len(observed ) 1 (observed[i] predicted[i]) 2
|
|
- Σεμέλη Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1
2
3 len(observed ) 1 (observed[i] predicted[i]) 2 i=0
4 len(observed ) 1 (observed[i] predicted[i]) 2 i=0
5
6
7 model1 = pylab.polyfit(xvals, yvals, 1) pylab.plot(xvals, pylab.polyval(model1, xvals), 'r--', label = Linear Model') pylab.polyfit pylab.polyval
8
9 model2 = pylab.polyfit(xvals, yvals, 2) pylab.plot(xvals, pylab.polyval(model2, l2 xvals), 'r--', label = 'Quadratic Model')
10
11 μ
12
13
14 Images of particle trajectory, load-bearing arch, football pass center of mass diagram sources unknown. All rights reserved. This content is excluded from out Creative Commons license. For more information, see
15 def gennoisyparabolicdata(a, b, c, xvals, fname): yvals = [] for x in xvals: theoreticalval = a*x**2 + b*x + c yvals.append(theoreticalval + random.gauss(0, 35)) f = open(fname,'w') f.write('x y\n') for i in range(len(yvals)): f.write(str(yvals[i]) + ' ' + str(xvals[i]) + '\n') f.close() #parameters for generating data xvals = range(-10, 11, 1) a, b, c = 3, 0, 0 gennoisyparabolicdata(a, b, c, xvals, Mystery Data.txt')
16 degrees = (2, 4, 8, 16) random.seed(0) xvals1, yvals1 = getdata('dataset 1.txt') models1 = genfits(xvals1, yvals1, degrees) testfits(models1, degrees, xvals1, yvals1, 'DataSet 1.txt') pylab.figure() xvals2, yvals2 = getdata('dataset 2.txt') models2 = genfits(xvals2, yvals2, degrees) testfits(models2, degrees, xvals2, yvals2, 'DataSet 2.txt')
17
18
19
20
21 pylab.figure() testfits(models1, s1, degrees, xvals2, yvals2, 'DataSet 2/Model 1') pylab.figure() testfits(models2, s2, degrees, xvals1, yvals1, 'DataSet 1/Model 2')
22
23
24
25
26
27 xvals = (0,1,2,3) yvals = xvals pylab.plot(xvals, p yvals, label = 'Actual values') a,b,c = pylab.polyfit(xvals, polyfit(xvals yvals, 2) print('a =', round(a, 4), 'b =', round(b, 4), 'c =', round(c, 4)) estyvals = pylab.polyval((a,b,c), polyval((a b xvals) pylab.plot(xvals, estyvals, 'r--', label ='Predictive values') print('r-squared = ', rsquared(yvals, estyvals))
28 xvals = xvals + (20,) yvals = xvals pylab.plot(xvals, yvals, label = 'Actual values') estyvals = pylab.polyval((a,b,c), xvals) pylab.plot(xvals, estyvals, 'r--', label = 'Predictive values') print('r-squared = ', rsquared(yvals, estyvals))
29 xvals = (0,1,2,3),3) yvals = (0,1,2,3.1),3.1) pylab.plot(xvals, als yvals, label = 'Actual values') model = pylab.polyfit(xvals, yvals, 2) print(model) estyvals = pylab.polyval(model, xvals) pylab.plot(xvals, estyvals, 'r--', label = 'Predicted values') print('r-squared = ', rsquared(yvals, estyvals))
30 xvals = xvals + (20,) yvals = xvals estyvals = pylab.polyval(model, xvals) print('r-squared = ', rsquared(yvals, estyvals)) pylab.figure() pylab.plot(xvals, estyvals)
31
32
33
34
35
36
37 Let D be the original data set testresults = [] for i in range(len(d)): training = D[:].pop(i) model = buildmodel(training) testresults.append(test(model, D[i])) Average testresults
