Dynamics of Flexible Multibody Systems: A Finite Element Approach
|
|
- Αρμονία Οικονόμου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Mathematical notations (/3) Dynamics of Flexible Multibody Systems: A Finite Element Approach Partial derivatives q q,..., q n T x F(q) F (q),..., F nx (q) T Prof.dr.ir. J.B. Jonker and dr.ir. R.G.K.M. Aarts Department of Mechanical Automation and Mechatronics University of Twente The Netherlands D q F F q Fi F i,j q j nx n nx n D 2 qf 2 F 2 q 2 F i F i,jk q j q k nx n n nx n n DvM / DvM / Mathematical notations (2/3) Mathematical notations (3/3) Chain rule of differentiation D(x F(q)) D (x F(q)),..., D ne (x F(q)) T Duality and the scalar product P < f, ẋ > D q D D Di q F l D i,l F l,j F l q j ne n D xdd q F ne n D 2 qd 2 D 2 q 2 D i F l F m Di 2 F + l F l F m q j q k F ne n n l q j q k ne n n D i,lm F l,j F m,k ne n n + D i,l F l,jk ne n n (D 2 xdd q F)D q F + D x DD 2 qf < u, v > u T v < u, Av > u T Av (u T Av) T (Av) T u v T A T u (v T A T u) T (A T u) T v < A T u, v > DvM / 2 DvM / 3
2 Physical representation Finite element representation hinge 3 hinge 4 beam 2 beam 4 beam 3 hinge 2 hinge 5 beam end-effector hinge DvM / 4 DvM / 5 Multibody representation Multibody formulation { x, y, φ x 2, y 2, φ 2 x 3, y 3, φ 3 } joint 4 body 5 joint 5 body 6 body 4 joint 3 body 3 joint 2 body 2 joint body x and y constraints at point A: x 2 l() cos φ y 2 l() sin φ DvM / 6 DvM / 7
3 Multibody formulation { x, y, φ x 2, y 2, φ 2 x 3, y 3, φ 3 } Multibody formulation { x, y, φ x 2, y 2, φ 2 x 3, y 3, φ 3 } x and y constraints at point B: x + 2 l() cos φ x l(2) cos φ 2 y + 2 l() sin φ y l(2) sin φ 2 x and y constraints at point C: x l(2) cos φ 2 x 3 2 l(3) cos φ 3 y l(2) sin φ 2 y 3 2 l(3) sin φ 3 DvM / 7 DvM / 7 Multibody formulation { x, y, φ x 2, y 2, φ 2 x 3, y 3, φ 3 } Multibody formulation { x, y, φ x 2, y 2, φ 2 x 3, y 3, φ 3 } x and y constraints at point A: x 2 l() cos φ y 2 l() sin φ x and y constraints at point B: x + 2 l() cos φ x l(2) cos φ 2 y + 2 l() sin φ y l(2) sin φ 2 x and y constraints at point C: x l(2) cos φ 2 x 3 2 l(3) cos φ 3 y l(2) sin φ 2 y 3 2 l(3) sin φ 3 x and y constraints at point D: x 3 2 l(3) cos φ 3 l 4 y 3 2 l(3) sin φ 3 x and y constraints at point D: x 3 2 l(3) cos φ 3 l 4 y 3 2 l(3) sin φ 3 DvM / 7 DvM / 8
4 Finite element formulation { φ x 2, y 2, φ 2 x 3, y 3, φ 3 } Finite element formulation { φ x 2, y 2, φ 2 x 3, y 3, φ 3 } link element : (x 2 ) 2 + (y 2 ) 2 /2 l () ( ) φ arccos x 2 l () link element 2: (x 3 x 2 ) 2 + (y 3 y 2 ) 2 /2 l (2) ( ) φ 2 arccos x 3 x 2 l (2) DvM / 9 DvM / 9 Finite element formulation { φ x 2, y 2, φ 2 x 3, y 3, φ 3 } Finite element formulation { φ x 2, y 2, φ 2 x 3, y 3, φ 3 } link element : (x 2 ) 2 + (y 2 ) 2 /2 l () ( ) φ arccos x 2 l () link element 2: (x 3 x 2 ) 2 + (y 3 y 2 ) 2 /2 l (2) ( ) φ 2 arccos x 3 x 2 l (2) link element 3: (x 3 x 4 ) 2 + (y 3 ) 2 /2 l (3) ( φ 3 arccos x 3 l (4) ) l (3) DvM / 9 link element 3: (x 3 x 4 ) 2 + (y 3 ) 2 /2 l (3) ( φ 3 arccos x 3 l (4) ) l (3) DvM /
5 Finite element representation of mechanisms Finite element formulation H ST B B B ST B H ST B T ST B H Planar excavator mechanism T T T Truss Slider Truss Beam Hinge DvM / Deformation functions: e (k) D (k) (x (k) ) e (k) i D (k) i (x (k) j ) x (k) vector of nodal coordinates e (k) vector of generalised deformations The number of generalised deformations is equal to the number of nodal coordinates minus the number of degrees of freedom of the element as a rigid body. The deformations should be invariant under rigid body motions and are generally non-lineair functions of the nodal coordinates. The functions D i are chosen such that they have a clear physical meaning which facilitates the description of strength and stiffness. DvM / 2 Finite element formulation Planar (slider) truss element Derivative functions: velocities: ė (k) DD (k) ẋ (k) ė (k) i accelerations: D(k) i x (k) ẋ (k) j D (k) i,j ẋ(k) j j ë (k) (D 2 D (k) ẋ (k) )ẋ (k) + DD (k) ẍ (k) ë (k) i 2 D (k) i x (k) j x (k) l D (k) i,jl ẋ(k) j ẋ (k) l ẋ (k) j ẋ (k) l + D (k) i,j ẍ(k) j + D(k) i x (k) ẍ (k) j j DvM / 3 x (k) x truss p x q x p, y p x q, y q T l (k) x q x p ((x q x p ) 2 + (y q y p ) 2 ) /2 e (k) D (k) (x(k) ) l (k) l (k) DvM / 4
6 Planar (slider) truss element (cont.) D D (k) x pd(k) (xq x p ) (x q x p ) 2 + (y q y p ) 2 /2 cos β (x p ) (y p ) (x q ) (y q ) D (k),j cos β sin β cos β sin β cos β xq x p l (k) and sin β yq y p l (k) Planar (slider) truss element (cont.) D 2 D (k) 2 x p y pd(k) (x q y p x p ) (x q x p ) 2 + (y q y p ) 2 /2 (x q x p )(y q y p ) (x q x p ) 2 + (y q y p ) 2 3/2 D (k),jl l (k) cos β xq x p cos β sin β l (k) (x p ) (y p ) (x q ) (y q ) sin 2 β sin β cos β sin 2 β sin β cos β sin β cos β cos 2 β sin β cos β cos 2 β sin 2 β sin β cos β sin 2 β sin β cos β sin β cos β cos 2 β sin β cos β cos 2 β l (k) and sin β yq y p l (k) DvM / 5 DvM / 6 Sliding bar Sliding bar v ė DD ẋ 2 3, 2, 2 3, 2 ẏ q 2 3v + 2 ẏ q ẏ q v 3 ë ẋ T D 2 D ẋ + DD ẍ v v,,, ẏ q ẏ q ÿ q 4v , 2, 2 3, 2 ÿ q DvM / 7 DvM / 8
