ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ
|
|
- Ἡσίοδος Κολιάτσος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση Ένας κύλινδρος με όγκο 0,4 3 περιέχει μίγμα CH 4 και αέρα (Ο, % - Ν, 79% κατ όγκο) σε πίεση 800 kpa και θερμοκρασία 30 ο C. Η κατά μάζα (βάρος) σύνθεση του μίγματος είναι: CH 4 30% - αέρας 70%. Για σταθερές θερμοδυναμικές ιδιότητες, να υπολογισθούν τα εξής:. Τα συστατικά (CH 4, Ο, Ν ) του μίγματος κατ όγκον. Οι μερικές πιέσεις τν αερίν και η μάζα του μίγματος στον κύλινδρο.3 Οι ειδικές θερμότητες (Cp, Cv) και η σταθερά (R) του μίγματος.4 Η απαιτούμενη θερμότητα για ισοχρική θέρμανση στους 77 ο C.5 Η θερμοκρασία του μίγματος για ισεντροπική συμπίεση σε τελικό όγκο 0, lt.6 Το απαιτούμενο έργο για την παραπάν συμπίεση Άσκηση Αιθανόλη (ενθαλπία σχηματισμού kj/kml) στους 5 C και αέρας στους 77 C εισέρχονται σε ένα θάλαμο καύσης και αντιδρούν. Εάν η περίσσεια αέρα είναι 60%, και ο θάλαμος υπό πίεση 00 kpa και θερμικά μονμένος, προσδιορίστε ή υπολογίστε:. Την εξίσση της χημικής αντίδρασης της καύσης. Τον λόγο καυσίμου-αέρα κατ όγκο και κατά μάζα.3 Την θερμοκρασία μίγματος τν καυσαερίν Άσκηση 3 Αέρας εισέρχεται σε ένα πύργο ψύξης νερού με 0 C με σχετική υγρασία 40% και εξέρχεται στους 30 C με σχετική υγρασία 95%. Το νερό με παροχή 60kg/s εισέρχεται με θερμοκρασία 40 C και μετά τον καταιονισμό εξέρχεται στους 30 C. Για ισεντροπική διεργασία και σταθερές ιδιότητες αέρα και νερού, υπολογίστε: 3. Την απαιτούμενη ροή μάζας ξηρού-αέρα 3. Την θερμότητα του νερού που απάγεται από τον αέρα. Δευτέρα 8//007 - Πέμπτη Καθ. Ν. Βλάχος, Υπ. Δρ. Δ. Φείδαρος-Σ Κακαράντζας
2 . Άσκηση ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ Δεδομένα: P800kPa T30 C.. Τα συστατικά (CH 4,, ) του μίγματος κατ όγκο. Εάν γίνει η παραδοχή ότι η συνολική μάζα του μίγματος είναι 00kg. Τότε σύμφνα με την κατά βάρος σύσταση θα αντιστοιχεί, η παρακάτ αναλογία: CH 4 : 30 Kg Αέρας: 70 Kg (% 79% ) Κατ όγκο αναλογία Οπότε θα είναι: n CH4 CH4/ΜΒ CH430/6.875 kml MB IR 0. MB 0.79 MB kml/kg n IR IR/ΜΒ IR70/ kml n 0. MB n 0. MB.97 Το σύνολο τν kml είναι: n tt n n n CH kml Τα γραμμομοριακά κλάσματα τν συστατικών ισούνται με την κατά όγκο σύσταση του μίγματος: y CH4 n CH4 / n tt.875/ ή 43.58% y Ο n Ο / n tt 0.509/ ή.85% y Ν n Ν / n tt.97/ ή 44.57%.. Οι μερικές πιέσεις τν αερίν και η μάζα του μίγματος στον κύλινδρο P CH4 y CH4 P kpa P y P kpa P y P kpa Tο μέσο ΜΒ Μ του μίγματος υπολογίζεται από την ακόλουθη σχέση: MB M y CH4 ΜΒ CH y MB y MB 3.44 kg/kml Από την καταστατική εξίσση τν αερίν είναι: P MB tt M R T tt MB M P R T R8.34 kj/(kml K) (Παγκόσμια σταθερά τν αερίν). Από την εφαρμογή της παραπάν σχέσης, προκύπτει η συνολική μάζα του μίγματος: tt /( ).95 kg ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ
3 .3. Οι ειδικές θερμότητες (Cv, Cp) και η σταθερά (R) του μίγματος Η σταθερά του μίγματος δίνεται από τη σχέση: RR u /ΜΒ M, όπου R u 8.34kJ/(kMl K) η παγκόσμια σταθερά τν αερίν και ΜΒ M το μέσο ΜΒ του μίγματος. Με αντικατάσταση προκύπτει: R (kj/kg K) Οι ειδικές θερμοχρητικότητες δίνονται από την ακόλουθη σχέση: Cp Σ (y Cp ), CH 4,, Cv Σ (y ι Cv ) Συστατικό Cp [kj/(kg K)] Cv [kj/(kg K)] CΗ Με αντικατάσταση προκύπτει: Cp.648 kj/(kg K) Cv.65 kj/(kg K).4. Η απαιτούμενη θερμότητα για ισόχρή θέρμανση στους 77 ο C rq tt Cv (T -T ) ( ) kj.5. Η θερμοκρασία του μίγματος για ισεντροπική συμπίεση σε τελικό όγκο 0, 3 Από τις ειδικές θερμότητες Cp, Cv, προκύπτει ο ισεντροπικός συντελεστής k, σύμφνα με τις σχέσεις: Cp k k.44 Cv k k k T T T T T T K.6. Το απαιτούμενο έργο για την παραπάν συμπίεση ( ) ( T T ) ( ) R k W.44 W( ) kj ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ
