Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat
|
|
- Ἀσκληπιάδης Αργυριάδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Calculaton of ODH classfcaton for Nevs LHe e-bubble Chamber Cryostat. Physcal parameters Thermal propertes of Helum and Ntrogen Yongln Ju Nevs Laboratores, Columba Unversty, NY 533 T 3 [K] Pa 76 [mmhg] ρhe.625 [kg/m 3 ] ρn2.56 [kg/m 3 ] T_he.2 [K] Pv.3. 5 [Pa] ρfv 2.8 [kg/m 3 ] ρgv 6.9 [kg/m 3 ] hfv [J/kg] hgv [J/kg] hfgv hgv hfv hfgv = [J/kg] T_n ρfn 86.8 [kg/m 3 ] ρgn.623 [kg/m 3 ] hfn [J/kg] hgn [J/kg] hfgn hgn hfn hfgn = [J/kg] R [J/kg.K] A. LHe Dewar he 25 [L] tt.. he tt. [L/h] [LHe dewar normal bol-off rate, %] B. LN2 Dewar n2 25 [L] tt2.5. n2 tt2.56 [L/h] [LN2 dewar normal bol-off rate,.5%] C. LHe essel Dr Dr.35 [m] Hr Hr.56 [m] Dz.2 [m] Dn Dn.27 [m] Hn Hn.58 [m] A A2 Dr2 Dn 2 A.6 [m 2 ] A3 Dn. Hn A3 3 [m 2 ] Dr2 Dz 2 A2.73 [m 2 ] A Dr. Hr A.523 [m 2 ] Ar_he A A3 A Ar_he.786 [m 2 ] [Cold surface of the LHe reservor] r r2 Dr2 Dz 2. Hr r. [m 3 ] r. = [L] [olume of LHe n LHe reservor] Dn2 Dz 2. Hn r2 = [m 3 ] r2. = [L] [olume of LHe n neck space] r_he ( r r2). r_he = 5.95 [L] [Total volume of LHe n LHe reservor] D. LN2 essel Dno Dno.356 [m] Dn Dn.52 [m] Hnz Hnz.58 [m] Hfn Hfn = 5 [m] Dn Dn.33 [m] Dn Dn2 = 79 [m] Ar_n2 2. Dno 2 Dn 2 Dno. Hnz Dn. Hfn Ar_n2 = 5 [m 2 ] [Cold surface of LN2 reservor] π r_n2. Dno2 Dn 2. Hnz. r_n2 =.85 [L] [olume of lqud n the LN2 reservor]
2 E. LHe e-bubble Chamber Dv.8 [m] Hv.7 [m] Hfv.5 [m] [Hght of LHe n e-bubble chamber] π Av. Dv2 Av = [m 2 ] Av2 Dv. Hv Av2.58 [m 2 ] Ae_he 2. Av Av2 Ae_he.76 [m 2 ] [Cold surface area of e-bubble chamber] π fv. Dv2. Hfv fv = [m 3 ] e_he fv. e_he.962 [L] [olume of LHe n e-bubble chamber] 2. Mass 2. Thermal Load f vacuum s lost: We assume qt [W/m 2 ] Et_he Et_n2 Ee_he qt. Ar_he Et_he = [W] qt. Ar_n2 Et_n2 = [W] qt. Ae_he Ee_he = 76. [W] 2.2 Mass n LHe vessel: LHe vessel: p.3. 5 [Pa] T.2 K ρfv = 2.8 [kg/m 3 ] hfgv = [J/kg] ρgv = 6.9 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mhe ρfv. r_he Mhe = [kg] Saturated gas helum mass at.2k n LHe vessel: Mghe ρgv. r_he Mghe.758 [kg] The total enthalpy ncrease of load LHe of 5 lters n phase change: Elg Mhe. hfgv Elg = [J] 2.3 Mass n e-bubble Chamber: LHe vessel: p.3. 6 [Pa] T.2 K ρfve 5.55 [kg/m 3 ] hfgv = [J/kg] ρgve 5 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mhee ρfve. e_he Mhee.6 [kg] Saturated gas helum mass at.2k n LHe vessel: Mghee ρgve. e_he Mghee.39 [kg] The total enthalpy ncrease of load LHe of 5 lters n phase change: Elge Mhee. hfgv Elge = [J] 2
3 2. Mass n LN2 vessel: LN2 vessel: p.3. 5 [Pa] T 77.3 K ρfn = 86.8 [kg/m 3 ] hfgn = [J/kg] ρgn =.623 [kg/m 3 ] LHe mass at.2k n LHe vessel: Mn2 ρfn. r_n2 Mn2 = [kg] Saturated gas ntrogen mass at 77.3K n LN2 vessel: Mgn2 ρgn. r_n2 Mgn2.9 [kg] The total enthalpy ncrease of load LHe of lters n phase change: Elg Mn2. hfgn Elg = [J] 3. Mass flow rate and release tme 3. Tme and mass flow rate estmaton for LHe: Et_he = [W] m_he Et_he hfgv m_he.379 [kg/s] t_he Mhe m_he t_he = 5.2 [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 Po 3. 5 [Pa] Mass flow rate estmaton for relef valve: d. [m] n 2 Ar moutr Γ. Ar. Po τ. R. T 3.2 Tme and mass flow rate estmaton for LHe: Ee_he = 76. [W] d2. n Ar =.57. [m 2 ] moutr [kg/s] > m_he.379 [kg/s] me_he Ee_he hfgv me_he.37 [kg/s] te_he Mhee me_he te_he = [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 Po. 5 [Pa] Mass flow rate estmaton for relef valve: d. [m] n Ar moutr Γ. Ar. Po τ. R. T 3.3 Tme and mass flow rate estmaton for LN2: Et_n2 = [W] m_n2 Et_n2 hfgn m_n2.3 [kg/s] t_n2 d2. n Ar = [m 2 ] moutr =.7 [kg/s] > me_he.37 [kg/s] Mn2 m_n2 t_n2 = [s] If: Pb.3. 5 [Pa] T [K] Γ.9 τ.659 R [J/kg.K] P 3. 5 [Pa] 3
