using he mean vale esimae and Lemma 2, we have ( I min 2 η, ( 2T ( 4 T M 2 i 2 ( 2T T min 2 ( η, T N 5 2 T ( 4 ( 4 L 2 i N 2 i ( (M 2 T 2 T N 4 T 2 2 ( ( T min L, T 2 N 2 L 2 T 2 2 T ε L η 2 (M 2 η 2 (η N 4 η 2 2 x ε η 2 MN 5 4 (η L 4 x ε N 5 4 η x ε η 2 T 2 x ε η 2 x 2ε, since min(l, T/L T 2 Ths Lemma 4 follows 3 Mean vale esimae (II Lemma 5 Sppose ha MHK = X and M(s, H(s and K(s are Dirichle polynomials, and G(s = M(sH(sK(s Le b = / log X, T 0 = log B ε X Assme frher ha for T0 2X, M(b i log B ε x and H(b i log B ε x Moreover, sppose ha M and H saisfy one of he following hree condiions: MH X 20, X 0 H, M 2 /H X 0, X 3 0 M, H 2 /M X 3 5, X 0 M 2 H ; 2 MH X 26 45, M 2 H X 5 4, X M 2 H, M 2 H X 2 0, X 2 M 58 H 4 ; 3 MH X 25 44, X 00 H, M 6 H X 5, X 70 M, MH 8 X 23 0, X 20 M 6 H 5 Then for T 0 T X, we have ( (7 min 2 η, 2T G(b i 2 η 2 log 0B x T T P r o o f Using he mehod of Lemma, we only show ha for T = /η = 2X 20 ε, (8 I = 2T T G(b i 2 log 0B x

8 28 C Jia I Firs, we assme condiion On applying he mean vale esimae and Halász mehod o M 3 (s, H 5 (s and K 2 (s, we ge where I U 2 V 2 W 2 x F log c x, F = min{v 6 (M 3 T, V 6 M 3 V 8 M 3 T, W 0 (H 5 T, W 0 H 5 W 30 H 5 T, U 4 (K 2 T, U 4 K 2 U 2 K 2 T } We discss he following cases: (a F 2V 6 M 3, 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 0 H 5, U 4 K 2 } U 2 V 2 W 2 (V 6 M (W 0 H 5 5 (U 4 K 2 2 = V 5 M 0 HK x log B x (b F 2V 6 M 3, 2W 0 H 5, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 0 H 5, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 M 3 3 (W 0 H 5 5 (U 4 T 20 (U 2 K 2 T 60 = T 7 5 MHK 30 x ε (c F 2V 6 M 3, F > 2W 0 H 5, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 0 T, W 30 H 5 T, U 4 K 2 } U 2 V 2 W 2 (V 6 M 3 3 (W 0 T 3 20 (W 30 H 5 T 60 (U 4 K 2 2 = T 6 MKH 2 x ε (d F 2V 6 M 3, F > 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 0 T, W 30 H 5 T, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 M 3 3 (W 0 T 5 (U 4 T 20 (U 2 K 2 T 60 = T 2 3 MK 30 x ε (e F > 2V 6 M 3, F 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 0 H 5, U 4 K 2 } U 2 V 2 W 2 (V 6 T 7 60 (V 8 M 3 T 60 (W 0 H 5 5 (U 4 K 2 2 = T 3 0 M 20 HK x ε

9 Shor inervals conaining prime nmbers 2 (f F > 2V 6 M 3, F 2W 0 H 5, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 0 H 5, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 T 3 (W 0 H 5 5 (U 4 T 20 (U 2 K 2 T 60 = T 4 5 HK 30 x ε (g F > 2V 6 M 3, 2W 0 H 5, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 0 T, W 30 H 5 T, U 4 K 2 } U 2 V 2 W 2 (V 6 T 3 (W 0 T 3 20 (W 30 H 5 T 60 (U 4 K 2 2 = T 2 H 2 K x ε (h F > 2V 6 M 3, 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6, V 8 M 3, W 0, W 30 H 5, U 4, U 2 K 2 }T U 2 V 2 W 2 (V (V 8 M 3 60 (W 0 5 (U 4 2 T = T M 20 x ε, since M X II Nex, we assme condiion 2 On applying he mean vale esimae and Halász mehod o M 2 (sh(s, H 5 (s and K 2 (s, we ge where I U 2 V 2 W 2 x F log c x, F = min{v 4 W 2 (M 2 H T, V 4 W 2 M 2 H V 2 W 6 M 2 HT, W 0 (H 5 T, W 0 H 5 W 30 H 5 T, U 4 (K 2 T, U 4 K 2 U 2 K 2 T } We consider several cases: (a F 2V 4 W 2 M 2 H, 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 0 H 5, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 3 8 (W 0 H 5 8 (U 4 K 2 2 = V 2 M 3 4 HK x log B x

10 30 C Jia (b F 2V 4 W 2 M 2 H, 2W 0 H 5, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 0 H 5, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 0 H 5 0 (U 4 T 7 20 (U 2 K 2 T 20 = T 2 5 MHK 0 x ε (c F 2V 4 W 2 M 2 H, F > 2W 0 H 5, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 0 T, W 30 H 5 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (U 4 K 2 2 = W H 2 MK x log B x (d F 2V 4 W 2 M 2 H, F > 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 0 T, W 30 H 5 T, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 30 H 5 T 30 (U 4 T 20 (U 2 K 2 T 60 = T 2 MH 2 3 K 30 x ε (e F > 2V 4 W 2 M 2 H, F 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 0 H 5, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 7 20 (V 2 W 6 M 2 HT 20 (W 0 H 5 0 (U 4 K 2 2 = T 2 5 M 0 H 20 K x ε (f F > 2V 4 W 2 M 2 H, F 2W 0 H 5, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 0 H 5, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 T 7 20 (V 2 W 6 M 2 HT 20 (W 0 H 5 0 (U 4 T 2 = T 0 M 0 H 20 x ε

11 Shor inervals conaining prime nmbers 3 (g F > 2V 4 W 2 M 2 H, 2W 0 H 5, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 0 T, W 30 H 5 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 20 (V 2 W 6 M 2 HT 60 (W 30 H 5 T 30 (U 4 K 2 2 = T 2 M 30 H 60 K x ε (h F > 2V 4 W 2 M 2 H, 2W 0 H 5, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2, V 2 W 6 M 2 H, W 0, W 30 H 5, U 4, U 2 K 2 }T U 2 V 2 W 2 (V 4 W 2 20 (V 2 W 6 M 2 H 60 (W 30 H 5 30 (U 4 2 T = T M 30 H 60 x ε III Lasly, we assme condiion 3 On applying he mean vale esimae and Halász mehod o M 3 (s, H 4 (s and K 2 (s, we ge where I U 2 V 2 W 2 x F log c x, F = min{v 6 (M 3 T, V 6 M 3 V 8 M 3 T, W 8 (H 4 T, W 8 H 4 W 24 H 4 T, U 4 (K 2 T, U 4 K 2 U 2 K 2 T } Consider he following cases: (a F 2V 6 M 3, 2W 8 H 4, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 8 H 4, U 4 K 2 } U 2 V 2 W 2 (V 6 M 3 4 (W 8 H 4 4 (U 4 K 2 2 = V 2 M 3 4 HK x log B x (b F 2V 6 M 3, 2W 8 H 4, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 8 H 4, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 M 3 3 (W 8 H 4 4 (U 4 T 3 8 (U 2 K 2 T 24 = T 5 2 MHK 2 x ε