38 Let D be the original data set n be the number of random samples usually n between 20% and 50% k be number of trials testresults = [] for i in range(k) randomly select n elements for testset, keep rest for training model = buildmodel(training) testresults.append(test(model, testset)) Average testresults
39
40 class tempdatum(object): def init (self, s): info = s.split(',') self.high = float(info[1]) self.year = int(info[2][0:4]) def gethigh(self): return self.high def getyear(self): return self.year
41 def gettempdata(): infile = open('temperatures.csv') data = [] for l in infile: data.append(tempdatum(l)) return data
42 def getyearlymeans(data): years = {} for d in data: try: years[d.getyear()].append(d.gethigh()) except: years[d.getyear()] = [d.gethigh()] for y in years: years[y] = sum(years[y])/len(years[y]) return years
43 data = gettempdata() years = getyearlymeans(data) xvals, yvals = [], [] for e in years: xvals.append(e) yvals.append(years[e]) pylab.plot(xvals, yvals) pylab.xlabel('year') pylab.ylabel('mean Daily High (C)') pylab.title('select U.S. Cities')
44
45 numsubsets = 10 dimensions = (1, 2, 3, 4) rsquares = {} for d in dimensions: rsquares[d] = []
46 def splitdata(xvals, yvals): totrain = random.sample(range(len(xvals)), len(xvals)//2) trainx, trainy, testx, testy = [],[],[],[] for i in range(len(xvals)): if i in totrain: trainx.append(xvals[i]) trainy.append(yvals[i]) else: testx.append(xvals[i]) testy.append(yvals[i]) return trainx, trainy, testx, testy
47 for f in range(numsubsets): trainx,trainy,testx,testy = splitdata(xvals, yvals) for d in dimensions: model = pylab.polyfit(trainx, trainy, d) #estyvals = pylab.polyval(model, trainx) estyvals = pylab.polyval(model, testx) rsquares[d].append(rsquared(testy, estyvals)) print('mean R-squares for test data') for d in dimensions: mean = round(sum(rsquares[d])/len(rsquares[d]), 4) sd = round(numpy.std(rsquares[d]), 4) print('for dimensionality', d, 'mean =', mean, 'Std =', sd)
48 Mean R-squares for test data For dimensionality 1 mean = Std = For dimensionality 2 mean = Std = For dimensionality 3 mean = Std = For dimensionality 4 mean = Std =
49
50
51 MIT OpenCourseWare Introduction to Computational Thinking and Data Science Fall 2016 For information about citing these materials or our Terms of Use, visit:
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
1.575 GHz GPS Ceramic Chip Antenna Ground cleared under antenna, clearance area 4.00 x 4.25 mm / 6.25 mm. Pulse Part Number: W3011 / W3011A
W0 Datasheet version. ceramic antenna. (09/08).575 GHz Ceramic Chip Antenna Ground cleared under antenna, clearance area x 4.5 mm / 6.5 mm. Pulse Part Number: W0 / W0A Features - Omni directional radiation
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
ΟΔΗΓΟΣ ΓΙΑ ΔΗΜΙΟΥΡΓΙΑ ΣΠΙΤΙΟΥ ΜΟΝΤΕΛΟ-1. Θα δημιουργήσουμε αυτό το μοντέλο με 2 κομμάτια, τη βάση και τη σκεπή.
ΟΔΗΓΟΣ ΓΙΑ ΔΗΜΙΟΥΡΓΙΑ ΣΠΙΤΙΟΥ ΜΟΝΤΕΛΟ-1 Θα δημιουργήσουμε αυτό το μοντέλο με 2 κομμάτια, τη βάση και τη σκεπή. Κατ αρχήν, χρησιμοποιώντας μιλλιμετρέ χαρτί, σχεδιάστε το σχήμα σας, όπως στο σχήμα που ακολουθεί.