4 . Άσκηση Αρχικά δεδομένα: Θερμοκρασία εισόδου C H 5 H 5 C Πίεση θαλάμου: P00kPa Θερμοκρασία εισόδου αέρα 77 C Περίσσεια Αέρα: 60%.. Την εξίσση της χημικής αντίδρασης της καύσης Στοιχειομετρική αντίδραση πλήρους θερητικής καύσης: C H 5 H 3(.76 ) C 3H. 8 3 Με περίσσεια 60% αέρα η αντίδραση καύσης γίνεται: C H 5H.6 3( 3.76 ) C 3 H C H 5H C 3 H ή.. Τον λόγο καυσίμου-αέρα κατ όγκο και κατά μάζα Ο λόγος καυσίμου αέρα κατ όγκο υπολογίζονται από τους γραμμομοριακούς συντελεστές: FR y ful FR y ar Οι μάζες του καυσίμου και του αέρα είναι: Μ CH5H kg M r kg FR ful 46 FR ar M M :.848 : Την θερμοκρασία μίγματος τν καυσαερίν Η θερμοκρασία μίγματος τν καυσαερίν προκύπτει από την ακόλουθη σχέση: Pr n R n Όπου για τα προϊόντα είναι: Pr n n ( Δ) n ( Δ) C f Δ n f Δ n H C H Και για τα αντιδρώντα στοιχεία είναι: R n n ( Δ) n ( Δ) CH5H f n CH5H Οι διαφορές ενθαλπίας από την πρότυπη θερμοκρασία τν 98Κ είναι δυνατό να προσεγγιστούν με την ακόλουθη σχέση: Δ Cp ( T 98) Οπότε οι παραπάν σχέσεις τροποποιούνται ς εξής: ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ
5 Pr R n n n n C 5 C H H f Cp f ( T 98) n f Cp ( T 98) C H H 5 n C H n ( Cp ( T 98) ) n Cp ( T 98) H ( Cp ( 98) ) n Cp ( ) 350 Χημική Ένση Ενθαλπία Σχηματισμού f / [ kj kml] Ειδική θερμότητα Cp [ kj /( kml K) ] C H 5 H H C Η λύση τν παραπάν ς προς T δίνει: T Κ ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ
6 ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ Άσκηση Αρχικά δεδομένα: Αέρας Τ r 0 ο C φ 40% Νερό T W 40 C dt 60 kg/s Τ r 30 ο C φ 95% T W 30 C Κανονικές συνθήκες πίεσης PPat 00 kpa 3.. Την απαιτούμενη ροή μάζας ξηρού-αέρα Το ισοζύγιο μάζας για το ρεύμα αέρα στον δεδομένο πύργο ψύξης έχει ς εξής: και για ισεντροπική διεργασία το ισοζύγιο απλοποιείται ς εξής: Όπου η μάζα ξηρού αέρα, η μάζα ατμού και η μάζα κορεσμένου υγρού. Για την κατάσταση (P00 kpa T0 C) H μερική πίεση ατμών είναι: P φ P sat@0c kpa Η μερική πίεση του ξηρού αέρα είναι: P P t -P kpa H απόλυτη (ειδική) υγρασία του αέρα είναι: 0.66 P /P / Η μάζα του ατμού είναι: Για την κατάσταση (P00 kpa T30 C) H μερική πίεση ατμών είναι: P φ P sat@30c kpa Η μερική πίεση του ξηρού αέρα είναι: P P t -P kpa H απόλυτη (ειδική) υγρασία του αέρα είναι: 0.66 P /P / Η μάζα του ατμού είναι: Η μάζα του υγρού είναι: - Το ενεργειακό ισοζύγιο για τις καταστάσεις είναι: και αναλυτικότερα είναι: r T T Cp Α Α
7 Από τον πίνακα Α kj/kg Cp r.0035 ( T T ) ( 5.79 kj/kg ( 30 0) ( ) kj 76.6 ξηρού αέρα kg Την θερμότητα του νερού που απάγεται από τον αέρα ( T T ) ( 30 40) WTER W Cpr W W kj 5 s Η απαιτούμενη ποσότητα ροής ξηρού αέρα προκύπτει από την σχέση: WTER WTER kg 3.54 s ΛΥΣΕΙΣ 3 ης ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΙΙ
ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΘΕΡΜΟΓΟΝΟΣ ΙΚΑΝΟΤΗΤΑ - ΑΔΙΑΒΑΤΙΚΗ ΘΕΡΜΟΚΡΑΣΙΑ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών 2008
ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΘΕΡΜΟΓΟΝΟΣ ΙΚΑΝΟΤΗΤΑ - ΑΔΙΑΒΑΤΙΚΗ ΘΕΡΜΟΚΡΑΣΙΑ Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών 008 Νόμος τελείων αερίων Κλάσμα μάζας Καταστατική εξίσωση αερίων: V m m M Όπου: Παγκόσμια Σταθερά Αερίων
Χειµερινό Εξάµηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ&ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ II Χειµερινό Εξάµηνο 2006-2007 1 Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση 1 Τα χαρακτηριστικά λειτουρίας µίας θερµο-ηλεκτρικής µονάδας µε βάση τον
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ. Μια νοικοκυρά µαγειρεύει σε χύτρα, η οποία είναι: (α) ακάλυπτη, (β) καλυµµένη µε ελαφρύ καπάκι και (γ) καλυµµένη µε βαρύ καπάκι. Σε ποια περίπτωση ο χρόνος µαγειρέµατος θα
ΘΕΡΜΟ ΥΝΑΜΙΚΗ II Χειµερινό Εξάµηνο Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ II Χειµερινό Εξάµηνο 00-00 Η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Άσκηση (0 Βαθµοί) O στρoβιλοκινητήρας ενός αεροσκάφους τύπου στροβιλοδέσµης (rbojet)
ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία
ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ
ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΕΝΘΑΛΠΙΑ ΣΧΗΜΑΤΙΣΜΟΥ ΕΝΩΣΗΣ Ο θερμοτονισμός ή η θερμότητα της αντίδρασης εκφράζει τη μεταβολή ενέργειας λόγω της χημικής αντίδρασης Η απαιτούμενη ενέργεια για το σχηματισμό