12 32 C Jia (c F 2V 6 M 3, F > 2W 8 H 4, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 8 T, W 24 H 4 T, U 4 K 2 } U 2 V 2 W 2 (V 6 M 3 3 (W 8 T 8 (W 24 H 4 T 24 (U 4 K 2 2 = T 6 MKH 6 x ε (d F 2V 6 M 3, F > 2W 8 H 4, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 M 3, W 8 T, W 24 H 4 T, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 M 3 3 (W 8 T 8 (W 24 H 4 T 24 (U 4 T 2 = T 2 3 MH 6 x ε (e F > 2V 6 M 3, F 2W 8 H 4, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 8 H 4, U 4 K 2 } U 2 V 2 W 2 (V 6 T 5 24 (V 8 M 3 T 24 (W 8 H 4 4 (U 4 K 2 2 = T 4 M 8 HK x ε (f F > 2V 6 M 3, F 2W 8 H 4, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 8 H 4, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 6 T 5 24 (V 8 M 3 T 24 (W 8 H 4 4 (U 4 T 2 = T 3 4 M 8 H x ε (g F > 2V 6 M 3, 2W 8 H 4, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 6 T, V 8 M 3 T, W 8 T, W 24 H 4 T, U 4 K 2 } U 2 V 2 W 2 (V 6 T 3 (W 8 T 8 (W 24 H 4 T 24 (U 4 K 2 2 = T 2 H 6 K x ε (h F > 2V 6 M 3, 2W 8 H 4, 2U 4 K 2 Then U 2 V 2 W 2 min{v 6, V 8 M 3, W 8, W 24 H 4, U 4, U 2 K 2 }T U 2 V 2 W 2 (V (V 8 M 3 24 (W 8 4 (U 4 2 T = T M 8 x ε, since M X 2 5 (he laer follows from MH X and X 00 H Combining he above, we obain (8 Hence, Lemma 5 follows

13 Shor inervals conaining prime nmbers 33 Lemma 6 Under he assmpion of Lemma 5, M and H lie in one of he following regions: (i X 70 3 M X 0, M 6 5 X 00 H M 23 8 X 80 ; (ii X 3 0 M X 60, M 2 X 0 H M 23 8 X 80 ; (iii X M X 770, X 0 H M 23 8 X 80 ; (iv X M X 00, X 0 H M X ; (v X M X 450, X 0 H M 6 X 5 ; (vi X M X 305, X 0 H M X 20 ; (vii X M X 55, X 0 H M 2 2 X 0 ; (viii X M X 5620, M 4 X 8 H M 2 2 X 0 ; (ix X M X 860, M 4 X 8 H M 2 5 X 76 ; (x X M X 860, X H M 2 5 X 76 Then (7 holds for T 0 T X P r o o f In he regions: X 3 0 M X 60, M 2 X 0 H M 2 X 3 45 ; X 60 M X 55, X 0 H M X 20, we apply Lemma 5 wih condiion In he regions: X M X 55, M X 20 H M 2 X 2 0 ; X 55 M X , M 4 X 8 H M 2 X 2 0 ; X M X , M 4 X 8 H M 2 X 5 76 ; X M X , X H M 2 X 5 76, we apply Lemma 5 wih condiion 2 In he regions: X 70 M X 3 0, M 6 5 X 00 H M 8 X ; X 3 0 M X 60, M 2 X 3 45 H M 8 X ; X 60 M X , M X 20 H M 8 X ; X M X 35 00, M X 20 H M X ; X M X , M X 20 H M 6 X 5, we apply Lemma 5 wih condiion 3 Ping ogeher he above regions, we ge Lemma 6

14 34 C Jia Lemma 7 Under he assmpion of Lemma 5, sppose ha M and H also saisfy one of he following hree condiions: MH X 7 0, X 0 H, M 2 H X 63 0, X M, H /M X 5, X 38 5 M 2 H ; 2 M 2 H X 52 45, M 58 H X 5 2, X 45 M, MH 5 X 2 20, X 4 M 2 H 0 ; 3 MH X 5 70, X 00 H, M 6 H X 63 20, X 44 M, H 7 /M X 3 0, X 5 M 6 H 5 Then (7 holds for T 0 T X P r o o f We only show ha (8 holds for T = /η = 2X 20 ε I Firs, we assme condiion We apply he mean vale esimae and Halász mehod o M 2 (s, H 5 (s and K 3 (s o ge where I U 2 V 2 W 2 x F log c x, F = min{v 4 (M 2 T, V 4 M 2 V 2 M 2 T, W 0 (H 5 T, W 0 H 5 W 30 H 5 T, U 6 (K 3 T, U 6 K 3 U 8 K 3 T } We consider several cases: (a F 2V 4 M 2, 2W 0 H 5, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 0 H 5, U 6 K 3 } U 2 V 2 W 2 (V 4 M 2 2 (W 0 H 5 6 (U 6 K 3 3 = W 3 H 5 6 MK x log B x (b F 2V 4 M 2, 2W 0 H 5, F > 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 0 H 5, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 M 2 2 (W 0 H 5 5 (U 6 T 7 60 (U 8 K 3 T 60 = T 3 0 MHK 20 x ε (c F 2V 4 M 2, F > 2W 0 H 5, F 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 0 T, W 30 H 5 T, U 6 K 3 } U 2 V 2 W 2 (V 4 M 2 2 (W 0 T 3 20 (W 30 H 5 T 60 (U 6 K 3 3 = T 6 MKH 2 x ε

15 Shor inervals conaining prime nmbers 35 (d F 2V 4 M 2, F > 2W 0 H 5, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 0 T, W 30 H 5 T, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 M 2 2 (W 0 T 3 20 (W 30 H 5 T 60 (U 6 T 3 = T 2 MH 2 x ε (e F > 2V 4 M 2, F 2W 0 H 5, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 H 5, U 6 K 3 } U 2 V 2 W 2 (V 4 T 20 (V 2 M 2 T 60 (W 0 H 5 5 (U 6 K 3 3 = T 7 5 M 30 HK x ε (f F > 2V 4 M 2, F 2W 0 H 5, F > 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 H 5, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 T 2 (W 0 H 5 5 (U 6 T 7 60 (U 8 K 3 T 60 = T 4 5 HK 20 x ε (g F > 2V 4 M 2, 2W 0 H 5, F 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 T, W 30 H 5 T, U 6 K 3 } U 2 V 2 W 2 (V 4 T 2 (W 0 T 3 20 (W 30 H 5 T 60 (U 6 K 3 3 = T 2 3 H 2 K x ε (h F > 2V 4 M 2, 2W 0 H 5, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4, V 2 M 2, W 0, W 30 H 5, U 6, U 8 K 3 }T U 2 V 2 W 2 (V 4 2 (W 0 5 (U (U 8 K 3 60 T = T K 20 x ε, since K X II Nex, assme condiion 2 We apply he mean vale esimae and Halász mehod o M 2 (s, H 5 (s and K 2 (sh(s o ge I U 2 V 2 W 2 x F log c x,