7 Planar beam element Planar beam element x (k) x beam p x q x p, y p, φ p x q, y q, φ q T elongation:ε (k) D (k) (x(k) ) l (k) l (k) bending: ε (k) 2 D(k) 2 (x(k) ) (R p n y, l (k) ) (x q x p )sin φ p (y q y p )cos φ p ε (k) 3 D(k) 3 (x(k) ) (R q n y, l (k) ) (x q x p )sin φ q + (y q y p )cos φ q R p cos φ p sin φ p sin φ p cos φ p and R q cos φ q sin φ q sin φ q cos φ q DvM / 9 DvM / 2 Planar beam element Planar beam element D (k) i,j (x p ) (y p ) (φ p ) (x q ) (y q ) (φ q ) cos β sin β cos β sin β sin φ p cos φ p l x (k) cos φ p + l y (k) sin φ p sin φ p cos φ p sin φ q cos φ q sin φ q cos φ q l x (k) cos φ q l y (k) sin φ q bending: ε (k) 2 D(k) 2 (x(k) ) (R p n y, l (k) ) (x q x p )sin φ p (y q y p )cos φ p ε (k) 3 D(k) 3 (x(k) ) (R q n y, l (k) ) (x q x p )sin φ q + (y q y p )cos φ q DvM / 2 D (k),jl l (k) (x p ) (y p ) (φ p ) (x q ) (y q ) (φ q ) sin 2 β sin β cos β sin 2 β sin β cos β sin β cos β cos 2 β sin β cos β cos 2 β sin 2 β sin β cos β sin 2 β sin β cos β sin β cos β cos 2 β sin β cos β cos 2 β cos β l(k) x l xq x p and sin β l(k) y (k) l (k) l yq y p (k) l (k) DvM / 22
8 D (k) 2,jl D (k) 3,jl Planar beam element (x p ) (y p ) (φ p ) (x q ) (y q ) (φ q ) cos φ p sin φ p cos φ p sin φ p ε (k) 2 cos φ p sin φ p cos φ p sin φ p cos φ q sin φ q cos φ q sin φ q cos φ q sin φ q cos φ q sin φ q ε (k) 3 Planar rigid beam element x p x (k) rigid beam φ x q xp, y p φ x q, y q T cos β l(k) x l xq x p and sin β l(k) y (k) l (k) l yq y p (k) l (k) elongation:ε (k) D (k) (x(k) ) l (k) l (k) DvM / 23 DvM / 24 Planar rigid beam element Planar rigid beam element (x p ) (y p ) (φ) (x q ) (y q ) D (k) i,j cos β sin φ sin β cos φ l (k) x cos φ + l y (k) sin φ cos β sin φ sin β cos φ bending: R (k) R (k) (φ) ε (k) 2 D(k) 2 (x(k) ) (R (k) n y, l (k) ) (x q x p )sin φ (y q y p )cos φ cos φ sin φ sin φ cos φ D (k),jl D (k) 2,jl l (k) sin 2 β sin β cos β sin 2 β sin β cos β cos φ sin β cos β cos 2 β sin β cos β cos 2 β sin φ cos φ sin φ ε (k) 2 cos φ sin φ sin 2 β sin β cos β sin 2 β sin β cos β cos φ sin β cos β cos 2 β sin β cos β cos 2 β sin φ DvM / 24 DvM / 25
9 Planar hinge element Simple pendulum x (k) hinge φp, φ q T e (k) D (k) (x(k) ) φ q φ p D (k),j (φ p ) (φ q ), (φ p ) (φ q ) D (k),jl ẋ q ε cos β sin β ε 2 sin φ cos φ l ẏ q φ ẋq cos β sin β sin φ cos φ ẏ q l φ ẋ q 2 lω, ẏq 2 3 lω DvM / 26 DvM / 27 ẍq cos β sin β sin φ cos φ ÿ q Simple pendulum (/l) (ẋ q ) 2 sin 2 β 2ẋ q ẏ q sin β cos β + (ẏ q ) 2 cos 2 β φ(ẋ q cos φ + ẏ q sin φ) l φ Assembly process Planar kinematic analysis The interconnections between the elements are accomplished by indicating common nodes between the elements. p translational node, p rotational node. φ ẍq 2 3 ÿ q lω2 pin-joint hinge-joint rigid-joint ẍ q 2 3 lω 2, ÿ q 2 lω2 DvM / 28 DvM / 29
10 Planar kinematic analysis Various supports Define a vector x of global nodal coordinates x x,..., x nx T, Then for each element the deformation functions D i can be described in terms of the components of vector x, that is e D. (x). e ne D ne (x) or e D(x) Kinematic constraints can be introduced by putting conditions on the nodal coordinates x i as well as by imposing conditions on the deformations e i. support rigid joint roller pinned joint roller pinned joint diagrammatic form constraints const. const. const. const. const. const. const. const. clamped const. const. const. DvM / 3 DvM / 3 Absolute constraint conditions Support conditions x () i C () i Driving conditions x (m) i (t) C (m) i (t) Relative constraint conditions () Holonomic constraints e () i, D () (x) Driving conditions e (m) i (t) C (m) i (t), D (m) (x) e (m) (t) x () x x (c) nxo nxc x (m) nx fixed or support coordinates dependent or calculable coordinates absolute generalized coordinates e () e e (m) neo nem e (c) ne fixed prescribed deformation parameters relative generalized coordinates redundant deformation parameters DvM / 32 DvM / 33
11 Relative constraint conditions (2) Partitioning of vectors x and e Relative constraint conditions (3) If nxc nxo nem, where nem represents the number of holonomic constraints, then according to the implicit function theorem nxc nxo nem number of unknown or calculable coordinates x (c) i number of holonomic constraints If nxc nxonem then a solution for given (x (m), e (m) ) exists. DOF is number of kinematic degrees of freedom DOF nx nxc + nem neo nx nxo neo e () D () (x) neo nem e (m) D (m) (x) can be solved for x (c) as function of the generalized coordinates (x (m), e (m) ), and next the redundant deformation mode coordinates can be calculated from nem e ne (c) D (c) (x) DvM / 34 DvM / 35 Four-bar mechanism () Four-bar mechanism (2) x () y, x 4, x 5, y 5 T, e () ε, ε 2, ε 4, ε 5 T x (c) x 2, y 2, x 3, y 3, y 4 T, e (m) ε 3 x (m) x, e (c) ε 6 DvM / 36 ε D (x) ((x 3 x ) 2 + (y 3 ) 2 ) /2 l () e () ε 2 D 2 (x) ((x 2 x ) 2 + (y 2 ) 2 ) /2 l (2) e (m) ε 4 D 4 (x) ((x 4 x 3 ) 2 + (y 4 y 3 ) 2 ) /2 l (4) ε 5 D 5 (x) ((x 4 x 2 ) 2 + (y 4 y 2 ) 2 ) /2 l (5) ε 3 D 3 (x) ((x 3 x 2 ) 2 + (y 3 y 2 ) 2 ) /2 l (3) e (c) ε 6 D 6 (x) ((x 3 ) 2 + (y 3 ) 2 ) /2 l (6) DvM / 37