Energy resources: Technologies & Management
Energy resources: Technologies & Management Θεωρία της καύσης Δρ Γεώργιος Σκόδρας Αναπληρωτής Καθηγητής Σκοπός της καύσης είναι η μετατροπή της χημικής ενέργειας που περιέχεται στο καύσιμο σε θερμική ενέργεια
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 11: Μίγματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες
ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ
ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ 1. Να υπολογιστεί η μαζική παροχή του ατμού σε (kg/h) που χρησιμοποιείται σε ένα θερμαντήρα χυμού με τα παρακάτω στοιχεία: αρχική θερμοκρασία χυμού 20 C, τελική θερμοκρασία
Παραγωγή Ηλεκτρικής Ενέργειας. 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 1η Σειρά Ασκήσεων.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 00- Τομέας Ηλεκτρικής Ισχύος Αθήνα 5//0 Κ. Βουρνάς, Κ. Ντελκής, Π. Γεωργιλάκης Παράδοση,,,4: //0 Παράδοση 5, 6: 5/4/0
ΑΤΜΟΛΕΒΗΤΕΣ-ΑΤΜΟΣΤΡΟΒΙΛΟΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ
Α. Κύκλος Rankine ΑΤΜΟΛΕΒΗΤΕΣ-ΑΤΜΟΣΤΡΟΒΙΛΟΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ. Ατμοστροβιλοεγκατάσταση λειτουργεί μεταξύ των πιέσεων 30 bar και 0,08 bar.η θερμοκρασία του υπέρθερμου ατμού είναι 400 C. Να υπολογιστεί ο θεωρητικός
2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ
ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ 2 ΣΗΜΑΝΤΙΚΟΙ ΟΡΟΙ Αδιαβατικό σύστημα Ισοβαρές σύστημα Ισόχωρο σύστημα Ισοθερμοκρασιακό σύστημα Μεταβλητή διαδρομής (συνάρτηση μετάβασης) Καταστατική μεταβολή (σημειακή
ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.
ΑΣΚΗΣΗ η Σε κύκλο ισόοκης καύσης (OO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. q R q q tot ΑΣΚΗΣΗ η Δ tot q q q ( ) cv ( ) cv q q q ΑΣΚΗΣΗ η q q Από αδιαβατικές
Βασικές Διεργασίες Μηχανικής Τροφίμων
Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 2: Ψυχομετρία, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Υπολογισμός των
ΠΡΟΛΟΓΟΣ. ΜΕΡΟΣ Α : Βασικές αρχές Ψυχρομετρίας. Νίκος Χαριτωνίδης
ΠΡΟΛΟΓΟΣ ΜΕΡΟΣ Α : Βασικές αρχές Ψυχρομετρίας 1. Γενικά 2. Μερικές βασικές Θερμοδυναμικές ιδιότητες του νερού 3. Η σύσταση του Αέρα 4. Ο νόμος των μερικών πιέσεων του Dalton 5. Ο Γενικός Νόμος των αερίων
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι 1
ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι ιδάσκων: Καθ. Α.Γ.Τοµπουλίδης ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ, ΚΟΖΑΝΗ Εαρινό εξάµηνο 2003-2004 Άσκηση 1: Κυλινδρικό έµβολο περιέχει αέριο το
P. kpa T, C v, m 3 /kg u, kj/kg Περιγραφή κατάστασης και ποιότητα (αν εφαρμόζεται) , ,0 101,
Ασκήσεις Άσκηση 1 Να συμπληρώσετε τα κενά κελιά στον επόμενο πίνακα των ιδιοτήτων του νερού εάν παρέχονται επαρκή δεδομένα. Στην τελευταία στήλη να περιγράψετε την κατάσταση του νερού ως υπόψυκτο υγρό,
Σύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Όγκος και επιφάνεια ελέγχου Διατήρηση μάζας και ενέργειας Μόνιμες-Μεταβατικές διεργασίες Ισοζύγιο μάζας Έργο Ροής-Ισοζύγιο ενέργειας Διατάξεις μόνιμης
Χειμερινό Εξάμηνο ΛΥΣΕΙΣ - 1 Η ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΕΡΓ. ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ&ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΗ II Χειμερινό Εξάμνο 00-008 ΛΥΣΕΙΣ - Η ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ Άσκσ Ένας ατμο-λεκτρικός σταθμός (ΑΗΣ - κύκλου Rankine) ια παραωή λεκτρικής
ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ
ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΜΑΘΗΜΑ: ΕΦΑΡΜΟΣΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ (Ασκήσεις πράξης) ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ
ΙΔΑΝΙΚΑ ΑΕΡΙΑ - ΕΡΓΟ 1. Να υπολογιστεί η πυκνότητα του αέρα σε πίεση 0,1 MPa και θερμοκρασία 20 ο C. (R air =0,287 kj/kgk) 2. Ποσότητα αέρα 1 kg εκτελεί τις παρακάτω διεργασίες: Διεργασία 1-2: Αδιαβατική