16 36 C Jia where F = min{v 4 (M 2 T, V 4 M 2 V 2 M 2 T, W 0 (H 5 T, W 0 H 5 W 30 H 5 T, U 4 W 2 (K 2 H T, U 4 W 2 K 2 H U 2 W 6 K 2 HT } Consider he following cases: (a F 2V 4 M 2, 2W 0 H 5, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 0 H 5, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 M 2 2 (U 4 W 2 K 2 H 2 = W H 2 MK x log B x (b F 2V 4 M 2, 2W 0 H 5, F > 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 0 H 5, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 M 2 2 (W 0 H 5 0 (U 4 W 2 T 7 20 (U 2 W 6 K 2 HT 20 = T 2 5 MH 20 K 0 x ε (c F 2V 4 M 2, F > 2W 0 H 5, F 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 0 T, W 30 H 5 T, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 M 2 2 (U 4 W 2 K 2 H 2 = W H 2 MK x log B x (d F 2V 4 M 2, F > 2W 0 H 5, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 0 T, W 30 H 5 T, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 M 2 2 (W 30 H 5 T 30 (U 4 W 2 T 20 (U 2 W 6 K 2 HT 60 = T 2 MH 60 K 30 x ε (e F > 2V 4 M 2, F 2W 0 H 5, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 H 5, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 T 7 20 (V 2 M 2 T 20 (W 0 H 5 0 (U 4 W 2 K 2 H 2 = T 2 5 M 0 HK x ε

17 Shor inervals conaining prime nmbers 37 (f F > 2V 4 M 2, F 2W 0 H 5, F > 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 H 5, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 T 7 20 (V 2 M 2 T 20 (W 0 H 5 0 (U 4 W 2 T 2 = T 0 M 0 H 2 x ε (g F > 2V 4 M 2, 2W 0 H 5, F 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 0 T, W 30 H 5 T, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 T 20 (V 2 M 2 T 60 (W 30 H 5 T 30 (U 4 W 2 K 2 H 2 = T 2 M 30 H 2 3 K x ε (h F > 2V 4 M 2, 2W 0 H 5, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4, V 2 M 2, W 0, W 30 H 5, U 4 W 2, U 2 W 6 K 2 H}T U 2 V 2 W 2 (V 4 20 (V 2 M 2 60 (W 30 H 5 30 (U 4 W 2 2 T = T M 30 H 6 x ε III Lasly, we assme condiion 3 We apply he mean vale esimae and Halász mehod o M 2 (s, H 4 (s and K 3 (s o ge where I U 2 V 2 W 2 x F log c x, F = min{v 4 (M 2 T, V 4 M 2 V 2 M 2 T, W 8 (H 4 T, W 8 H 4 W 24 H 4 T, U 6 (K 3 T, U 6 K 3 U 8 K 3 T } Consider he following cases: (a F 2V 4 M 2, 2W 8 H 4, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 8 H 4, U 6 K 3 } U 2 V 2 W 2 (V 4 M 2 2 (W 8 H 4 6 (U 6 K 3 3 = W 2 3 H 2 3 MK x log B x

18 38 C Jia (b F 2V 4 M 2, 2W 8 H 4, F > 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 8 H 4, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 M 2 2 (W 8 H 4 4 (U 6 T 5 24 (U 8 K 3 T 24 = T 4 MHK 8 x ε (c F 2V 4 M 2, F > 2W 8 H 4, F 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 8 T, W 24 H 4 T, U 6 K 3 } U 2 V 2 W 2 (V 4 M 2 2 (W 8 T 8 (W 24 H 4 T 24 (U 6 K 3 3 = T 6 MKH 6 x ε (d F 2V 4 M 2, F > 2W 8 H 4, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 M 2, W 8 T, W 24 H 4 T, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 M 2 2 (W 8 T 8 (W 24 H 4 T 24 (U 6 T 3 = T 2 MH 6 x ε (e F > 2V 4 M 2, F 2W 8 H 4, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 8 H 4, U 6 K 3 } U 2 V 2 W 2 (V 4 T 3 8 (V 2 M 2 T 24 (W 8 H 4 4 (U 6 K 3 3 = T 5 2 M 2 HK x ε (f F > 2V 4 M 2, F 2W 8 H 4, F > 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 8 H 4, U 6 T, U 8 K 3 T } U 2 V 2 W 2 (V 4 T 2 (W 8 H 4 4 (U 6 T 5 24 (U 8 K 3 T 24 = T 3 4 HK 8 x ε (g F > 2V 4 M 2, 2W 8 H 4, F 2U 6 K 3 Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 8 T, W 24 H 4 T, U 6 K 3 } U 2 V 2 W 2 (V 4 T 2 (W 8 T 8 (W 24 H 4 T 24 (U 6 K 3 3 = T 2 3 H 6 K x ε

19 Shor inervals conaining prime nmbers 3 (h F > 2V 4 M 2, 2W 8 H 4, 2U 6 K 3 Then U 2 V 2 W 2 min{v 4, V 2 M 2, W 8, W 24 H 4, U 6, U 8 K 3 }T U 2 V 2 W 2 (V 4 2 (W 8 4 (U (U 8 K 3 24 T = T K 8 x ε, since X 3 5 MH (he laer follows from X 44 M and X 00 H Combining he above, we obain (8 Hence, Lemma 7 follows Lemma 8 Under he assmpion of Lemma 5, sppose ha M and H lie in one of he following regions: (i X 45 M X 44, M 2 0 X 40 H M 2 5 X (ii X M X 72, M 2 0 X 40 H M 2 5 X (iii X M X 72, M 6 5 X 25 3 H M 7 X 70 ; (iv X M X 20, X H M 2 5 X 00 ; (v X M X 20, M 6 5 X 25 3 H M 7 X 70 ; (vi X M X 40, X 3 H M 7 X 70 ; (vii X M X 0, X H M X 5 70 ; (viii X M X 700, X H M 5 X 8 ; (ix X M X 700, X 0 H M X 5 70 ; (x X M X 00, X H M 5 X 8 ; (xi X M X 00, X 0 H M 6 X ; (xii X 4 00 M X 2, X 0 H M X 7 0 Then (7 holds for T 0 T X P r o o f In he regions: X M X 40, M 2 X H M X 5 ; X 40 M X 2, X 0 H M X 7 0, we apply Lemma 7 wih condiion In he regions: 00 ; 00 ; X 45 M X 87 72, M 2 0 X 40 H M 5 X 2 00 ; X M X 33 20, X H M 5 X 2 00 ; X M X 40, X H M 2 X ;

20 40 C Jia X 40 M X 53 0, X H X 0 ; X 53 0 M X 4 00, X H M X 5 8, we apply Lemma 7 wih condiion 2 In he regions: X 44 M X 33 20, M 6 5 X 25 H M 7 X 3 70 ; X M X 40, M X 5 H M 7 X 3 70 ; X 40 M X , M X 7 0 H M X 5 70 ; X M X 4 00, M X 7 0 H M 6 X 63 20, we apply Lemma 7 wih condiion 3 Ping ogeher he above regions, we ge Lemma 8 Lemma Under he assmpion of Lemma 5, sppose ha M and H lie in one of he following regions: M X 275, M X 25 H M (i 4 X X M X 860, X H M (ii 4 X 8 ; X M X 860, M 2 5 X 76 H M 35 7 (iii 23 X X 843 Then (7 holds for T 0 T X P r o o f Firs we show ha (8 holds for T = /η = 2X 20 ε, providing M and H saisfy he following condiions: MH X 25 44, M 35 H 23 X 7 0, X 22 M 2 H, M 2 H 3 X 3 7 0, X 5 M 70 H 5 We apply he mean vale esimae and Halász mehod o M 2 (sh(s, H 6 (s and K 2 (s o ge I U 2 V 2 W 2 x F log c x, where F = min{v 4 W 2 (M 2 H T, V 4 W 2 M 2 H V 2 W 6 M 2 HT, 8 ; 230 W 2 (H 6 T, W 2 H 6 W 36 H 6 T, U 4 (K 2 T, U 4 K 2 U 2 K 2 T } Consider he following cases: (a F 2V 4 W 2 M 2 H, 2W 2 H 6, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 2 H 6, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (U 4 K 2 2 = W H 2 MK x log B x