12 Geometric transfer functions () Geometric transfer functions (2) solve e D(x) D q F (e) D x DD q F (x) D q F (e), D q F (x) for x (c) and e (c) as function of the generalized coordinates x (m) q e (m) The solutions are expressed by the geometric transfer functions differentiate D 2 qf (e) (D 2 xdd q F (x) )D q F (x) + D x DD 2 qf (x) D 2 qf (e), D 2 qf (x) e F (e) (q) x F (x) (q) F (e) D(F (x) ) for all q differentiate D 2 qf is calculated after D q F with the same linear equations. The components of D x D and D 2 xd are obtained from the element contributions D x D (k) and D 2 xd (k). D q F (e) D x DD q F (x) D q F (e), D q F (x) DvM / 38 DvM / 39 First order geometric transfer functions () First order geometric transfer functions (2) Dq F (e) D x D Dq F (x) DF (e,) D DF (e,m) x D () D x D (m) DF (e,c) DF (x) D x D (c) nxo nxc nx DF (e,) neo DF (e,m) D () D () D (c) D () D (m) D () nem D () D (m) D (c) D (m) D (m) D (m) DF (x,) DF (x,c) ne DF (e,c) D () D (c) D (c) D (c) D (m) D (c) DF (x,m) DF (e,) e() q DF (e,m) e(m) q DF (x,) x() q DF (x,m) x(m) q e() e(), neo x (m) e (m) O, O neo e(m) e(m), nem x (m) e (m) O, I x() x(), nxo x (m) e (m) O, O nxc x(m) x(m), nxm x (m) e (m) I, O DvM / 4 DvM / 4
13 First order geometric transfer functions (3) nxo nxc nx DF (e,) neo DF (e,m) D () D () D (c) D () D (m) D () nem D () D (m) D (c) D (m) D (m) D (m) DF (x,) DF (x,c) ne DF (e,c) D () D (c) D (c) D (c) D (m) D (c) DF (x,m) nxo DF (x,c) D (c) D () DF (e,) D nxc D (c) D (m) DF (e,m) (m) D () D (m) D (m) DF (x,m) D (c) D () O, O D D (c) D (m) (m) D () O, I D (m) D (m) I, O D (c) D () D (c) D (m) D (m) D () O D (m) D (m) I nem DF (e,c) D nec (c) D (c) DF (x,c) + D (m) D (c) DF (x,m) DvM / 42 Second order geometric transfer functions () D ij F (e) (D 2 xd D i F (x) )D j F (x) + D x D D ij F (x) D ij F (e,) (D D ij F (e,m) 2 D () D i F (x) )D j F (x) (D 2 D (m) D i F (x) )D j F (x) D ij F (e,c) (D 2 D (c) D i F (x) )D j F (x) D () D () D (c) D () D (m) D () + D () D (m) D (c) D (m) D (m) D (m) D ij F (x,) D ij F (x,c) D () D (c) D (c) D (c) D (m) D (c) D ij F (x,m) s DvM / 43 Second order geometric transfer functions (2) Velocities and accelerations D ij F (e,m) D ij F (x,m) D ij F (x,c) D (c) D () (D 2 D () D i F (x) )D j F (x) D (c) D (m) (D 2 D (m) D i F (x) )D j F (x) Velocities: ẋ F(x) x (m) ẋ(m) + F(x) e (m) ė(m), or ẋ DF (x) q ė F(e) x (m) ẋ(m) + F(e) e (m) ė(m), or ė DF (e) q D ij F (e,c) (D 2 D (c) D i F (x) )D j F (x) + D (c) D (c) D ij F (x,c) D ij D (k) D ji D (k) D ij F (x) D ji F (x) and D ij F (e) D ji F (e) Accelerations: ẍ (D 2 F (x) q) q + DF (x) q ë (D 2 F (e) q) q + DF (e) q DvM / 44 DvM / 45
14 Analysis of accelerations () Analysis of accelerations (2) ë (D 2 Dẋ)ẋ + DDẍ ë () (D ë (m) 2 D () ẋ)ẋ (D 2 D (m) ẋ)ẋ ë (c) (D 2 D (c) ẋ)ẋ D () D () D (c) D () D (m) D () + D () D (m) D (c) D (m) D (m) D (m) ẍ () ẍ (c) D () D (c) D (c) D (c) D (m) D (c) ẍ (m) ẍ (c) D (c) D () D (c) D (m) D (m) D () O D (m) D (m) I ẍ(m) ë (m) ẍ (c) DF (x,c) ẍ (m) D ë (m) (c) D () (D 2 D () ẋ)ẋ D (c) D (m) (D 2 D (m) ẋ)ẋ ẍ (c) (D 2 F (x,c) q) q + DF (x,c) q (D 2 F (x,c) q) q D (c) D () D (c) D (m) (D 2 D () ẋ)ẋ (D 2 D (m) ẋ)ẋ (D 2 D () ẋ)ẋ (D 2 D (m) ẋ)ẋ DvM / 46 DvM / 47 Analysis of accelerations (3) Solution to the kinematic problem ë (c) DF (e,c) ẍ (m) +(D 2 D (c) ẋ)ẋ ë (m) D (c) D (c) D (c) D () D (c) D (m) (D 2 D () ẋ)ẋ (D 2 D (m) ẋ)ẋ ë (c) (D 2 F (e,c) q) q + DF (e,c) q (D 2 F (e,c) q) q D (c) D (c) D (c) D () +(D 2 D (c) ẋ)ẋ D (c) D (m) (D 2 D () ẋ)ẋ (D 2 D (m) ẋ)ẋ DvM / 48 DvM / 49
15 Solution to the kinematic problem (a) Solution to the kinematic problem (b) DvM / 5 DvM / 5 Example crank connecting rod ė () ẋ () D () D () D (c) D () D (m) D () ẋ (c) ẋ (m) x (c) x(c) + DF(x,c) q Di F (x,c) D (c) D () D (m) D () x, x 2, x3 4, l() 2, y, y 2 3, y 3, l(2) 2 3 x () x x (c) x (m) x, y, y 3 x 2, y 2 x 3 T DF (x,c) DvM / 52 DvM / 53
16 x (c) D () (x ) x2 y x (c) x (c) D () (x ).6.3 D () (x ).6 < δ x (c) D () (x ) D () (x ).975 x (c) DvM / 54 DvM / 55 Planar dynamic analysis Mechanics of materials Basic Laws: Newton: f p d dt (mp ẋ p ) m p ẍ p Euler: T p d dt (Jp ω p ) J p φ p f p T p M p J p ẍp φ p f p : nodal forces T p : nodal torque (moment) m p : mass J p : rotational inertia with, M p respect to center of mass p m p m p Prismatic bar Equilibrium: f p f q Imaginary cut at section mn Normal stress resultant: σ f q f p Hook s Law: σ S ε EA l ε ε l longitudinal elongation S longitudinal stiffness E modulus of elasticity A cross-section area DvM / 56 DvM / 57
17 Principle of virtual work () Principle of virtual work (2) Used to solve problems of static equilibrium. Virtual displacements are imaginary, infinitesimal changes in the nodal coordinates x i and deformation coordinates e i that are consistent with the system constraints, but are otherwise arbitrary; they are not true displacements but small variations in the coordinates. The symbol δ was introduced by Lagrange to emphasize the virtual character of instantaneous variations, as opposed to the symbol d which designates actual differentials of coordinates taking place in the time interval dt, during which interval forces and constraints may change. Work done by the real forces and stress resultants during a so-called virtual displacement is called virtual work. If a (deformable) structure in equilibrium under the action of a system of loads is given a small virtual deformation, then the virtual work done by the external forces (or loads) is equal to the virtual work done by the internal forces (or stress resultants). Prismatic bar (deformable) f p δx p + f q δx q σ δe f p δx p + f q δx q σ (δx q δx p ) δe δx q δx p δx q and δx p f q σ, f p σ DvM / 58 DvM / 59 D Alembert s principle Principle of virtual power () Newton s second law can be rewritten as f p M p ẍ p This equation enables us to extend the principle of virtual work to the dynamical case < (f p M p ẍ p ), δx p > δx p The virtual power of the external forces, inclusive of the inertial forces, acting on the element, must be equal to zero for all virtual velocity distributions that are free of deformation. < (f (k) f (k) in (ẋ(k) ) M (k) ẍ (k) ), δẋ (k) > for all virtual velocities δẋ (k) satisfying DD (k) δẋ (k) With the vector of Lagrange multipliers σ (k), we then obtain the equations of motion for element k < (f (k) f (k) in M(k) ẍ (k) ), δẋ (k) > < σ (k),dd (k) δẋ (k) > DvM / 6 for all δẋ (k) DvM / 6