Θερμοδυναμική Ενότητα 4:
Θερμοδυναμική Ενότητα 4: Ισοζύγια Ενέργειας και Μάζας σε ανοικτά συστήματα - Ασκήσεις Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 4: Καύση Χατζηαθανασίου Βασίλειος, Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Θερμοδυναμική Ενότητα 4:
Θερμοδυναμική Ενότητα 4: Ισοζύγια Ενέργειας και Μάζας σε ανοικτά συστήματα Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ
ΥΛΙΚΑ ΓΙΑ ΕΝΕΡΓΕΙΑΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΤΜΟΣΤΡΟΒΙΛΟΙ Σημειώσεις Δ. Κουζούδη Εαρινό Εξάμηνο 2017 ΑΤΜΟ-ΣΤΡΟΒΙΛΟΙ (ΑΤΜΟ-ΤΟΥΡΜΠΙΝΕΣ) Που χρησιμοποιούνται; Για παραγωγή ηλεκτρικής ς σε μεγάλη κλίμακα. Εκτός από τα
Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή
ΘΕΡΜΑΝΣΗ-ΨΥΞΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι ΑΣΚΗΣΕΙΣ
ΘΕΡΜΑΝΣΗ-ΨΥΞΗ-ΚΛΙΜΑΤΙΣΜΟΣ Ι ΑΣΚΗΣΕΙΣ 1. Ψυκτική εγκατάσταση που ακολουθεί στοιχειώδη ψυκτικό κύκλο συμπίεσης ατμών με ψυκτικό μέσο R134a, εργάζεται μεταξύ των ορίων πίεσης 0,12 MΡa και 1 MΡa. Αν η παροχή
Ανάλυση Τροφίμων. Ενότητα 4: Θερμοχημεία Χημική Ενέργεια Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ. Τμήμα Τεχνολογίας Τροφίμων. Ακαδημαϊκό Έτος
Ανάλυση Τροφίμων Ενότητα 4: Θερμοχημεία Χημική Ενέργεια Τμήμα Τεχνολογίας Τροφίμων Τ.Ε.Ι. ΘΕΣΣΑΛΙΑΣ Ακαδημαϊκό Έτος 2018-2019 Δημήτρης Π. Μακρής PhD DIC Αναπληρωτής Καθηγητής Εσωτερική Ενέργεια & Καταστατικές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 1 : Εισαγωγή Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ
ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΠΟΡΕΙΑ ΠΡΟΒΛΗΜΑΤΟΣ 3 4 5 6 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ dh dt = q e A h t = h 0 e kt A 7 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ 8 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ q = Kh h t = h 0 e kt A 9 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ
Σύστημα. Ανοικτά Συστήματα. Περιβάλλον. Γενικό Ροϊκό Πεδίο. Όγκος Ελέγχου, Επιφάνεια Ελέγχου. Θερμότητα. Ροή Μάζας. Ροή Μάζας.
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Περιβάλλον Ροή Μάζας Έργο Ανοικτά Συστήματα Σύστημα Θερμότητα Ροή Μάζας Κεφάλαιο4, Ενότητα 1, Διαφάνεια 1 Κεφάλαιο4, Ενότητα 1, Διαφάνεια Γενικό Ροϊκό
Εφαρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 2: Ιδιότητες Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες
ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015
ΘΕΡΜΟΧΗΜΕΙΑ Δημήτρης Παπαδόπουλος, χημικός Βύρωνας, 2015 ΘΕΡΜΟΧΗΜΕΙΑ Κάθε ουσία, εκτός από άτομα μόρια ή ιόντα, περιέχει χημική ενέργεια. H χημική ενέργεια οφείλεται στις δυνάμεις του δεσμού (που συγκρατούν
Ειδική Ενθαλπία, Ειδική Θερµότητα και Ειδικός Όγκος Υγρού Αέρα
θερµοκρασία που αντιπροσωπεύει την θερµοκρασία υγρού βολβού. Το ποσοστό κορεσµού υπολογίζεται από την καµπύλη του σταθερού ποσοστού κορεσµού που διέρχεται από το συγκεκριµένο σηµείο. Η απόλυτη υγρασία
ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών
ΜΕΤΑΛΛΟΥΡΓΙΑ ΣΙΔΗΡΟΥ Ι Μεταλλουργία Σιδήρου Χυτοσιδήρου Θεωρία και Τεχνολογία Τμήμα Μηχανικών Μεταλλείων - Μεταλλουργών ΔΡ. Α. ΞΕΝΙΔΗΣ ΔΙΑΛΕΞΗ 3. ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΑΝΤΙΔΡΑΣΕΩΝ ΑΝΑΓΩΓΗΣ ΑΔΕΙΑ ΧΡΗΣΗΣ 2 Το παρόν
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 10: Ψυκτικά κύκλα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
21/5/2008. Θερµοχηµεία
Θερµοχηµεία Θερµοχηµεία Είναι η µελέτη των θερµικών φαινοµένων που συνοδεύουν µια χηµική αντίδραση. Θερµότητα αντίδρασης υπό σταθερή πίεση Θερµότητα αντίδρασης υπό σταθερή πίεση Η θερµοδυναµική συνάρτηση
ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 4-ΘΕΡΜΟΧΗΜΕΙΑ
ΧΗΜΕΙΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΡΓΑΣΙΑ 4-ΘΕΡΜΟΧΗΜΕΙΑ 1. Κατά την τέλεια καύση 1g ακετυλενίου (C 2 H 2 ) εκλύεται θερμότητα 50KJ. Να γράψετε την θερμοχημική εξίσωση για την καύση του ακετυλενίου. 2. Σε
Εντροπία (1/3) Ανισότητα Clausius. ds T. = αντιστρεπτές < αναντίστρεπτες