21 Shor inervals conaining prime nmbers 4 (b F 2V 4 W 2 M 2 H, 2W 2 H 6, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 2 H 6, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 2 H 6 2 (U 4 T 3 8 (U 2 K 2 T 24 = T 5 2 MHK 2 x ε (c F 2V 4 W 2 M 2 H, F > 2W 2 H 6, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 2 T, W 36 H 6 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (U 4 K 2 2 = W H 2 MK x log B x (d F 2V 4 W 2 M 2 H, F > 2W 2 H 6, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 2 T, W 36 H 6 T, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 36 H 6 T 36 (U 4 T 24 (U 2 K 2 T 72 = T 2 MH 2 3 K 36 x ε (e F > 2V 4 W 2 M 2 H, F 2W 2 H 6, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 2 H 6, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 3 8 (V 2 W 6 M 2 HT 24 (W 2 H 6 2 (U 4 K 2 2 = T 5 2 M 2 H 3 24 K x ε (f F > 2V 4 W 2 M 2 H, F 2W 2 H 6, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 2 H 6, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 T 3 8 (V 2 W 6 M 2 HT 24 (W 2 H 6 2 (U 4 T 2 = T 2 M 2 H 3 24 x ε

22 42 C Jia (g F > 2V 4 W 2 M 2 H, 2W 2 H 6, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 2 T, W 36 H 6 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 24 (V 2 W 6 M 2 HT 72 (W 36 H 6 T 36 (U 4 K 2 2 = T 2 M 36 H 3 72 K x ε (h F > 2V 4 W 2 M 2 H, 2W 2 H 6, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2, V 2 W 6 M 2 H, W 2, W 36 H 6, U 4, U 2 K 2 }T U 2 V 2 W 2 (V 4 W 2 2 (W 2 2 (U (U 2 K 2 24 T = T K 2 x ε, since X 2 5 MH (he laer follows from X 7 5 M 70 H 5 In every region, or condiions are saisfied So he proof of Lemma is complee Lemma 0 Under he assmpion of Lemma 5, sppose ha M and H lie in one of he following regions: X M X 340, M X 230 H M 70 7 (i 5 X X M X 275, X H M 70 7 (ii 5 X 25 ; X M X 860, M X 230 H M 4 42 (iii 27 X Then (7 holds for T 0 T X P r o o f Firs we show ha (8 holds for T = /η = 2X 20 ε, providing M and H saisfy he following condiions: MH X 73 30, M 4 H 27 X 42 20, X 65 M 2 H, M 2 H 5 X , X 0 M 82 H 6 We apply he mean vale esimae and Halász mehod o M 2 (sh(s, H 7 (s and K 2 (s o ge I U 2 V 2 W 2 x F log c x, where F = min{v 4 W 2 (M 2 H T, V 4 W 2 M 2 H V 2 W 6 M 2 HT, 25 ; 540 W 4 (H 7 T, W 4 H 7 W 42 H 7 T, U 4 (K 2 T, U 4 K 2 U 2 K 2 T } Consider he following cases:

23 Shor inervals conaining prime nmbers 43 (a F 2V 4 W 2 M 2 H, 2W 4 H 7, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 4 H 7, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (U 4 K 2 2 = W H 2 MK x log B x (b F 2V 4 W 2 M 2 H, 2W 4 H 7, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 4 H 7, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 4 H 7 4 (U 4 T 28 (U 2 K 2 T 28 = T 3 7 MHK 4 x ε (c F 2V 4 W 2 M 2 H, F > 2W 4 H 7, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 4 T, W 42 H 7 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (U 4 K 2 2 = W H 2 MK x log B x (d F 2V 4 W 2 M 2 H, F > 2W 4 H 7, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 M 2 H, W 4 T, W 42 H 7 T, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 M 2 H 2 (W 42 H 7 T 42 (U 4 T 3 28 (U 2 K 2 T 84 = T 2 MH 2 3 K 42 x ε (e F > 2V 4 W 2 M 2 H, F 2W 4 H 7, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 4 H 7, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 28 (V 2 W 6 M 2 HT 28 (W 4 H 7 4 (U 4 K 2 2 = T 3 7 M 4 H 5 28 K x ε (f F > 2V 4 W 2 M 2 H, F 2W 4 H 7, F > 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 4 H 7, U 4 T, U 2 K 2 T } U 2 V 2 W 2 (V 4 W 2 T 28 (V 2 W 6 M 2 HT 28 (W 4 H 7 4 (U 4 T 2 = T 3 4 M 4 H 5 28 x ε

24 44 C Jia (g F > 2V 4 W 2 M 2 H, 2W 4 H 7, F 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2 T, V 2 W 6 M 2 HT, W 4 T, W 42 H 7 T, U 4 K 2 } U 2 V 2 W 2 (V 4 W 2 T 3 28 (V 2 W 6 M 2 HT 84 (W 42 H 7 T 42 (U 4 K 2 2 = T 2 M 42 H 5 28 K x ε (h F > 2V 4 W 2 M 2 H, 2W 4 H 7, 2U 4 K 2 Then U 2 V 2 W 2 min{v 4 W 2, V 2 W 6 M 2 H, W 4, W 42 H 7, U 4, U 2 K 2 }T U 2 V 2 W 2 (V 4 W 2 2 (W 4 4 (U 4 28 (U 2 K 2 28 T = T K 4 x ε, since X 3 0 MH (he laer follows from X 65 M 2 H In every region, or condiions are saisfied, so he proof of Lemma 0 is complee Lemma Under he assmpion of Lemma 5, sppose ha M and H lie in one of he following regions: (i X M X 00, M X 25 H M 4 X 8 ; (ii X M X 340, M X 230 H M 4 X 8 ; (iii X M X 860, X H M 4 X 8 ; (iv X M X 45, M 2 5 X 76 H M X 230 ; (v X M X 860, M 2 5 X 76 H M X 540 Then (7 holds for T 0 T X P r o o f Ping ogeher regions in Lemmas and 0, we can ge Lemma Lemma 2 Under he assmpion of Lemma 5, sppose ha M and H lie in one of he following regions: X M X 550, M 35 2 X 40 H M 2 (i 0 X 40 ; X M X 72, X H M 2 (ii 0 X 40 ; X M X 00, M 5 X 8 H M 70 7 (iii X X M X 550, X H M 70 7 (iv X 55 Then (7 holds for T 0 T X 55 ;

25 Shor inervals conaining prime nmbers 45 P r o o f Firs we show ha (8 holds for T = /η = 2X 20 ε, providing ha M and H saisfy he following condiions: M 2 H X 25 22, M 70 H X 7 5, X 44 M, MH 6 X , X 0 M 35 H 2 We apply he mean vale esimae and Halász mehod o M 2 (s, H 6 (s and K 2 (sh(s o ge I U 2 V 2 W 2 x F log c x, where F = min{v 4 (M 2 T, V 4 M 2 V 2 M 2 T, W 2 (H 6 T, W 2 H 6 W 36 H 6 T, U 4 W 2 (K 2 H T, U 4 W 2 K 2 H U 2 W 6 K 2 HT } Consider he following cases: (a F 2V 4 M 2, 2W 2 H 6, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 2 H 6, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 M 2 2 (U 4 W 2 K 2 H 2 = W H 2 MK x log B x (b F 2V 4 M 2, 2W 2 H 6, F > 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 2 H 6, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 M 2 2 (W 2 H 6 2 (U 4 W 2 T 3 8 (U 2 W 6 K 2 HT 24 = T 5 2 MH 3 24 K 2 x ε (c F 2V 4 M 2, F > 2W 2 H 6, F 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 2 T, W 36 H 6 T, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 M 2 2 (U 4 W 2 K 2 H 2 = W H 2 MK x log B x (d F 2V 4 M 2, F > 2W 2 H 6, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 M 2, W 2 T, W 36 H 6 T, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 M 2 2 (W 36 H 6 T 36 (U 4 W 2 T 24 (U 2 W 6 K 2 HT 72 = T 2 MH 3 72 K 36 x ε