18 Principle of virtual power (2) Stress resultants of the planar truss element < (f (k) f (k) in M(k) ẍ (k) ), δẋ (k) > < σ (k),dd (k) δẋ (k) > for all δẋ (k) With the transpose of DD (k) we obtain DD (k)t σ (k) f (k) f (k) in M(k) ẍ (k) Static case: ẋ (k) and ẍ (k) DD (k)t σ (k) f (k) (equilibrium equations) DvM / 62 DD (k)t σ (k) f (k) f p σ (k) cos β f q sin β cos β f p x sin β σ (k) f p f y x p + fx q cos β fx q sin β fy q fy p + fy q DvM / 63 Stress resultants of the planar beam element Stress resultants of the planar hinge element l (k) l (k) σ (k) σ (k) 2 σ (k) 3 f p x f p y T p fx q f q y T q f p σ (k), σ(k) 2 σ (k) T 3 T p σ (k) 2 l(k) f q σ (k), σ(k) 2 + σ (k) T 3 T q σ (k) 3 l(k) DvM / 64 σ (k) T p σ (k) T q σ (k) T p T q DvM / 65
19 Stiffness properties of planar elements () Stiffness properties of planar elements (2) Stresses of flexible elements are characterized by Hooke s law: σ (k) S (k) ε (k) Axial deformation: σ (k) E (k) A (k) ε x (Hooke s law) ε x du dx (axial strain) l (k) ε x dx l (k) l (k) ε (k) S (k) E(k) A (k) l (k) DvM / 66 DvM / 67 Elastic line concept () If the deformations ε (k) 2 and ε (k) 3 remain sufficiently small (ε (k) i l (k) ), then in the elastic range they are linearly related to bending moments σ (k) 2 l(k) and σ (k) 3 l(k). Slender beam (d (k) /l (k) ) subjected to bending moments σ (k) 2 l(k) and σ (k) 3 l(k) at its end points. E (k) I (k)d4 w dx 4 Integrating four times, Elastic line concept (2) for x l(k) w(x) 6 c x c 2x 2 + c 3 x + c 4 w(), dw(x) dx x ε (k) 2 /l(k) w(l (k) ), dw(x) dx xl (k) ε (k) 3 /l(k) DvM / 68 DvM / 69
20 w(x) E (k) I (k) d2 w(x) dx 2 E (k) I (k) d2 w(x) dx 2 Elastic line concept (3) ( ) x 3 ( ) x 2 ( ) ( x 2 + l (k) l (k) l (k) ε (k) ) x 3 ( ) x 2 2 l (k) l (k) ε (k) 3 x xl (k) σ (k) 2 l(k) σ (k) 3 l(k) σ (k) 2 E(k) I (k) ( (l (k) ) 3 4ε (k) ) 2 2ε(k) 3 σ (k) 3 E(k) I (k) ( (l (k) ) 3 2ε (k) ) 2 + 4ε(k) 3 Stiffness properties of planar elements (3) Beam element: σ (k) S (k) ε (k) σ (k) σ (k) 2 σ (k) 3 E (k) A (k) l (k) 4 E(k) I (k) (l (k) ) 3 2 E(k) I (k) (l (k) ) 3 2 E(k) I (k) (l (k) ) 3 4 E(k) I (k) (l (k) ) 3 ε (k) ε (k) 2 ε (k) 3 DvM / 7 DvM / 7 Elastic line beam w(x) ε (k) 2 L (x) ε (k) 3 L 2(x) ( ) x 3 ( ) x 2 x L (x) 2 + l (k) l (k) l (k) ( ) x 3 ( ) x 2 L 2 (x) l (k) l (k) Inclusion of second-order geometric effects ε x du(x) dx + 2 ( ) 2 dw(x) dx ε (k) l (k) l (k) + 2 l (k) ( ) 2 dw(x) dx dx l (k) ( ) 2 dw(x) 2 dx dx 6l (k) ε (k) 2, ε (k) ε(k) 2 ε (k) 3 ε (k) l (k) l (k) + ( 3l (k) 2 ε (k) ) 2 ( (k) 2 + ε 2 ε(k) ε (k) ) 2 3 DvM / 72 DvM / 73
21 Inertia properties of finite elements Lumped mass formulation Lumped mass formulation Consistent mass formulation In this idealisation rigid bodies with equivalent mass and rotational inertia are attached to the end nodes of the element. The lumped masses and rotational inertias are calculated by assuming that the element behaves like a rigid body. Conditions for dynamical equivalence:. The mass of the element should be equal to the total mass of the lumped system. 2. The center of mass of the element and of the discrete mass model should coincide. 3. The rotational inertia of the element and that of the discrete model should be equal. DvM / 74 DvM / 75 Lumped mass formulation Lumped mass formulation Symmetrically shaped elements Asymmetrically shaped elements. m m p + m q 2. Center of gravity located at x l/2 m p m q m/2 3. J c J p + J q + 2 m/2 (l/2) 2 J p + J q + 4 ml2 DvM / 76 DvM / 77
22 Lumped mass formulation Lumped mass formulation x c x p + s p x p + R p s p R p cos φ p sin φ p sin φ p cos φ p ẋ c ẋ p + φ p R p s p R p dr p dφ p, φ c φ p, φ c φ p sin φ p cos φ p cos φ p sin φ p DvM / 78 f c in mp ẍ c, T c in Jc φ c < f p, δẋ p > + < T p, δ φ p > < m p ẍ c, δẋ c > < J c φ c, δ φ c > for all δẋ c, δ φ c satisfying δẋ c δẋ p + δ φ p R p s p, δ φ c δ φ p DvM / 79 Lumped mass formulation < (f p m p ẍ c ), δẋ p > + < (T p J c φ c ), δ φ p > < m p ẍ c, R p s p δ φ p > < m p s p T R p Tẍc, δ φ p > for all δẋ p, δ φ p < (f p m p ẍ c ), δẋ p > + < (T p m p s p T R p Tẍc J c φ c ), δ φ p > for all δẋ p, δ φ p f p m p ẍ c, T p m p s p T R p Tẍc J c φ c ẍ c ẍ p + φ p R p s p ( φ p ) 2 R p s p, φ c φ p m p I m p R p ẍp s p f p + m m p s p T R p T J p φ p p R p s p ( φ p ) 2 T p + m p s p 2 ( φ p ) 2 m p I m p m p If s p s p, then m p ẍp I f p J p φ p T p, J p J c + m p s p 2 DvM / 8 DvM / 8