Εντροπία (1/3) Ανισότητα Clausius δq 0 = αντιστρεπτές < αναντίστρεπτες ds δq R Η εντροπία Ορίζεται για αντιστρεπτές διεργασίες Είναι καταστατική ιδιότητα (η μεταβολή της δεν εξαρτάται από το δρόμο) Ορίζονται
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και
(διαγώνισµα Θερµοδυναµική Ι)
0.06.000 (διαγώνισµα Θερµοδυναµική Ι) Θερµοκινητήρας CARNOT λειτουργεί µεταξύ θερµοκρασίας, T υ =640 K και θερµοκρασίας περιβάλλοντος Τ π =0 Κ προσφέροντας εξολοκλήρου την παραγόµενη µηχανική ισχύ του
Σύστημα. Ανοικτά Συστήματα. Γενικό Ροϊκό Πεδίο. Περιβάλλον. Θερμότητα. Ροή Μάζας. Ροή Μάζας. Έργο
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΠΡΩΤΟΣ ΝΟΜΟΣ ΣΕ ΑΝΟΙΚΤΑ ΣΥΣΤΗΜΑΤΑ Όγκος και επιφάνεια ελέγχου Διατήρηση μάζας και ενέργειας Μόνιμες-Μεταβατικές διεργασίες Ισοζύγιο μάζας Έργο Ροής-Ισοζύγιο ενέργειας Διατάξεις μόνιμης
Εφηρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφηρμοσμένη Θερμοδυναμική Ενότητα 8: Θερμοδυναμικά κύκλα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Κων/νος Θέος 1
Το παρόν φυλλάδιο περιέχει ορισµένα λυµένα παραδείγµατα ασκήσεων στο κεφάλαιο. Προσδιορισµός της θερµότητας και της ποσότητας µιας ουσίας από τη στοιχειοµετρία µιας αντίδρασης 1 ο παράδειγµα 10 mol οξειδίου
ΘΕΜΑ 1ο Στις ερωτήσεις , να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 24 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε
Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.
4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη
ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ
. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΟΛΥΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 135 ΔΙΑΓΡΑΜΜΑΤΑ ΦΑΣΕΩΝ 1 2 3 4 1 στερεό (solid) 2 υγρό (liquid) 3 ατμός (vapor) 4 αέριο (gas) A 1+2+3
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 6 η : Θερμοχημεία Χημική ενέργεια Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Εσωτερική Ενέργεια & Καταστατικές Συναρτήσεις 2 1 ος Νόμος
Εξοικονόμηση Ενέργειας
Εξοικονόμηση Ενέργειας Θεωρητικό Υπόβαθρο: Θερμοδυναμική Θερμοδυναμική: Η επιστήμη που ασχολείται με τις μετατροπές ενέργειας από μια μορφή σε μια άλλη «Κάθε παραγωγική διαδικασία βρίσκεται κάτω από τον
εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια
εύτερος Θερμοδυναμικός Νόμος Εντροπία ιαθέσιμη ενέργεια Εξέργεια Χαρακτηριστικά Θερμοδυναμικών Νόμων 0 ος Νόμος Εισάγει την έννοια της θερμοκρασίας Αν Α Γ και Β Γ τότε Α Β, όπου : θερμική ισορροπία ος
Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Εργαστηριακές Ασκήσεις Διδάσκων: Α.
2ο Σύνολο Ασκήσεων. Λύσεις 6C + 7H 2 C 6 H H διαφορά στο θερμικό περιεχόμενο των προϊόντων και των αντιδρώντων καλείται
1 2ο Σύνολο Ασκήσεων Λύσεις Άσκηση 1: 6C + 7H 2 C 6 H 14 H1 6C + 7H 2 ΔΗ αντίδρασης H2 C 6 + H 14 C + H 2 H αντίδραση είναι εξώθερμη Άσκηση 2 - H διαφορά στο θερμικό περιεχόμενο των προϊόντων και των αντιδρώντων
1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Ετερογενή Μείγματα & Συστήματα Καύσης 1. Στοιχεία Μεταφοράς Μάζας και Εξισώσεις Διατήρησης Δ. Κολαΐτης Μ. Φούντη Δ.Π.Μ.Σ. «Υπολογιστική Μηχανική»
Η ψύξη ενός αερίου ρεύματος είναι δυνατή με αδιαβατική εκτόνωση του. Μπορεί να συμβεί:
Ψύξη με εκτόνωση Η ψύξη ενός αερίου ρεύματος είναι δυνατή με αδιαβατική εκτόνωση του. Μπορεί να συμβεί: A. Mε ελεύθερη εκτόνωση σε βαλβίδα στραγγαλισμού: ισενθαλπική διεργασία σε χαμηλές θερμοκρασίες,
Ε. Παυλάτου, 2017 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ
1 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ 2 ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΑΝΤΙΔΡΑΣΗ Βασικές έννοιες Στοιχειομετρία-Στοιχειομετρικοί συντελεστές-στοιχειομετρική αναλογία Περιοριστικό αντιδρών Αντιδρών σε περίσσεια Μετατροπή (κλάσμα,
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΥΠΟΛΟΓΙΣΜΟΙ ΠΑΡΑΜΕΤΡΩΝ ΑΕΡΙΩΝ ΡΕΥΜΑΤΩΝ Σε πολλά εργοστάσια είναι σύνηθες ένα σύστημα ελέγχου ρύπανσης να εξυπηρετεί πολλές πηγές εκπομπών. Σε τέτοιες καταστάσεις, οι παράμετροι των
ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ
ΟΛΟΚΛΗΡΩΤΙΚΑ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ 2 ΠΟΡΕΙΑ ΠΡΟΒΛΗΜΑΤΟΣ Ε. Παυλάτου, 2016 3 4 5 6 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ dh dt = q e A h t = h 0 e kt A 7 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ 8 ΔΕΞΑΜΕΝΗ ΑΠΟΣΤΡΑΓΓΙΣΗΣ q = Kh h t = h 0 e kt
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ
ΑΝΩΤΕΡΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΣΧΕΣΕΙΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΣΤΟ ΠΡΟΗΓΟΥΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΦΕΡΘΗΚΑΜΕ ΣΤΙΣ ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΤΗΣ ΜΟΡΦΗΣ f(p,v,t)=0 ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝΤΑΙ ΓΙΑ ΝΑ ΣΥΝΔΕΟΥΝ ΤΗΝ ΠΙΕΣΗ,
ΑΕΡΙΑ ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ
ΑΕΡΙΑ ΙΔΑΝΙΚΑ ΚΑΙ ΠΡΑΓΜΑΤΙΚΑ ΑΕΡΙΑ ΝΟΜΟΣ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ O νόμος των τελείων αερίων συνδέει τις ιδιότητες ενός τελείου αερίου σε μια συγκεκριμένη κατάσταση (καταστατική εξίσωση) P V = n R T P: Απόλυτη πίεση
Σφαιρικές συντεταγμένες (r, θ, φ).
T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ
1 Aπώλειες θερμότητας - Μονωτικά
1 Aπώλειες θερμότητας - Μονωτικά 1.1 Εισαγωγή Όταν ένα ρευστό ρέει μέσα σ' έναν αγωγό και η θερμοκρασία του διαφέρει από τη θερμοκρασία του περιβάλλοντος, τότε μεταδίδεται θερμότητα: από το ρευστό προς
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό
Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου. Συστατικό
Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου Για τον παραπάνω προσδιορισµό, απαραίτητο δεδοµένο είναι η στοιχειακή ανάλυση του πετρελαίου (βαρύ κλάσµα), η
Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο
Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο Μέρος ο : Εισαγωγικά (διαστ., πυκν., θερμ., πίεση, κτλ.) Μέρος 2 ο : Ισοζύγια μάζας Μέρος 3 ο : 9 ο μάθημα Εκτός ύλης ΔΠΘ-ΜΠΔ Συστήματα Βιομηχανικών Διεργασιών
ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Ενότητα 11: Κύκλα ατμού Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 1 η : Μεταφορά θερμότητας Βασικές Αρχές Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λυμένες ασκήσεις. Αλκάνια
Λυμένες ασκήσεις Αλκάνια 1. Αλκάνιο Α έχει σχετική μοριακή μάζα Μ = 58. α. Να βρεθεί ο μοριακός τύπος του αλκάνιου και τα συντακτικά ισομερή του. β. 5,8 g από το αλκάνιο Α καίγονται πλήρως με Ο 2. Να υπολογιστούν
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι 4 ο Εξάμηνο
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι 4 ο Εξάμηνο ΜΑΘΗΜΑ 1 ο ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ΚΟΡΩΝΑΚΗ ΕΙΡΗΝΗ ΛΕΚΤΟΡΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ
Κύκλοι παραγωγής ισχύος με ατμό Συνδυασμένοι (σύνθετοι κύκλοι)
Μονάδα Ισχύος Ατμοπαραγωγού Κύκλοι παραγωγής ισχύος με ατμό Συνδυασμένοι (σύνθετοι κύκλοι) Άποψη μονάδας ατμοπαραγωγού φυσικού αερίου ισχύος 80 MW Διαφάνεια Διαφάνεια ΕΓΚΑΤΕΣΤΗΜΕΝΗ ΙΣΧΥΣ (MW) ΣΤΗΝ ΕΛΛΑΔΑ
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. 4 ο Εξάμηνο ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Α ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι 4 ο Εξάμηνο ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Α ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ΚΟΡΩΝΑΚΗ ΕΙΡΗΝΗ ΛΕΚΤΟΡΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ 1 ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ
Εφαρμοσμένη Θερμοδυναμική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Θερμοδυναμική Ενότητα 5: Πρώτος νόμος της θερμοδυναμικής Εφαρμογή σε ανοικτά συστήματα Χατζηαθανασίου Βασίλειος Καδή Στυλιανή
CaO(s) + CO 2 (g) CaCO 3 (g)
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΧΗΜΕΙΑ Β Λυκείου Ιανουάριος 2014 ΘΕΜΑ 1ο 1. Να επιλεχθούν οι σωστές απαντήσεις: (αʹ) Η θερμότητα που εκλύεται σε μια εξώθερμη αντίδραση i. αυξάνεται με την παρουσία καταλύτη ii. είναι ανεξάρτητη