26 46 C Jia (e F > 2V 4 M 2, F 2W 2 H 6, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 2 H 6, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 T 3 8 (V 2 M 2 T 24 (W 2 H 6 2 (U 4 W 2 K 2 H 2 = T 5 2 M 2 HK x ε (f F > 2V 4 M 2, F 2W 2 H 6, F > 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 2 H 6, U 4 W 2 T, U 2 W 6 K 2 HT } U 2 V 2 W 2 (V 4 T 3 8 (V 2 M 2 T 24 (W 2 H 6 2 (U 4 W 2 T 2 = T 2 M 2 H 2 x ε (g F > 2V 4 M 2, 2W 2 H 6, F 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4 T, V 2 M 2 T, W 2 T, W 36 H 6 T, U 4 W 2 K 2 H} U 2 V 2 W 2 (V 4 T 24 (V 2 M 2 T 72 (W 36 H 6 T 36 (U 4 W 2 K 2 H 2 = T 2 M 36 H 2 3 K x ε (h F > 2V 4 M 2, 2W 2 H 6, 2U 4 W 2 K 2 H Then U 2 V 2 W 2 min{v 4, V 2 M 2, W 2, W 36 H 6, U 4 W 2, U 2 W 6 K 2 H}T U 2 V 2 W 2 (V (V 2 M 2 24 (W 2 2 (U 4 W 2 2 T = T M 2 x ε, since M X 3 5 (he laer follows from M 70 H X 7 5 In every region, or condiions are saisfied So he proof of Lemma 2 is complee 4 Mean vale esimae (III Lemma 3 Sppose ha P QRK = X and ha P (s, Q(s, R(s and K(s are Dirichle polynomials Define G(s = P (sq(sr(sk(s Le b = / log X and T 0 = log B ε X Assme frher ha for T0 2X, P (b iq(b i log B ε x and R(b i log B ε x Moreover, assme ha X R Q

27 Shor inervals conaining prime nmbers 47 and ha P and Q lie in one of he following regions: (i X P X 80, P X Q P ; (ii X P X 220, P X Q P X (iii X P X 580, P X Q P X 53 (iv X 5 (v X 7 (vi X P X 00, X Q P 5 67 X 34 ; X 37 (vii 40 ; 0 ; 580 P X 7 55, P X Q P X 53 0 ; 55 P X , P X Q P 67 X 5 00 P X , X Q P X 4 Then (7 holds for T 0 T X P r o o f Le m = pq, h = r (a On applying Lemma 8 wih region (iv, we see ha (7 holds nder he condiions ; P X Q P X 33 20, X R Q (P Q 5 X 2 00, which can be wrien as P X Q P X 33 20, X Q P 6 X 2 20, X R Q In he regions: X P X , P X Q P X ; X P X , X Q P X 33 20, he above condiions on P and Q are saisfied (b On applying Lemma 8 wih region (vi, we see ha (7 holds nder he condiions P X Q P X 40, X R Q (P Q 7 X 3 70, which can be wrien as P X Q P X 40, X Q P 6 X 3 60, X R Q In he regions: X P X 80, P X Q P ; X 80 P X , P X Q P X 40 ; X P X , X Q P X 40, he above condiions on P and Q are saisfied (c On applying Lemma 8 wih region (vii, we see ha (7 holds nder he condiions P X 40 Q P X 53 0, X R Q (P Q X 5 70,

28 48 C Jia which can be wrien as P X 40 Q P X 53 0, X Q P 2 X 5 40, X R Q In he regions: X P X , P X 40 Q P X 53 0 ; X P X , X Q P X 53 0, he above condiions on P and Q are saisfied (d On applying Lemma 8 wih regions (viii and (x, we see ha (7 holds nder he condiions P X 53 0 Q P X 4 00, X R Q (P Q X 5 8, which can be wrien as P X 53 0 Q P X 4 00, X Q P 67 X 5 34, X R Q In he regions: X 7 55 P X 37 00, P X 53 0 Q P 67 X 5 34 ; X P X , P X 53 0 Q P X 4 00 ; X P X , X Q P X 4 00, he above condiions on P and Q are saisfied Ping ogeher he above regions, we ge Lemma 3 Lemma 4 Sppose ha P QRL = X and ha P (s, Q(s and R(s are Dirichle polynomials, L(s = l s, l L and F (s = P (sq(sr(sl(s Le b = / log X and T = L Assme frher ha for T 2X, P (biq(bi log B ε x and R(bi log B ε x Moreover, assme ha X R Q and ha P and Q lie in one of he following regions: (i X 2 P X 00, X Q P ; (ii X P X 60, X Q P X 20 ; (iii X P X 4300, X Q P 2 6 X (iv X P X 860, X Q P X ; 72

29 Then for T T X, we have ( ( min 2 η, 2T T T Shor inervals conaining prime nmbers 4 F (b i 2 η 2 log 0B x P r o o f Le m = pq and n = r An applicaion of Lemma 3 yields ha ( holds nder one of he following condiions: (a M X 32, 2 N M 3 X 0 ; (b X M X 60, 23 N X 80 ; (c X M X 32, N M X (d X 3 32 M X 45, N M 2 X 2 20 ; (e X M X 72, N M 2 X 2 20 Using he same discssion as in Lemma 8 wih regions (i and (ii, we dece ha ( holds nder he condiion 20 ; (f X 45 M X 87 72, M 2 X 2 20 N M 5 X 2 00 In he regions: condiion (a is saisfied In he regions: X P X 64, X Q P ; X 64 P X , X Q P X 32, X 64 P X , P X 32 Q P ; X P X , P X 32 Q P X ; X P X , X Q P X 53 60, condiion (b is saisfied In he regions: X P X 3 64, P X Q P ; X 3 64 P X , P X Q P X 3 32 ; X P X , X Q P X 3 32, condiion (c is saisfied

30 50 C Jia In he regions: X 3 64 P X 2 00, P X 3 32 Q P ; X 2 00 P X 3 60, P X 3 32 Q P 2 3 X 7 20 ; X 3 60 P X , P X 3 32 Q P X 45 ; X P X , X Q P X 45, condiion (d is saisfied In he regions: X 3 60 P X , P X 45 Q P 6 X 2 20 ; X P X , P X 45 Q P X ; X P X , X Q P X 87 72, condiions (e and (f are saisfied Ping ogeher he above regions, we ge Lemma 4 Lemma 5 Under he assmpion of Lemma 4, assme also ha X R Q and ha P and Q lie in one of he following regions: (i X P X 700, P X 4 00 Q X 60 ; (ii X P X 320, X Q X 60 ; (iii X P X 340, X Q P X 230 Then ( holds for T T X P r o o f Le m = pq and n = r An applicaion of Lemma 4 yields ha ( holds nder he condiions In he regions: Q P X 2 40, X R Q X 60 X P X , P X 4 00 Q X 60 ; X P X , X Q X 60 ; X P X , X Q P 82 6 X , he above condiions on P and Q are saisfied So he proof of Lemma 5 is complee