23 Consistent mass formulation Consistent mass matrix of planar truss element Basic assumptions: Position of every point on the element described by polynomial functions whose parameters depend on the nodal positions and orientations. Distributed inertia forces are replaced by equivalent concentrated forces in the element nodes using the virtual power principle. Interpolation functions are used which are consistent with the interpolations used in the calculation of the stiffness matrix (elastic line concept). r(ξ) ( ξ)x p + ξx q ξ s l (k) Virtual power of distributed inertia forces rdm: m (k) l (k) < δṙ, r > dξ DvM / 82 DvM / 83 m (k) l (k) < δṙ, r > dξ ṙ ( ξ)ẋ p + ξẋ q, m (k) l (k) r ( ξ)ẍ p + ξẍ q < δṙ, r > dξ δẋ (k)t M c (k) ẍ (k) M c (k) m (k) l (k) ( ξ 2 )I ξ( ξ)i ξ( ξ)i ξ 2 dξ I (x p ) (y p ) (x q ) (y q ) M (k) c m(k) l (k) m(k) l (k) 6 2I I I 2I DvM / 84 Consistent mass matrix of planar beam element ξ s l (k) Hermite interpolation: two points and two slope conditions at the end points r(ξ)( 3ξ 2 + 2ξ 3 )x p + (ξ 2ξ 2 + ξ 3 )(l (k) + e (k) )Rp n x +(3ξ 2 2ξ 3 )x q + ( ξ 2 + ξ 3 )(l (k) + e (k) )Rq n x DvM / 85
24 Consistent mass matrix of planar beam element ṙ(ξ)( 3ξ 2 + 2ξ 3 )ẋ p + (ξ 2ξ 2 + ξ 3 )l (k) φ p R p n x +(3ξ 2 2ξ 3 )ẋ q + ( ξ 2 + ξ 3 )l (k) φ q R q n x r(ξ)( 3ξ 2 + 2ξ 3 )ẍ p + (ξ 2ξ 2 + ξ 3 )l (k) φ p R p n x +(3ξ 2 2ξ 3 )ẍ q + ( ξ 2 + ξ 3 )l (k) φ q R q n x ξ s l (k) (ξ 2ξ 2 + ξ 3 )l (k) ( φ p ) 2 R p n x ( ξ 2 + ξ 3 )l (k) ( φ q ) 2 R q n x DvM / 86 m (k) l (k) < δṙ, r > dξ δẋ (k)t M (k) c ẍ (k) f (k) in M (k) c m(k) l (k) 42 f (k) in m(k) l (k) 42 (x p ) (φ p ) (x q ) (φ q ) 56I 22l (k) R p n x 54I 3l (k) R q n x 4(l (k) )2 3l (k) nt xr p 3(l (k) )2 n T xr p R q n x 56I 22l (k) R q n x 4(l (k) )2 22l (k) Rp n x 3l (k) Rq n x 4(l (k) )2 n T xr pt R p n x 3(l (k) )2 n T xr p R q n x 3l (k) Rp n x 22l (k) Rq n x 3(l (k) )2 n T xr qt R p n x 4(l (k) )2 n T xr qt R q n x ( φ p ) 2 ( φ q ) 2 DvM / 87 Equations of motion with multipliers Global mass matrix M: M k (M (k) l + M (k) c ) Virtual power equation: < (f (c) M (c,c) ẍ (c) ), δẋ (c) >< σ (c), δė (c) > for all virtual velocities δẋ (c) and δė (c) satisfying D (c) D () δẋ (c) δė (c) D (c) D (c) δẋ (c) < (f (c) M (c,c) ẍ (c) ), δẋ (c) > < σ (),D (c) D () δẋ (c) > for all δẋ (c). < σ (c),d (c) D (c) δẋ (c) > With the transpose transformations D (c) D ()T and D (c) D (c)t M (c,c) ẍ (c) + D (c) D ()T σ () f (c) D (c) D (c)t σ (c) D () (x) System of differential algebraical equations (DAE s) M (c,c) D (c) D ()T D (c) D () ẍ(c) f (c) D σ () (c) D (c)t σ (c) (D (c) D (c) D () ẋ (c) )ẋ (c) DvM / 88 DvM / 89
25 Lagrange s form of Jourdain s principle Combines the computational advantages of Newton-Euler approach and Lagrange s method. objective I geometric transfer functions objective II D Alembert s forces principle of virtual power (Jourdain s principle) Equations of motion in terms of independent coordinates () Global mass matrix M: M k (M (k) l + M (k) c ) Vector of kinematic degrees of freedom q: q d q q d : vector of dynamic degrees of freedom q r q r : vector of rheonomic coordinates equations of motion in terms of independent coordinates DvM / 9 DvM / 9 Equations of motion in terms of independent coordinates (2) Equations of motion in terms of independent coordinates (3) Virtual power equation: < (f Mẍ), δẋ >< σ, δė > With the transpose transformations D q df (x)t and D q df (e)t : < D q df (x)t (f Mẍ), δ q d >< D q df (e)t σ, δ q d > for all for all δ q d δẋ D q df (x) δ q d and δė D q df (e) δ q d D q df (x)t (f Mẍ) D q df (e)t σ ẋ D q df (x) q d + D q rf (x) q r ẍ D q df (x) q d + D q rf (x) q r + (D 2 qf (x) q) q System of ordinary differential equations (ODE s) M q d D q df (x)t f M (( D 2 qf (x) q ) q + D q rf (x) q r) D q df (e)t σ where M D q df (x)t MD q df (x) DvM / 92 DvM / 93
26 Virtual power equation: Kinetostatic analysis < (f(x, ẋ, t) M(x)ẍ), δẋ >< σ, δė > for all δė DD(x)δẋ (DD) T σ f Mẍ (Equations of reaction) f () σ () M (,) M (,c) M (,m) f f (c) f (m), σ σ (m) σ (c), M M (c,) M (c,c) M (c,m) M (m,) M (m,c) M (m,m) neo nem nec (D () D () ) T (D () D (m) ) T (D () D (c) ) T nxo σ (D (c) D () ) T (D (c) D (m) ) T (D (c) D (c) ) T () σ (m) nxc (D nxm (m) D () ) T (D (m) D (m) ) T (D (m) D (c) ) T σ (c) f () M (,c) ẍ (c) M (,m) ẍ (m) f (c) M (c,c) ẍ (c) M (c,m) ẍ (m) f (m) M (m,c) ẍ (c) M (m,m) ẍ (m) σ () σ (m) (D (c) D () ) T,(D (c) D (m) ) T f (c) M (c,c) ẍ (c) M (c,m) ẍ (m) D (c) D (c) T σ (c) σ (c) Sε (c) + S d ε (c) (Kelvin-Voigt model) DvM / 94 DvM / 95 Planar mechanism with four truss elements () x () x x (c) x (m) x, y, y 4 x 2, y 2, x 3, y 3 x 4 T e e () e, e 2, e 3, e 4 T x, x 2, x 3, x 4 l (3) 4 y, y 2 l () 6, y 3 l () + l (2) 9, y 4 l () + l (2) 9 ė () ẋ () D () D () D (c) D () D (m) D () ẋ (c) ẋ (m) DvM / 96 DvM / 97
27 ė () ẋ x y y 4 x 2 y 2 x 3 y 3 x 4 ẏ ẏ ẋ 2 ẏ ẋ 3 ẏ ẋ 4 ẋ 2 ẋ (c) ẏ 2 ẋ 3 ẋ4 ẏ 3 4 ẋ DF (x),,,,, T DF (x)t f Mẍ x y y 4 x 2 y 2 x 3 y 3 x 4 f x 2 fy f 4 2 y f Mẍ 4 2 ẍ 4 2 ẍ fx ẍ 4 ẍ,, 2,, 2, 2 T f 4 x, or f 4 x N DvM / 98 DvM / 99 σ σ () σ 2 (D (c) D () ) T f (c) σ 3 σ Equations of motion: DF (x)t D 2 D () DF(x) 6 DF (x)t D 2 D () 2 DF(x) 3 DF (x)t D 2 D () 3 DF(x) 4,,, 6,,,,,, DvM / DvM /