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΣΚΗΣΕΙΣ Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας 1a-1
1. Τί ονομάζουμε καύσιμο ή καύσιμη ύλη των ΜΕΚ; 122
Απαντήσεις στο: Διαγώνισμα στο 4.7 στις ερωτήσεις από την 1 η έως και την 13 η 1. Τί ονομάζουμε καύσιμο ή καύσιμη ύλη των ΜΕΚ; 122 Είναι διάφοροι τύποι υδρογονανθράκων ΗC ( υγρών ή αέριων ) που χρησιμοποιούνται
Χηµική κινητική - Ταχύτητα αντίδρασης. 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας
5 ο Μάθηµα: Χηµική κινητική - Ταχύτητα αντίδρασης 6 ο Μάθηµα: Μηχανισµός αντίδρασης - Νόµος ταχύτητας 95 5 o Χηµική κινητική Ταχύτητα αντίδρασης Α ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Χηµική κινητική: Χηµική κινητική
Διεργασίες Καύσης & Ατμολέβητες
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Θερμοδυναμικής & Φαινομένων Μεταφοράς Διεργασίες Καύσης & Ατμολέβητες Σκοπός Παρουσίαση των βασικών αρχών λειτουργίας των διεργασιών καύσης
Φάσεις μιας καθαρής ουσίας
Αντικείμενο μαθήματος: ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ΚΑΘΑΡΕΣ ΟΥΣΙΕΣ. Διαδικασίες αλλαγής φάσης. P-v, T-v, και P-T διαγράμματα ιδιοτήτων και επιφάνειες P-v-T Καθαρών ουσιών. Υπολογισμός θερμοδυναμικών ιδιοτήτων από πίνακες
Πρώτος Θερμοδυναμικός Νόμος
Πρώτος Θερμοδυναμικός Νόμος ος Θερμοδυναμικός Νόμος dq = de + dw Ε = U + E κιν + E δυν + Ε λοιπές Εκφράζει την αρχή διατήρησης της ενέργειας Συνδέει ποσότητες και ιδιότητες και επιτρέπει τον υπολογισμό
Διαγώνισμα στο Τί ονομάζουμε καύσιμο ή καύσιμη ύλη των ΜΕΚ; Ποιοι τύποι βενζίνης χρησιμοποιούνται στα αυτοκίνητα; 122
Διαγώνισμα στο 4.7 στις ερωτήσεις από την 1 η έως και την 13 η 1. Τί ονομάζουμε καύσιμο ή καύσιμη ύλη των ΜΕΚ; 122 2. Ποιοι τύποι βενζίνης χρησιμοποιούνται στα αυτοκίνητα; 122 Η βενζίνη είναι μίγμα. Η
ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ. ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ
Έργο - Θερμότητα ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ ΕΝΕΡΓΕΙΑ ΔΙΕΡΓΑΣΙΩΝ (Μεταβατικές) ΕΡΓΟ ΘΕΡΜΟΤΗΤΑ ΕΝΕΡΓΕΙΑ ΣΥΣΤΗΜΑΤΟΣ ΕΞΩΤΕΡΙΚΗ (Κινητική, Δυναμική) ΕΣΩΤΕΡΙΚΗ (Εσωτερική [U], Ενθαλπία [Η]) Χαρακτηριστικά και Σύμβαση
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ ΚΑΙ ΒΙΟΧΗΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Διδάσκοντες:Ν. Καλογεράκης Π. Παναγιωτοπούλου Γραφείο: K.9 Email: ppanagiotopoulou@isc.tuc.gr Μέρες/Ώρες διδασκαλίας: Δευτέρα (.-3.)-Τρίτη (.-3.) ΤΕΧΝΙΚΗ ΧΗΜΙΚΩΝ
Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας, μηχανικού έργου και ιδιοτήτων των διαφόρων θερμοδυναμικών
Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ
Άσκηση 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σε μια βιομηχανικ εγκατάσταση ένα ρεύμα υγρού πρέπει να θερμανθεί από τους 25 C στους 75 C ( περ = 25 C). Να εξεταστούν οι εξς εναλλακτικές λύσεις: (α) Η θέρμανση
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από
ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ
. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΣΟΖΥΓΙΑ ΜΑΖΑΣ ΜΕ ΧΗΜΙΚΗ ΑΝΤΙΔΡΑΣΗ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 67 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ Από τη χημική αντίδραση προκύπτουν ποιοτικές και ποσοτικές πληροφορίες
ΚΑΥΣΗ ΚΑΙ ΣΤΟΙΧΕΙΟΜΕΤΡΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ
ΚΑΥΣΗ ΚΑΙ ΣΤΟΙΧΕΙΟΜΕΤΡΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Καύση λέγεται η εξώθερμη αντίδραση μιας ουσίας με το οξυγόνο (είτε με καθαρό οξυγόνο είτε με το οξυγόνο του ατμοσφαιρικού αέρα), που συνοδεύεται από εκπομπή φωτός
ΠΕΤΡΕΛΑΙΟ ΥΔΡΟΓΟΝΑΝΘΡΑΚΕΣ ΚΑΥΣΗ και ΚΑΥΣΙΜΑ
ΠΕΤΡΕΛΑΙΟ ΥΔΡΟΓΟΝΑΝΘΡΑΚΕΣ ΚΑΥΣΗ και ΚΑΥΣΙΜΑ Καύση ονομάζεται η αντίδραση μιας οργανικής ή ανόργανης ουσίας με το Ο 2, κατά την οποία εκλύεται θερμότητα στο περιβάλλον και παράγεται φως. Είδη καύσης Α.
ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5. Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις.