31 Shor inervals conaining prime nmbers 5 5 The remainder erm in he sieve mehod Lemma 6 Sppose ha M X 2 40, H X 60 and ha a(m = O(, b(h = O( Then for real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X, we have Σ = m M h H ( a(mb(h x<mhl xηx ηx = O(ηx log B x mh P r o o f If MH X 20, he conclsion is obvios In he following we sppose (0 MH > X 20 Le b = / log X and MHL = X Sppose ha M(s and H(s are Dirichle polynomials, L(s = l L /ls and F (s = M(sH(sL(s Perron s formla yields x<mhl xηx m M, h H a(mb(h = bix 2πi b ix F (s ( ηs x s ds O(x ε s If s = b i and c L, by Theorem on page 442 of [8], we have l s = (c 2L s (c L s ( O s L Moreover, c L<l c 2 L ( η s x s = ηx s O( s η 2 x, s Le T = L Then bit F (s ( ηs x s ds 2πi s b it where ( η s x s ηx s = η bit M(sH(s (c2l s (c L s x s ds O(S O(S 2, 2πi s b it S = ηx L S 2 = η 2 x T T M(b ih(b i, T T M(b ih(b i

32 52 C Jia A rivial esimae yields S ηx L ηx ε and S 2 η 2 x L ηx ε By Perron s formla again, bit η M(sH(s (c2l s (c L s x s ds 2πi s b it Now we have ( Σ = where x<mhl xηx m M, h H = ηx m M h H = ηx m M h H a(mb(h mh a(mb(h mh a(mb(h ηx m M h H ( ηx ε O T O(ηx ε a(mb(h mh O ( ηx ε MH = b it F (sϱ(sx s ds bix F (sϱ(sx s ds O(ηx ε, 2πi 2πi b ix bit ϱ(s = ( ηs s If s = b i and Im(s T, hen ϱ(s min(η, /T We proceed o esimae We have Here 2X X dx b2it bit Ψ = Ψ log 2 x 2X X bix dx F (sϱ(sx s ds 2 bit max T T X F (sϱ(sx s ds 2 2X X dx b2it bit F (sϱ(sx s ds 2

33 = 2X X By Lemma 4, b2it dx Shor inervals conaining prime nmbers 53 bit min 2 ( η, T x 3 min 2 ( η, T b2it ds bit b2it bit b2it bit x 3 log x min 2 ( η, T F (s F (s 2 ϱ(s ϱ(s 2 x s s 2 ds 2 b2it ds 2T Ψ x 3 log 3 x max T T X min2 bit b2it ds T bit F (s F (s 2 F (b i 2 ( η, 2T T T Hence, he measre of he se of x saisfying bix F (sϱ(sx s ds ηx log B x bit is O(X log B X In he same way, we can deal wih he inegral b it b ix F (sϱ(sx s ds So he proof of Lemma 6 is complee 2X X x s s 2 dx ds 2 F (s 2 F (s 2 2 ds 2 s s 2 F (b i 2 η 2 x 3 ε Lemma 7 Sppose ha a(p, b(q, c(r = O( and ha X R Q Moreover, assme ha P and Q lie in one of he following regions: X (i 2 P X 00, X Q P ; (ii X P X 60, X Q P X (iii X 3 (iv X 263 (v X 27 (vi X P X 320, X Q X 60 ; X 5073 (vii 20 ; 60 P X , X Q P 6 X 2 20 ; 4300 P X , X Q P X ; 800 P X , P X 4 00 Q X 60 ; 320 P X , X Q P 82 6 X

34 54 C Jia Le b = / log X, P QRL = X and T = L Assme frher ha for T 2X, P (b iq(b i log B ε x and R(b i log B ε x Then for real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X, we have ( a(pb(qc(r ηx = O(ηx log B x pqr p P q Q r R x<pqrl xηx P r o o f Using Lemmas 4, 5 and he discssion in Lemma 6, we ge he asserion 6 Asympoic formla Lemma 8 Sppose ha X 76 M X δ and ha 0 a(m = O( If m has a prime facor < X δ, hen a(m = 0 Then for real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X, we have Σ = a(m x<mp xηx m M ( ( = η O a(m log x x<mh xηx m M m M x m <p 2x m O(ηx log B x P r o o f Le b = / log X and MH = X Sppose ha M(s is a Dirichle polynomial, H(s = h H Λ(h/hs and G(s = M(sH(s Perron s formla yields Σ = a(mλ(h = bix G(s ( ηs x s ds O(x ε 2πi s b ix Le T 0 = log B ε X By ( and he discssion in Lemma 6, bit 0 G(s ( ηs x s ds 2πi s b it 0 = η bit 0 M(s (c2h s (c H s x s ds O(S O(S 2, 2πi s b it 0 where T 0 S = ηx log 2B ε x T 0 M(b i, S 2 = η 2 x T 0 T 0 M(b i

35 A rivial esimae yields By Perron s formla again, Shor inervals conaining prime nmbers 55 S ηx log 2B x and S 2 ηx log 2B x bit η 0 M(s (c2h s (c H s x s ds 2πi s b it 0 Hence, where and Σ = ηx m M = ηx m M = ηx m M a(m m a(m m ( ηx log 2 O x a(m m O(ηx log 2B x b ix T 0 O(ηx log 2B x O ( ηx log 2 x b it 0 G(sϱ(sx s ds bix G(sϱ(sx s ds, 2πi 2πi bit 0 ϱ(s = ( ηs s By Lemma and he discssion in Lemma 6, we have bix G(sϱ(sx s ds = O(ηx log 2B x 2πi bit 0 b it 0 G(sϱ(sx s ds = O(ηx log 2B x 2πi b ix for real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X So, Σ = ηx a(m m O(ηx log 2B x, m M ( ( Σ = ηx O log x m M ( ( = η O a(m log x m M The proof of Lemma 8 is complee M a(m m log(x/m O(ηx log B x x m <p 2x m O(ηx log B x

36 56 C Jia Lemma Sppose ha X HK X 76, MHK = X and ha 0 b(h = O(, 0 g(k = O( If h has a prime facor < X δ, hen b(h = 0, and similarly for g(k Sppose ha H(s and K(s are Dirichle polynomials, M(s = m M Λ(m/ms and G(s = M(sH(sK(s Le b = / log X and T 0 = log B ε X If (7 holds for T 0 T X, hen b(hg(k x<hkp xηx h H, k K ( ( = η O log x h H, k K b(hg(k x 2x hk <p hk O(ηx log B x 7 Bchsab s fncion We define w( as he coninos solion of he eqaions { w( = /, 2, (2 (w( = w(, > 2 w( is called Bchsab s fncion and plays an imporan role in finding asympoic formlas in he sieve mehod In pariclar, w( = w( = log( w( =, 2 3, log( log( log( 2 log(s s Lemma 20 We have he following bonds: (i w( for 247, (ii w( for 3, (iii 0562 w( 0567 for 4 log(, 3 4, ds, 4 5 P r o o f I is easy o see ha 05 w( for 2 Then we employ incion Sppose ha 05 w( for k k If k k 2,