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
UMI Number: All rights reserved
UMI Number: 3408360 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΟΔΗΓΟΣ ΚΑΤΑΣΚΕΥΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΓΙΑ ΠΑΙΧΝΙΔΙ
ΟΔΗΓΟΣ ΚΑΤΑΣΚΕΥΗΣ ΣΙΔΗΡΟΔΡΟΜΙΚΗΣ ΓΡΑΜΜΗΣ ΓΙΑ ΠΑΙΧΝΙΔΙ Σ αυτό το εκπαιδευτικό σενάριο θα κατασκευάσουμε μια σιδηροδρομικά γραμμή για το παιχνίδι της εικόνας. Οι διαστάσεις του δικού σας παιχνιδιού μπορεί
ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ
ΜΟΝΤΕΛΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ Ενότητα 12 Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ - ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 133: ΑΝΤΙΚΕΙΜΕΝΟΣΤΡΕΦΗΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial
ΕΡΓΑΣΤΗΡΙΟ 3 Javadoc Tutorial Introduction Το Javadoc είναι ένα εργαλείο που παράγει αρχεία html (παρόμοιο με τις σελίδες στη διεύθυνση http://docs.oracle.com/javase/8/docs/api/index.html) από τα σχόλια
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 4.5: Φωτογραφία και Εικονογραφημένο Βιβλίο Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient
ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ
Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε
Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου
Σχολή Γεωτεχνικών Επιστημών και Διαχείρισης Περιβάλλοντος Μεταπτυχιακή διατριβή Κτίρια σχεδόν μηδενικής ενεργειακής κατανάλωσης :Αξιολόγηση συστημάτων θέρμανσης -ψύξης και ΑΠΕ σε οικιστικά κτίρια στην
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
Ανάπτυξη Οντολογικής Γνώσης για Τεκμηρίωση Οπτικοακουστικού Περιεχομένου ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Ανάπτυξη Οντολογικής Γνώσης για Τεκμηρίωση Οπτικοακουστικού Περιεχομένου
1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**
1, +,*+* + +-,, + : /+* m,1+ m, -*, * +3132* : Key words: global warming, snowfall, snowmelt, snow water equivalent + IPCC,,**+ Inoue and,**2 Yokoyama,**- Ohmura,,**0,**0 +331 +332 + +2- **+, ++,* 14 1,
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Δυναμική του χρέους και του ελλείμματος Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μιχάλης Βαφόπουλος, vafopoulos.org
Μιχάλης Βαφόπουλος, vafopoulos.org Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Πρόγραμμα σεμιναρίου Εισαγωγή Από τα ανοικτά
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΑΝΘΡΩΠΙΣΤΙΚΩΝ & ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΚΑΙΟΥ «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης» Διπλωματική
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ
Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 2: Διαπραγμάτευση Juan Carlos Martínez Director of Projects Development Department Unit Scope Σε αυτή την ενότητα θα μελετήσουμε τα βασικά των καταστάσεων διαπραγμάτευσης winwin,
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Από το CUDOS και το Semion στον οργανισμό Creative Commons και στο Open Knowledge Foundation
Από το CUDOS και το Semion στον οργανισμό Creative Commons και στο Open Knowledge Foundation Διεπιστημονικό Συνέδριο Ιστορία της Πληροφορίας: Σημεία αναφοράς από τον πάπυρο στο ηλεκτρονικό έγγραφο Νομική
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Automating Complex Workflows using Processing Modeler
Automating Complex Workflows using Processing Modeler QGIS Tutorials and Tips Author Ujaval Gandhi http://google.com/+ujavalgandhi Translations by Christina Dimitriadou Paliogiannis Konstantinos Tom Karagkounis
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΛΓΟΡΙΘΜΟΙ ΕΞΟΡΥΞΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΠΑΡΟΥΣΙΑΣΗ ΤΕΛΙΚΗΣ ΕΡΓΑΣΙΑΣ ΛΙΝΑ ΜΑΣΣΟΥ Δ.Π.Μ.Σ: «Εφαρμοσμένες Μαθηματικές Επιστήμες» 2008
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Analyze/Forecasting/Create Models
(εκδ 11) (εκδ 11) Σχολή Κοινωνικών Επιστημών Τμήμα Οικονομικών Επιστημών 24 Οκτωβρίου 2014 1 / 12 Εισαγωγή (εκδ 11) 1 2 2 / 12 ΧΣ (εκδ 11) ΧΣ μέσω υποδειγμάτων ARIM A/SARIM A Αϕου δημιουργήσουμε τον χώρο
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Μοντέλα χρονολογικών σειρών Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΒΗΜΑ 3. Από το πτυσσόμενο μενού (drop-down) που εμφανίζεται στην αριστερή μεριά, επιλέξτε Prism.