28 DF (x)t D 2 D () 4 DF(x) ,,, D q df (x) MD q df (x) D q df (x) MD 2 q d F (x) (ẋ 4 ) 2 4 (ẋ4 ) 2 D 2 F (x,c) D (c) D () (D 2 D () DF (x) )DF (x) DF (x)t f f 4 x + f 2 x f 4 x D 2 F (x,c) DF (e)t σ 3ẍ 4 f 4 x 4 4 (ẋ4 ) 2 DvM / 2 DvM / 3 Planar mechanism with two truss elements x, x 2 4, x 3, l () 5, y 3, y 2, y 3, q d y T, e 2 x y x x 2 y 2, DF (x) 3 4 x 3 y q d y T, e a, (D 2 qf (x) q d ) q d ẏ ẏ, ė ė a DvM / 4 DvM / 5
29 e e, DF (e) e 2 (D 2 qf (e) q d ) q d ẏ ẏ, ė ė 2 a (ẏ ) 2 M diagm, m, m 2, m 2, m 3, m 3 D q df (x)t MD q df (x) m (m 2 + m 3 ) 3 4 m m 3 m 3 D q df (x)t f f y 3 4 (f2 x + fx) 3 f 3 x D q df (x)t M(D 2 qf (x) q) q σ 2 Se 2, DF (e)t σ 3 4 (m 2 + m 3 )a m 3 a m (m 2 + m 3 ) 3 4 m ÿ 3 f 4 3 m y 3 4 (f2 x + f 3 x) 3 m 3 ë 2 fx (m 2 + m 3 )(ẏ ) m 3(ẏ ) 2 Se 2 σ 2 DvM / 6 DvM / 7 Numerical integration of equations of motion Numerical integration of equations of motion (a) DvM / 8 DvM / 9
30 Numerical integration of equations of motion (b) Rotation of body coordinates r r x, r y, r z T, r T r x, r y, r z r Rr R R T r R T r DvM / DvM / Rotation of body coordinates Finite rotations Matrix R is defined by nine direction cosines. R R 2 R 3 R R 2 R 22 R 23 R 3 R 32 R 33 R e x e x cos( e x, e x ) R 2 e x e y cos( e x, e y ) R 3 e x e z cos( e x, e z ) R 2 e y e x cos( e y, e x ) R 22 e y e y cos( e y, e y ) R 23 e y e z cos( e y, e z ) R 3 e z e x cos( e z, e x ) R 32 e z e y cos( e z, e y ) R 33 e z e z cos( e z, e z ) Only three of these components are independent which can be described by 3 angles, called Euler angles, involving 3 successive rotations. DvM / 2 (a) (b) (c) The positions of a block: (a) initially, (b) after 9 rotations about the x- and y-axes, (c) after 9 rotations about the y- and x-axes. DvM / 3
31 Euler angles Euler angles Cannot be summed as vector quantities. Rotation matrices contain trigoniometric functions. Rotation matrices contain singularities. Euler s theorem on the motion of a body The general displacement of a body with one point fixed is equivalent to a single rotation about some axis through that point. The theorem dictates that the orientation of the body-fixed axes at any time t can be obtained by single rotation about some axis. (orientational axis of rotation) DvM / 4 DvM / 5 Euler parameters λ cos φ/2 λ e x sin φ/2 λ 2 e y sin φ/2 λ 3 e z sin φ/2 Euler parameters Euler parameters (normed quaternions) Describe rotational matrix in a natural way. Rotation matrices contain algebraic functions. No singularities of rotation matrix. λ 2 + λ2 λ2 2 λ2 3 2(λ λ 2 λ λ 3 ) 2(λ λ 3 + λ λ 2 ) R 2(λ λ 2 + λ λ 3 ) λ 2 λ2 + λ2 2 λ2 3 2(λ 2λ 3 λ λ ) 2(λ λ 3 λ λ 2 ) 2(λ 2 λ 3 + λ λ ) λ 2 λ2 λ2 2 + λ2 3 λ T λ λ 2 + λ2 + λ2 2 + λ2 3 R T R DvM / 6 DvM / 7
32 r Rr Angular velocities and Euler parameters ṙ Ṙr + Rṙ ṙ Ṙr r ω r or ṙ Ωr ω z ω y Ω ω z ω x ω y ω x R T r r ṙ ṘR T r Ω ṘR T Angular velocities and Euler parameters (continued) Ṙ ij R ij,k λ k k k k 2 k 3 2λ 2λ 3 2λ 2 2λ 2λ 2 2λ 3 2λ 2 2λ 2λ 2λ 3 2λ 2λ Rij,k 2λ 3 2λ 2λ 2λ 2 2λ 2λ 2λ 2λ 2 2λ 3 2λ 2λ 3 2λ 2 2λ 2 2λ 2λ 2λ 3 2λ 2λ 2λ 2λ 3 2λ 2 2λ 2λ 2 2λ 3 Ω ij R ik,l R kj λ l DvM / 8 DvM / 9 Angular velocities and Euler parameters (continued) λ ω x λ ω y 2 λ λ 3 λ 2 λ 2 λ 3 λ λ λ λ ω z λ 3 λ 2 λ λ 2 λ 3 Identities with Euler parameters Λλ Λ λ ΛΛ T Λ Λ T I ω 2Λ λ λ ω x λ ω y 2 λ λ 3 λ 2 λ 2 λ 3 λ λ λ λ ω z λ 3 λ 2 λ λ 2 λ 3 ω 2Λ λ R ΛΛ T Λ T Λ Λ T Λ I λλ T R ΛΛ T Λ λ Λ λ DvM / 2 DvM / 2
33 Identities with Euler parameters Manipulator with six degrees of freedom Λ λ Λ λ B H H H Λ λ Λ λ H B B wrist Λ Λ T ΛΛ T Ṙ 2Λ Λ T 2 ΛΛ T ST B H H ST B H Slider Truss Beam Hinge R ij R ij,k λ k + R ij,kl λ k λ l support DvM / 22 DvM / 23 Spatial (slider) truss element Spatial (slider) truss element (cont.) First-order partial derivatives: D (p) i D (k) l i l (k), D (q) i D (k) l i l (k) l x q x p, l 2 y q y p, l 3 z q z p x (k) x truss p x q x p, y p, z p x q, y q, z q T e (k) D (k) (x(k) ) l (k) l (k) l (k) x q x p ((x q x p ) 2 + (y q y p ) 2 + (z q z p ) 2 ) /2 Second-order partial derivatives: D (p) ij D(k) D (q) ij D(k) l (k) δ ij (l (k) ) 2 l il j D (p) i D (q) j D (k) D (q) i D (p) j D (k) l (k) δ ij if i j if i j δ ij (l (k) ) 2 l il j DvM / 24 DvM / 25
34 Spatial (slider) truss element (cont.) Spatial beam element Third-order partial derivatives: D (p) ijk D(k) D(q) ij D(p) k D(k) D (q) i (l (k) ) 3 D (p) j D (q) k D(k) D (p) i D (q) jk D(k) δ ij l k + δ ik l j + δ jk l i 3 (l (k) ) 2 l il j l k D (q) ijk D(k) D(p) ij D(q) k D(k) D (q) i (l (k) ) 3 D (p) jk D(k) D (p) i D (q) j D (p) k D(k) δ ij l k + δ ik l j + δ jk l i 3 (l (k) ) 2 l il j l k δ ij if i j if i j DvM / 26 x (k) beam x p, y p, z p λ p, λp, λp 2, λp 3 xq, y q, z q λ q, λq, λq 2, T λq 3 DvM / 27 λ λ, λ, λ 2, λ 3 T Euler parameters λ 2 + λ2 λ2 2 λ2 3 2(λ λ 2 λ λ 3 ) 2(λ λ 3 + λ λ 2 ) R 2(λ λ 2 + λ λ 3 ) λ 2 λ2 + λ2 2 λ2 3 2(λ 2λ 3 λ λ ) 2(λ λ 3 λ λ 2 ) 2(λ 2 λ 3 + λ λ ) λ 2 λ2 λ2 2 + λ2 3 Constraint equation λ T λ λ 2 + λ2 + λ2 2 + λ2 3 R T R I elongation: ε (k) D (k) l (k) l (k) torsion: ε (k) 2 D (k) 2 2 l(k) (R p n z, R q n y ) (R p n y, R q n z ) bending: ε (k) 3 D (k) 3 (R p n z, l (k) ) ε (k) 4 D (k) 4 (R q n z, l (k) ) ε (k) 5 D (k) 5 (R p n y, l (k) ) ε (k) 6 D (k) 6 (R q n y, l (k) ) l (k) x q x p x q x p, y q y p, z q z p T DvM / 28 DvM / 29