37 hen (2 yields Shor inervals conaining prime nmbers (3 w( = (k w(k w( Hence, 05 w( for k k 2 By incion, we obain 05 w( for If > 2, (2 yields (4 w w( w( ( = If 2 3, by calclaion, we have max w(2 0 k k From (4 and 05 w( for, i follows ha w ( 4 if > 2 Using Lagrange s mean vale heorem, we have w( for 2 3 By incion, we obain 05 w( for 2 If 3 4, by calclaion, we have max w(3 0 k k 05643, 4 min w(3 0 k k From (4 and 05 w( for 2, i follows ha w ( if > 3 The above discssion implies ha w( for 3 By he same discssion we can also ge w( for 247 If 4 5, by calclaion, we have max w(4 0 k k 0566, 4 k min w(4 0 k k The above discssion and he fac ha w ( for > 3 imply ha 0562 w( 0567 for 4 Gahering ogeher he above discssion, we ge Lemma 20 Lemma 2 Sppose ha E = {n : < n 2} and z Le P (z = p<z p Then for sfficienly large and z, we have ( ( log S(E, z = = w log z <n 2 (n,p (z= O(ε log z P r o o f See Lemma 5 of [0] If (2 2 heorem < z, i is he prime nmber

38 58 C Jia 8 Sieve mehod We proceed o show ha (5 π(x ηx π(x 00ηx log x for real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X Le (6 Then A = {n : x < n x ηx}, P (z = p, S(A, z = p<z a A (a,p (z= (7 π(x ηx π(x = S(A, (2X 2 Bchsab s ideniy yields (8 S(A, (2X 2 = S(A, X X <p (2X 2 = S(A, X X <p (2X 2 X <p (2X 2 S(A p, p S(A p, X X <q<min(p,(2x/p 2 S(A pq, q The following lemmas always concern real nmbers x (X, 2X, excep for a se he measre of which is O(X log B X Le ( B = {n : x < n 2x} Lemma 22 P r o o f We have S(A, X ηx log x (20 S(A, X = S(A, X δ S(A p, p Le r(a, d = A d ηx d, W (z = p<z X δ <p X ( = ( O(ε e γ p log z, where γ is Eler s consan

39 Shor inervals conaining prime nmbers 5 Le z = X δ and D = X 2 40 Applying Iwaniec s sieve mehod (see Theorem of [8], we have where S(A, X δ ηx log z f R = ( log D O(εηx log x R, log z m X 2 40 a(m r(a, m Lemma 6 yields R = O(ηx log 5 x By Theorem 8 on page 8 of [7], we have ( log D f = e γ O(ε 2, log z where γ is Eler s consan Ths, S(A, X δ e γ δ ηx log x O(εηx log x In he same way, S(A, X δ ηx ( log D log z F log z O(εηx log x e γ δ ηx log x O(εηx log x So, we have he asympoic formla m X 2 40 (2 S(A, X δ = e γ δ ηx log x O(εηx log x Now, X δ <p X S(A p, p = x<pq xηx, b(m r(a, m where X δ < p X and he leas prime facor of q is greaer han p Using Lemmas 8 and 2 and he prime nmber heorem, we have (22 S(A p, p X δ <p X = η = ηx X δ <p X X δ <p X S(B p, p O(εηx log x p log p w ( log(x/p log p O(δηx log x

40 60 C Jia = ηx log x = ηx log x δ δ 2 w { = ηx log x δ w ( O(δηx log x w( O(δηx log x ( δ = e γ δ ηx log x w ( w ( } O(δηx log x ηx log x O(δηx log x, since w(/δ = e γ O(ε 2 (see Lemma 2 on page 7 of [7] Hence, ( (23 S(A, X = w ηx log x O(δηx log x By Lemma 20, we ge S(A, X 0562ηx log x O(δηx log x ηx log x So he proof of Lemma 22 is complee Lemma 23 X <p (2X 2 P r o o f Bchsab s ideniy yields S(A p, X X <p (2X 2 = X <p (2X 2 S(A p, X 82347ηx log x S(A p, X δ X <p (2X 2 X δ <q<x Using Lemma 6, in he same way as in Lemma 22, we have S(A p, X δ S(A pq, q X <p (2X 2 = X <p (2X 2 e γ δ p ηx log x O(εηx log x = e γ δ ηx log x 2 O(εηx log x

41 Shor inervals conaining prime nmbers 6 Using Lemmas 8 and 2, in he same way as in Lemma 22, we have X <p (2X 2 = η = ηx X δ <q<x X <p (2X 2 X <p (2X 2 O(δηx log x = ηx log x = ηx log x 2 2 = δ ηx log x S(A pq, q X δ <q<x X δ <q<x δ ( 2 ηx log x = e γ δ ηx log x 2 w S(B pq, q O(εηx log x ( log(x/(pq pq log q w log q ( δ ( O(δηx log x w(r dr O(δηx log x ( ( w ( δ 2 O(δηx log x 2 ( w ( O(δηx log x ηx log x 2 ( w ( Gahering ogeher he above discssion and applying Lemma 20, we have X <p (2X 2 S(A p, X = ηx log x 2 ( w ( O(δηx log x

42 62 C Jia 0567 ( log ηx log x O(δηx log x ηx log x So he proof of Lemma 23 is complee We now se (24 Ω = where X <p (2X 2 4 i= X <q<min(p,( 2X p 2 4 S(A pq, q = Ω i, (p,q D i i= D = {(p, q : X < p X 2 00, X < q < p}, S(A pq, q D 2 = {(p, q : X 2 00 < p X 3 60, X < q < p 2 3 X 7 20 }, D 3 = {(p, q : X 3 60 < p X , X < q < p 6 X 2 20 }, D 4 = {(p, q : X < p X 80, X < q < p 6 X 2 20 }, D 5 = {(p, q : X < p X 80, p X < q < p}, D 6 = {(p, q : X 80 < p X , X < q < p 6 X 2 20 }, D 7 = {(p, q : X 80 < p X , p X < q < p X 40 }, D 8 = {(p, q : X < p X , X < q < p 6 X 2 20 }, D = {(p, q : X < p X , p X < q < p X 53 0 }, D 0 = {(p, q : X < p X 5 580, X < q < p X }, D = {(p, q : X < p X 5 580, p X < q < p X 53 0 }, D 2 = {(p, q : X < p X 70, X < q < p X }, D 3 = {(p, q : X < p X 70, p X < q < p X 53 0 }, D 4 = {(p, q : X 70 < p X 3 0, X < q < p X }, D 5 = {(p, q : X 70 < p X 3 0, p X < q < p X 53 0 }, D 6 = {(p, q : X 70 < p X 3 0, p 6 5 X 00 < q < p 8 X }, D 7 = {(p, q : X 3 0 < p X 7 55, X < q < p X },

43 Shor inervals conaining prime nmbers 63 D 8 = {(p, q : X 3 0 < p X 7 55, p X < q < p X 53 0 }, D = {(p, q : X 3 0 < p X 7 55, p 2 X 0 < q < p 8 X }, D 20 = {(p, q : X 7 55 < p X 60, X < q < p X }, D 2 = {(p, q : X 7 55 < p X 60, p X < q < p 67 X 5 34 }, D 22 = {(p, q : X 7 55 < p X 60, p 2 X 0 < q < p 8 X }, D 23 = {(p, q : X 60 < p X , X < q < p X }, D 24 = {(p, q : X 60 < p X , p X < q < p 67 X 5 34 }, D 25 = {(p, q : X 60 < p X , X 0 < q < p 8 X }, D 26 = {(p, q : X < p X 35 00, X < q < p X }, D 27 = {(p, q : X < p X 35 00, p X < q < p 67 X 5 34 }, D 28 = {(p, q : X < p X 35 00, X 0 < q < p X }, D 2 = {(p, q : X < p X , X < q < p X }, D 30 = {(p, q : X < p X , p X < q < p 67 X 5 34 }, D 3 = {(p, q : X < p X , X 0 < q < p 6 X 5 }, D 32 = {(p, q : X < p X , X < q < p X }, D 33 = {(p, q : X < p X , p X < q < p 67 X 5 34 }, D 34 = {(p, q : X < p X , X 0 < q < p X 20 }, D 35 = {(p, q : X < p X 55, X < q < p X }, D 36 = {(p, q : X < p X 55, p X < q < p 67 X 5 34 }, D 37 = {(p, q : X < p X 55, X 0 < q < p 2 X 2 0 }, D 38 = {(p, q : X 55 < p X , X < q < p X }, D 3 = {(p, q : X 55 < p X , p X < q < p 67 X 5 34 }, D 40 = {(p, q : X 55 < p X , p 4 X 8 < q < p 2 X 2 0 }, D 4 = {(p, q : X < p X , X < q < p 67 X 5 34 }, D 42 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 2 0 },