Δημιουργία Μολυβοθήκης με τη χρήση Primitives και Booleans ΒΗΜΑ 1. Στο FreeCAD επιλέξτε Create a new Empty Document Part Create a New Sketch. ΒΗΜΑ 2. Από την ενότητα primitives της γραμμής εργαλείων, επιλέξτε
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ-ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ Ενότητα 3: Phrases to use in business letters and e-mails Το περιεχόμενο του μαθήματος διατίθεται
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013
W0 Datasheet version.. Ceramic Antenna. (0/08). Ceramic Antenna Ground cleared under antenna, clearance area 0.80 mm x 8.5 mm. Pulse Part Number: W0 Features - Omni directional radiation - Low profile
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Ανάκτηση Πληροφορίας
Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.
This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/43513/
ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΑΝΔΡΕΟΥ ΣΤΕΦΑΝΙΑ Λεμεσός 2012 i ii ΤΕΧΝΟΛΟΓΙΚΟ
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «Σχεδιασμός, Διοίκηση και Πολιτική του Τουρισμού» ΜΑΡΚΕΤΙΝΓΚ ΑΘΛΗΤΙΚΩΝ ΤΟΥΡΙΣΤΙΚΩΝ
Περιοχή διαγωνισμού Rethink Athens
Περιοχή διαγωνισμού Rethink Athens Πρόγραμμα : Statistical_Analysis_1.prg Ανάλυση : 28/06/2012 13:05 Κατάλογος : C:\Workspace\Planning\Mst\2010\Statistics\Analysis_5\ Vesrion : 2.8.0, 20-06-2011 Τα κοινά
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Φροντιςτήριο. Linked-List
Φροντιςτήριο Linked-List 1 Linked List Μια linked list είναι μια ακολουθία από ςυνδεδεμένουσ κόμβουσ Κάθε κόμβοσ περιέχει τουλάχιςτον Μια πληροφορία (ή ένα struct) Δείκτη ςτον επόμενο κόμβο τησ λίςτασ
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ
Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030
The purpose of this study is to investigate the attitudes of adolescents toward internet
2/2015 ΣΤΑΣΕΙΣ ΕΦΗΒΩΝ ΓΙΑ ΤΟ ΔΙΑΔΙΚΤΥΑΚΟ ΕΘΙΣΜΟ Γιώργος Τσουβέλας Ψυχολόγος, Υποψήφιος Διδάκτορας ΕΚΠΑ Πολυξένη Παρασκευοπούλου Ψυχολόγος, Υποψήφια Διδάκτορας ΕΚΠΑ Ευαγγελία Κατέρη Έλενα Βιταλάκη Ορέστης
The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.
Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΦυσικόEXTRA ΔκεχριμπαρένιοEXTRA ΔυπόστρωμαEXTRA Δγομαλάκας, κατασκευασμένο από υψηλής
WARNING: Our data sheets are prepared on the basis of average results of our tests. However, our technical advice is given in good faith but without warranty. In fact, different supports, conditions of
Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 4: Συνεργασία Juan Carlos Martínez Director of Projects Development Department Σκοπός 1. Πώς να χτίσετε και να διατηρήσετε μια αποτελεσματική ομάδα Σε αυτό πρόγραμμα, εντός
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
NPI Unshielded Power Inductors
FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Scrum framework: Γεγονότα
Ψηφιακή ανάπτυξη Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #2 : Ευέλικτες (Agile) μέθοδοι για την ανάπτυξη λογισμικού Learning Objective : Scrum framework: Γεγονότα
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης
Διπλωματική Εργασία Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική Αντωνίου Φάνης Επιβλέπουσες: Θεοδώρα Παπαδοπούλου, Ομότιμη Καθηγήτρια ΕΜΠ Ζάννη-Βλαστού Ρόζα, Καθηγήτρια
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table