35 Visualization of bending deformations Torsional deformations ε (k) 2 2 l(k) (R p n z, R q n y ) (R p n y, R q n z ) ε (k) 3 (R p n z, l (k) ) ε (k) 5 (R p n y, l (k) ) ε (k) 4 (R q n z, l (k) ) ε (k) 6 (R q n y, l (k) ) DvM / 3 DvM / 3 Second-order geometric effects (Jaap Meijaard, 996): Spatial hinge element ε (k) ε(k) + 3l (k) 2(ε (k) 3 )2 + ε (k) 3 ε(k) 4 + 2(ε(k) 4 )2 +2(ε (k) 5 )2 + ε (k) 5 ε(k) 6 + 2(ε(k) 6 )2 ε (k) 2 ε (k) 2 + ( ε(k) 3 ε(k) 6 + ε(k) 4 ε(k) 5 )/l(k) ε (k) 3 ε (k) 3 + ε(k) 2 ( ε(k) 5 + ε(k) 6 )/(6l(k) ) ε (k) 4 ε (k) 4 ε(k) 2 ( ε(k) 5 + ε(k) 6 )/(6l(k) ) ε (k) 5 ε (k) 5 ε(k) 2 ( ε(k) 3 + ε(k) 4 )/(6l(k) ) ε (k) 6 ε (k) 6 + ε(k) 2 ( ε(k) 3 + ε(k) 4 )/(6l(k) ) x (k) λ p hinge λ q λ p, λp, λp 2, λp 3 λq, λq, λq 2, T λq 3 relative rotation: e (k) D (k) ATAN2 (Rp n y, R q n z ) (R p n y, R q n y ) bending: ε (k) 2 D (k) 2 (R p n y, R q n x ) ε (k) 3 D (k) 3 (R p n z, R q n x ) DvM / 32 DvM / 33
36 Dynamics of a rigid body Constraint equation Euler parameters λ T λ The λ-element e (λ) D (λ) λ T λ x body x p λ p x p, y p, z p λ p, λp, λp 2, T λp 3 DvM / 34 DvM / 35 Dynamics of a gyrostatic body f (x,p) d dt (Mp ẋ p ) f (ω,p) d dt (Jp ω p + h p ) ω p 2Λ p λ p λ p Λ p λ p λp 3 λ p 2 λ p 2 λ p 3 λ p λp λ p 3 λp 2 λ p λ p ė (λ,p) 2λ p,t λ p DvM / 36 DvM / 37
37 Principle of virtual power Principle of virtual power < (f (ω) d (Jω + h)), δω > dt for all δω 2Λδ λ, associated with the virtual motion of the body < (f (ω) d dt (Jω + h)),2λδ λ > < σ (λ),2λ T δ λ > for all δ λ < (f (λ) 2Λ T d dt (JΛ λ + h) 2σ (λ) λ), δ λ > for all δ λ f (λ) 2Λ T f (ω) λ λ 2 λ 3 f (λ) 2 λ λ 3 λ 2 λ 3 λ λ f(ω) λ 2 λ λ J RJ R T, h Rh λ R ΛΛ T, Λ λ λ 3 λ 2 λ 2 λ 3 λ λ λ 3 λ 2 λ λ f (λ) 4Λ T J Λ λ + 8 Λ T J Λ λ + 4 Λ T h + 2σ (λ) λ DvM / 38 DvM / 39 ẍ M 4Λ T J Λ 2λ λ ë (λ) 2 λ T λ + 2λ T λ Principle of virtual power σ (λ) f(x) f (λ) 8 Λ T J Λ λ 4 Λ T h M ẍ 4Λ T J Λ f (x) 2λ 2λ T λ σ (λ) f (λ) 8 Λ T J Λ λ 4 Λ T h 2 λ T λ Spatial beam element M (k) l f (k) in Lumped mass formulation x p λ p x q λ q M p 4Λ p T J p Λ p M q 4Λ q T J q Λ q 8Λ p T J p Λ p λ p 8Λ q T J q Λ q λ q DvM / 4 DvM / 4
38 Lumped mass formulation Spatial (slider) truss element M (k) l x p x q M p O O M q Consistent mass formulation of the spatial truss element Spatial hinge element λ p λ q M (k) 4Λ p T J p Λ p O l O 4Λ q T J q Λ q f (k) 8Λ p T in J p Λ p λ p 8Λ q T J q Λ q λ q r(ξ) ( ξ)x p + ξx q m (k) l (k) M (k) c m(k) l (k) 6 < δṙ, r > dξ δẋ (k)t M (k) c ẍ (k) 2I I I 2I, I DvM / 42 DvM / 43 Consistent mass formulation of the spatial beam element Consistent mass formulation of the spatial beam element r(ξ)( 3ξ 2 + 2ξ 3 )x p + (ξ 2ξ 2 + ξ 3 )(l (k) + e (k) )Rp n x +(3ξ 2 2ξ 3 )x q + ( ξ 2 + ξ 3 )(l (k) + e (k) )Rq n x M (k) c m(k) l (k) 42 (x p ) (λ p ) (x q ) (λ q ) 56I 22l (k) A 54I 3l(k) B 4(l (k) )2 A T A 3l (k) AT 3(l (k) )2 A T B )2 B T B 56I 22l (k) B 4(l (k) f (k) in m(k) l (k) 42 (l (k) A Rp n x λ p, B Rq n x λ q l (k) (22A λ p λ p 3B λ q λ) )2 ( 3B T A λ p λ p + 4B T B λ q λ q ) (l (k) )2 (4A T A λ p λ p 3A T B λ q λ q ) l (k) (3A λ p λ p 22B λ q λ q ), A A λ p, B B λ q A DvM / 44 DvM / 45
39 Linearized equations (of motion) checking stability of motion computation of stationary and equilibrium solutions natural frequencies buckling loads linearized state-space formulations (semi-)implicit numerical integration methods perturbation methods Coefficient matrices obtained by: numerical differentiation analytically using the geometric transfer function formalism The latter approach leads to a system of second order linearized equations in which the matrix coefficients possess all physical and mathematical properties of the system. DvM / 46 Linearized equations of kinematics Consider small preturbations δq, δ q, δ q around nominal trajectory (q, q. q ) q q + δq q q + δ q q q + δ q e + δe F (e) (q + δq) F (e) + DF(e) δq +... δe DF (e) δq ė + δė DF (e) (q + δq)( q + δ q) e F (e) (q) ė DF (e) q (DF (e) + D2 F (e) δq +...)( q + δ q) DF (e) q + DF (e) δ q + (D2 F (e) q )δq δė DF (e) δ q + (D2 F (e) q )δq DvM / 47 q q + δq q q + δ q q q + δ q Linearized equations of kinematics x + δx F (x) (q + δq) F (x) + DF (x) δq +... δx DF (x) δq ẋ + δẋ DF (x) (q + δq)( q + δ q) x F (x) (q) ẋ DF (x) q ẍ DF (x) q + (D 2 F (x) q) q (DF (x) + D 2 F (x) δq +...)( q + δ q) DF (x) q + DF (x) δ q + (D2 F (x) q )δq δẋ DF (x) δ q + (D2 F (x) q )δq ẍ + δẍ DF (x) (q + δq)( q + δ q) + (D 2 F (x) (q + δq)( q + δ q))( q + δ q) (DF (x) + D 2 F (x) δq +...)( q + δ q) + ((D 2 F (x) + D 3 F (x) δq +...)( q + δ q))( q + δ q) δẍ DF (x) δ q + 2(D2 F (x) q )δ q + (D 2 F (x) q + (D 3 F (x) q ) q )δq Linearized equations of motion M q d D q df f (x)t M((D 2 q df(x) q) q + D q rf (x) q r ) D q df (e)t σ M D q df (x)t MD q df (x) D q df (x) D q df (x) + D 2 q df(x) δq +... D 2 q df(x) D 2 q df(x) + D 3 q df(x) δq +... M q d M(q d + δqd )( q d + δ qd ) (D q df (x)t + D 2 q df(x)t δq d )(M + D x M D q df (x) δqd ) (D q df (x) + D 2 q df(x) δqd )( q d + δ qd ) M q d + M δ q d + (D q df (x)t M D 2 q df(x) q )δq +(D q df (x)t D x M DF (x) q D q df (x) )δq +(D 2 q df(x)t q M D q df (x) )δq DvM / 48 DvM / 49