44 64 C Jia D 43 = {(p, q : X < p X 37 00, X < q < p 67 X 5 34 }, D 44 = {(p, q : X < p X 37 00, p 70 5 X 7 25 < q < p 4 X 8 }, D 45 = {(p, q : X < p X 37 00, p 4 X 8 < q < p 2 X 2 0 }, D 46 = {(p, q : X < p X , X < q < p X 4 00 }, D 47 = {(p, q : X < p X , p 82 6 X < q < p 4 X 8 }, D 48 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 2 0 }, D 4 = {(p, q : X < p X , X < q < p X 4 00 }, D 50 = {(p, q : X < p X , p X 4 00 < q < X 60 }, D 5 = {(p, q : X < p X , p 82 6 X < q < p 4 X 8 }, D 52 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 2 0 }, D 53 = {(p, q : X < p X , X < q < p X 4 00 }, D 54 = {(p, q : X < p X , p X 4 00 < q < X 60 }, D 55 = {(p, q : X < p X , p 82 6 X < q < p 4 X 8 }, D 56 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 5 76 }, D = {(p, q : X < p X , X < q < X 60 }, D 58 = {(p, q : X < p X , p 82 6 X < q < p 4 X 8 }, D 5 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 5 76 }, D 60 = {(p, q : X < p X , X < q < p 82 6 X }, D 6 = {(p, q : X < p X , p 82 6 X < q < p 4 X 8 }, D 62 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 5 76 }, D 63 = {(p, q : X < p X , X < q < p 4 X 8 }, D 64 = {(p, q : X < p X , p 4 X 8 < q < p 2 X 5 76 }, D 65 = {(p, q : X < p X , X < q < p 2 X 5 76 }, D 66 = {(p, q : X < p X 45, X < q < p 2 X 5 76 }, D 67 = {(p, q : X < p X 45, p 2 X 5 76 < q < p X },

45 Shor inervals conaining prime nmbers 65 D 68 = {(p, q : X 45 < p X 44, X < q < p 2 X 5 76 }, D 6 = {(p, q : X 45 < p X 44, p 2 X 5 76 < q < p 4 27 X }, D 70 = {(p, q : X 45 < p X 44, p 2 0 X 40 < q < p 5 X 2 00 }, D 7 = {(p, q : X 44 < p X , X < q < p 2 X 5 76 }, D 72 = {(p, q : X 44 < p X , p 2 X 5 76 < q < p 4 27 X }, D 73 = {(p, q : X 44 < p X , p 2 0 X 40 < q < p 5 X 2 00 }, D 74 = {(p, q : X 44 < p X , p 6 5 X 25 < q < p 7 X 3 70 }, D 75 = {(p, q : X < p X , p 35 2 X 40 < q < p 2 0 X 40 }, D 76 = {(p, q : X < p X , p 2 0 X 40 < q < p 5 X 2 00 }, D 77 = {(p, q : X < p X , p 6 5 X 25 < q < p 7 X 3 70 }, D 78 = {(p, q : X < p X 87 72, X < q < p 2 0 X 40 }, D 7 = {(p, q : X < p X 87 72, p 2 0 X 40 < q < p 5 X 2 00 }, D 80 = {(p, q : X < p X 87 72, p 6 5 X 25 < q < p 7 X 3 70 }, D 8 = {(p, q : X < p X 33 20, X < q < p 5 X 2 00 }, D 82 = {(p, q : X < p X 33 20, p 6 5 X 25 < q < p 7 X 3 70 }, D 83 = {(p, q : X < p X 40, X < q < p 7 X 3 70 }, D 84 = {(p, q : X 40 < p X 53 0, X < q < p X 5 70 }, D = {(p, q : X 53 0 < p X , X < q < p X 5 8 }, D 86 = {(p, q : X 53 0 < p X , X 0 < q < p X 5 70 }, D 87 = {(p, q : X < p X , X < q < p X 5 8 }, D 88 = {(p, q : X < p X , X 0 < q < p 6 X }, D 8 = {(p, q : X < p X 4 00, X < q < p X 5 8 }, D 0 = {(p, q : X < p X 4 00, p X 5 8 < q < p 70 X 7 55 }, D = {(p, q : X < p X 4 00, X 0 < q < p 6 X }, D 2 = {(p, q : X 4 00 < p X , X < q < p 70 X 7 55 },

46 66 C Jia D 3 = {(p, q : X 4 00 < p X , X 0 < q < p X 7 0 }, D 4 = {(p, q : X < p X 2, X 0 < q < p X 7 0 } Bonds of he sieve fncions Lemma 24 Ω 6 Ω Ω 22 Ω 25 Ω 28 Ω 3 Ω 34 Ω 37 Ω 40 Ω 42 Ω 45 Ω 48 Ω 52 Ω 56 Ω 5 Ω 62 Ω 64 Ω 65 Ω 66 Ω 68 Ω ηx log x P r o o f We have Ω 6 = X 70 <p X 3 0 p 5 6 X 00 <q<p 8 X S(A pq, q = x<pqr xηx where X 70 < p X 3 0, p 6 5 X 00 < q < p 8 X and he leas prime facor of r is greaer han q Le h = q and k = r By Lemma 6 wih region (i, (7 holds Then Lemmas and 2 yield Ω 6 = η S(B pq, q O(εηx log x = ηx X 70 <p X 3 0 X 70 <p X 3 0 O(εηx log x = ηx log x = ηx log x p 6 5 X 00 <q<p 8 X ( ( ( p 6 5 X 00 <q<p 8 X w ( ( ( ( O(ε pq log q w, ( log(x/(pq log q O(εηx log x ( ( log 2 ( ηx log x = ηx log x

47 Shor inervals conaining prime nmbers 67 Using he above discssion and Lemma 20, we have Ω Ω 22 Ω 25 Ω 28 Ω 3 Ω 34 Ω 37 Ω 40 Ω 42 Ω 45 Ω 48 Ω 52 Ω 56 Ω 5 Ω 62 Ω 64 Ω 65 Ω 66 Ω 68 Ω 7 ( 60 = ηx log x w ( 60 ηx log x ( w 2 w 2 w ( 2 w 2 w 2 w 2 w ( ( ( ( ( ( 3 ( 0 2 ( ( O(ε w ( ( ( log ( 2

48 68 C Jia ( ( 3 ( ( 3 ( ( ( ( log ( 2 ( ( ( log ( 2 ( ( ( log ( 2 ( ( ( log ( 2 ( ( log ( 2 ( ( log ( 2 ( ( log ( 2 4 ( 8 4 2

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Riemann Hypothesis: a GGC representation

Riemann Hypothesis: a GGC representation Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

A Simple Version of the Lucas Model

A Simple Version of the Lucas Model Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

The Student s t and F Distributions Page 1

The Student s t and F Distributions Page 1 The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in

Διαβάστε περισσότερα