ΚΕΦΑΛΑΙΟ 5 ΘΕΡΜΟΧΗΜΕΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις. Ενθαλπία (Η), ονομάζεται η ολική ενέργεια ενός
Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων.
25/9/27 Εισαγωγή Διατύπωση μαθηματικών εκφράσεων για τη περιγραφή του εγγενούς ρυθμού των χημικών αντιδράσεων. Οι ρυθμοί δεν μπορούν να μετρηθούν απευθείας => συγκεντρώσεις των αντιδρώντων και των προϊόντων
Τεχνολογία Παραγωγής Τσιμέντου και Σκυροδέματος
Τεχνολογία Παραγωγής Τσιμέντου και Σκυροδέματος Ενότητα: Στοιχειομετρικός προσδιορισμός του απαιτούμενου αέρα καύσης βαρέος κλάσματος πετρελαίου Κωνσταντίνος Γ. Τσακαλάκης, Καθηγητής, Ε.Μ.Π Σχολή Μηχανικών
Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. Ερωτήσεις Επανάληψης
Δ' Εξάμηνο ΦΥΣΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ Ερωτήσεις Επανάληψης 1 0.8 0.6 x D = 0.95 y 0.4 x F = 0.45 0.2 0 0 0.2 0.4 0.6 0.8 1 x B = 0.05 Σχήμα 1. Δεδομένα ισορροπίας y-x για δυαδικό μίγμα συστατικών Α και Β και οι
Να επιλέξετε την σωστή απάντηση σε κάθε μία από τις παρακάτω ερωτήσεις: α) την πίεση β) την θερμοκρασία
ΘΕΜΑ 1 ο Να επιλέξετε την σωστή απάντηση σε κάθε μία από τις παρακάτω ερωτήσεις: 1) Δίνεται η θερμοχημική εξίσωση: Ν 2(g) + 3Η 2 (g) 2ΝΗ 3 (g) ΔΗ ο = - 88 kj α) Η ενθαλπία σχηματισμού της ΝΗ 3 είναι 88
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΚΛΙΜΑΤΙΣΜΟΥ ΨΥΧΡΟΜΕΤΡΙΑ
ΤΕΙ - ΧΑΛΚΙ ΑΣ Τµήµα Μηχανολογίας Εργαστ:Ψύξη-Κλιµατισµός- Θέρµανση & Α.Π.Ε. 34400 ΨΑΧΝΑ ΕΥΒΟΙΑΣ TEI - CHALKIDOS Department of Mecanical Engineering Cooling, Air Condit., Heating and R.E. Lab. 34400 PSACHNA
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. 1ος Θερμοδυναμικός Νόμος. Σύστημα. Αλληλεπίδραση Συστήματος-Περιβάλλοντος ΕΡΓΟ. f(p k, k =1...N)=0
ος Θερμοδυναμικός Νόμος ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΣΟΖΥΓΙΑ ΕΝΕΡΓΕΙΑΣ ΣΩΤΗΡΗΣ ΤΣΙΒΙΛΗΣ, Καθ. ΕΜΠ 169 ΜΕΤΑΤΡΟΠΕΣ ΜΟΝΑΔΩΝ ΜΟΝΑΔΕΣ ΘΕΡΜΟΤΗΤΑΣ, ΕΝΕΡΓΕΙΑΣ ή ΕΡΓΟΥ ΜΟΝΑΔΕΣ ΙΣΧΥΟΣ 170 ΜΟΡΦΕΣ ΕΝΕΡΓΕΙΑΣ 171
ΑΣΚΗΣΕΙΣ ΣΕΜΙΝΑΡΙΟΥ ΣΑΗΣ ΣΤΟ ΚΑΠΕ 23/1/2015 ΑΝΑΝΙΑΣ ΤΟΜΠΟΥΛΙΔΗΣ
ΑΣΚΗΣΕΙΣ ΣΕΜΙΝΑΡΙΟΥ ΣΑΗΣ ΣΤΟ ΚΑΠΕ 23/1/2015 ΑΝΑΝΙΑΣ ΤΟΜΠΟΥΛΙΔΗΣ Άσκηση 1: Δίνεται ατμοπαραγωγός εξαναγκασμένης ροής τύπου ΒΕΝSOΝ μιας διαδρομής καυσαερίων με καύσιμο λιγνίτη με Η u = 5233 KJ/, σε κλειστό
α. ΛΑΘΟΣ: Τα διαλύματα είναι ισοτονικά αν υπολογίσουμε την ωσμωτική πίεση για το
Ενδεικτικές Απαντήσεις Β Λυκείου Δεκέµβριος 01 Α. 1.1 γ. 1. β. Χηµεία ΘΕΜΑ 1 ο κατεύθυνσης 1.3 γ. 1. δ. 1.5 β. α. ΛΑΘΟΣ: Τα διαλύματα είναι ισοτονικά αν υπολογίσουμε την ωσμωτική πίεση για το καθένα. β.
Εφαρμοσμένη Θερμοδυναμική: Εξετάζει σχέσεις θερμότητας,
Στοιχεία Χημικής Θερμοδυναμικής Κλάδοι της Θερμοδυναμικής Θερμοδυναμική: Ο κλάδος της επιστήμης που μελετά τις μετατροπές ενέργειας. Στην πραγματικότητα μετρά μεταβολές ενέργειας. Μελετά τη σχέση μεταξύ
1ος Θερμοδυναμικός Νόμος
ος Θερμοδυναμικός Νόμος Αλληλεπίδραση Συστήματος-Περιβάλλοντος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Προσεγγίσεις Caratheodory-Poincare Θερμότητα Ολική