40 Linearized equations of motion Forces acting on the system are conservative: M δ q d + (C + D )δ q d + (K + N + G )δq d M, D, K and G are symmetric matrices, C and N need not. () Reduced mass matrix: M D q df (x)t M D q df (x), M (M (k) l + M (k) c ) k (2) Velocity sensitivity matrix: C D q df (x)t Dẋfin D q df (x) + 2M D q dd q F (x) q (3) Damping matrix: D D q df (e)t S d D q df (e), S d k S (k) d, S (k) d σ(k) ė (k) Linearized equations of motion (4) Structural stiffness matrix: K D q df (e)t SD q df (e), S k (5) Dynamic stiffness matrix: S (k), S (k) σ(k) ε (k) N D q df (x)t D x (f in M ẍ )D q df (x) ( + M D q dd q F (x) q + (D q d D 2 qf (x) ) q ) q + Dẋfin D q dd q F (x) q +D q df (e)t S d D q dd q F (e) q (6) Geometric stiffness matrix: G D 2 q d F (x)t f M ẍ D 2 q d F (e)t σ DvM / 5 DvM / 5 Linearized state equations Stationary and equilibrium solutions δq d δz δ q d δż A(t)δz M q d D q df (x)t f M((D 2 q d F (x) q) q + D q rf (x) q r ) D q df (e)t Stationary or equilibrium solutions are solutions for which q d is constant, i.e. q d, q d A(t) O I M K + N + G M C + D Stationary solutions can be obtained for q r by solving the algebraic equation f D q df (x)t (f M(D 2 q d F (x) q) q) D q df (e)t σ Newton-Raphson method with Jacobian matrix D q d f D q d f (K + N + G ) DvM / 52 DvM / 53
41 Stability of stationary solution M δ q d + (C + D )δ q d + (K + N + G )δq d δz δq dt, δ q dt T The symmetric eigenvalue problem (N is symmetric) M δ q d + (K + N + G ) δq d Natural frequencies ω i : δż Az δz(t) e λt δz det( ω 2 i M + K + N + G ) The real part of the eigenvalues controls the stability characteristics of the system. If all eigenvalues have negative real parts, the solution is stable. If some eigenvalue has a positive real part the solution is instable. If some eigenvalue is purely imaginary or zero we are in a bifurcation point. Buckling loads: critical loading parameters λ i det(k + λ i G ) λ i f i /f f i buckling load f reference load DvM / 54 DvM / 55 Four-bar mechanism e 3 mg/k e σ e () e (m) ε, ε 2, ε 4, ε 5 e 3 T σ () σ (m) σ, σ 2, σ 4, σ 5 σ 3 T q d e 3 Nominal configuration: x, x 2 2 2, x 3 2 2, x 4 y, y 2 2 2, y 3 2 2, y 4 2 DF (e),,, T S diag,,, k DvM / 56 DvM / 57
42 x f x () x (c) x, y, x 4 x 2, y 2, x 3, y 3, y 4 T f () f (c) fx, fy, fx 4,,,, mg T DF (x),, 2, 2, 2, 2, T D 2 F (x),,, 2 2,, T 2 2, 2 D 3 F (x),,, 3 2,, 3 2, 3 T M diag,, m,,,, m T DvM / 58 Equation of motion for nominal configuration: më 3 + 2m(ė 3 ) 2 + ke 3 mg DvM / 59 Coefficient matrices of the linearized equations of motion: M DF (x)t M DF (x) m C 2DF (x)t M D 2 F (x) ė3 2 2mė 3 K DF (e)t SDF (e) k G D 2 F (x)t f + D 2 F (x)t M DF (x) ë3+ + D 2 F (x)t M D 2 F (x) (ė 3 ) 2 2mg + 2më 3 + 2mė 2 3 N DF (x)t M D 2 F (x) ë3 + DF (x)t M D 3 F (x) (ė 3) 2 Linearized equation of motion: mδë mė 3 δė 3 + (k 2mg + 2 2më 3 + 5m(ė 3 ) 2 )δe 3 Small vibration about a stable equilibrium position (ë 3 ė 3, e 3 mg/k): mδë 3 + (k 2mg)δe 3 When k mg, it reduces to the well-known form mδë 3 + kδe 3 2më 3 + 3m(ė 3 ) 2 DvM / 6 DvM / 6
43 Rotating beam m (e,e) m (e,ε) m (ε,e) M (ε,ε) δë (m) δ ε (m) + K (ε,ε) + (N + G ) (ε,ε) δe (m) δε (m) det( ω 2 i M + K + N + G ) (N is symmetric) Zero bending stiffness, K (ε,ε) (cord condition) - Within the plane of rotation: (ω c,i ) 2 2i 2 i, i,2,..., Ω 2 - Perpendicular to the plane of rotation: (ω c,i ) 2 2i 2 i, i,2,..., Ω 2 First and second in-plane bending frequencies ω b and ω c of the beam and the cord respectively as functions of the angular rate Ω DvM / 62 DvM / 63 Rotating mass spring system Stationary solution (r, r 2 ): r r 2 r r 2 k + k 2 m φ 2 k 2 r k l k2 k 2 m 2 φ 2 k 2 l 2 ) r 2 k 2 l 2 (m r 2 k l + m 2 k 2 l 2 ) φ 2 + k k 2 l m m 2 φ 4 (k 2 m 2 + k 2 m + k m 2 ) φ 2 + k k 2 Non-linear equations of motion: m r m φ 2 r k (r l ) k 2 (r 2 r l 2 ) m 2 r 2 m 2 φ 2 r 2 k 2 (r 2 r l 2 ) m r 2 φ 2 k 2 l 2 + k k 2 (l + l 2 ) m m 2 φ 4 (k 2 m 2 + k 2 m + k m 2 ) φ 2 + k k 2 DvM / 64 DvM / 65
44 Rotating mass spring system Cantilever beam (vibration modes) ω.875 EI ml Linearized equations of motion (N is symmetric): m δ r k + k + 2 m φ 2 k 2 δr m 2 δ r 2 k 2 k 2 m 2 φ 2 δr 2 ( 2 m k + k det ω i + 2 m φ 2 ) k 2 m 2 k 2 k 2 m 2 φ 2 DvM / 66 ω EI ml 4 ω EI ml DvM / 67 Cantilever beam (buckling modes) Cantilever beam (lateral buckling).5 F F th π2 EI l F F cr (4) /F th.459 EIS F th 4.3 t l 4 DvM / 68 DvM / 69
45 Cantilever beam subject to concentrated end force l F DvM / 7
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ
1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών ΠΜΣ οµοστατικός Σχεδιασµός και Ανάλυση Κατασκευών Εργαστήριο Μεταλλικών Κατασκευών Μεταπτυχιακή ιπλωµατική Εργασία ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in
ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Modelling the Furuta Pendulum
ISSN 28 5316 ISRN LUTFD2/TFRT--7574--SE Modelling the Furuta Pendulum Magnus Gäfvert Department of Automatic Control Lund Institute of Technology April 1998 z M PSfrag replacements θ m p, l p m a, l a
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Degrees of freedom and coordinates
Degrees of freedom and coordinates Multibody containing N rigid parts: α, α =,..., N Configuration coordinates: ς = ς, ς,..., ς, ς 6N 6N (6N DOF, Gross) 3 4 5 6 ς = x, ς = y, ς = z, ς = ψ, ς = θ, ς = φ,...,
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Aerodynamics & Aeroelasticity: Beam Theory
Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011
2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the