4 Mass flow rate estmaton for open tube: d d2.9 [m] n2 3 Ar moutr Γ. Ar. P τ. R. T. ODH calculaton wth fan avalable Data of the confned volumn and fan vent rate: d22. n2 Ar = [m 2 ] moutr.338 [kg/s] > m_n2.3 [kg/s] 25.. = 3. 3 [m 3 ] [The confned volumn] C.283 [m 3 /CF] CC CC =.77. [m 3 /s] [Fan rate] 3 [SCFM]. CC [m 3 /s]. [m 3 /s] [The ventlaton rate of the fan] Case I. The normal operaton of 25L LHe and 25L LN2 Dewars The normal vaporzaton rate: % LHe /day and.5% LN2/day Rn tt. 36 [m 3 /s] Rn = [m 3 /s] Rn2 tt2. 36 [m 3 /s] Rn2 =.3. 8 [m 3 /s] R Rn. ρfv ρhe R = R2 Rn2. ρfn ρn2 R2 = R R R2 R = [m 3 /s] <. [m 3 /s] [The spll rate] t tt tt2 t = [hr] t. 36 = [s] R CC R R < C. R. t. 36. e C 92 = After the spll perod (R=) Ce C. 92 e. t C C k.. 8 C k 92 Ce k Oxygen concentraton C Tme [hr]
5 The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 92 ODH fatalty rate: φ F φ 92 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH Tme [hr] Tme [hr] Case 2. The normal operaton of 5L LHe and L LN2 vessel The normal vaporzaton rate: 3 days Rn Rn [m 3 /s] Rn = [m 3 /s] [m 3 /s] Rn2 = [m 3 /s] R Rn. ρfv ρhe R =.333. R2 Rn2. ρfn ρn2 R2 =.77. R2 R R2 R2 = 2.. [m 3 /s] <. [m 3 /s] t 3. 2 t = 72 [hr] t. 36 = [s] R2 CC.5... R2 R2 < C2. R2. t. 36. e C2 72 = After the spll perod (R=). t Ce C2. 72 e C C2 k.. 28 C k 72 Ce k 72 5
6 Oxygen concentraton C Tme [hr] The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 72 ODH fatalty rate: φ F φ 72 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH Tme [hr] Tme [hr] Case 3. LHe vessel n EBC Cryostat broken, and the vacuum s lost m_he.379 [kg/s] t Mhe m_he t = 5.2 [s] R3 m_he ρhe [m 3 /s] R3 = 2.33 [m 3 /s] >. [m 3 /s] R3 = CC
7 .. 6 R3 > C3 R3.. e C3 5 8 After the spll perod (R=). t Ce C3. 5 e C C3 k.. 5 C k 5 Ce k Oxygen concentraton C Tme [sec-hr] The partal pressure: PO2 C. Pa The fatalty factor: G 6.5 PO2 F f G,, f G <. 7,, G F 5 ODH fatalty rate: φ F φ 5 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme 7
8 Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH Tme [s] Tme [s] Case. LN2 vessel n EBC Cryostat broken, and the vacuum s lost m_n2.3 [kg/s] t Mn2 m_n2 t = [sec] R m_n2 ρn2 [m 3 /s] R.37 [m 3 /s] <. [m 3 /s] R CC = R < C. R. R. e C The oxygen concentraton after the spll perod (R=, =const). t Ce C. 776 e C C k.. 22 C k 776 Ce k Oxygen concentraton C Tme [sec-hr] 8
9 The partal pressure: PO2 C. Pa The fatalty factor: G 6.5 PO2 F f G,, f G <. 7,, G F 776 ODH fatalty rate: φ F φ 776 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH Tme [s] Tme [s] Case 5. LHe e_bubble Chamber broken, and the vacuum s lost me_he.37 [kg/s] t Mhee me_he t = [s] R5 me_he ρhe [m 3 /s] R5 = 26 [m 3 /s] >. [m 3 /s] R5 CC = R5 > C5 R5.. e C5 = After the spll perod (R=). t. 36 Ce C5. e C C5 k.. 26 C k Ce k 9
10 Oxygen concentraton C Tme [sec-hr] The partal pressure: PO2 C. Pa The fatalty factor: 6.5 G PO2 F f G,, f G <. 7,, G F 5 ODH fatalty rate: φ F φ 5 ODH Classfcaton: ODH <. 7,, <. 5,, <. 3, 2, <., 3, tme Fatalty rate va tme ODH class va tme Fatalty rate [/hr] φ ODH class ODH Tme [s] Tme [s]
11 Concluson Fatalty factor = 3*-6 Fatalty rate < -9 ODH class Under the worst case condton, fatalty rate s lower than -9 for Nevs e-bubble Chamber Cryostat at Atlas Buldng. Therefore, ODH s unclassfed accordng to "BNL ODH Rsk Assessment".
Heat Load Analysis on LHe e-bubble Chamber Cryostat
Heat Load Analysis on LHe e-bubble Chamber Cryostat Yonglin Ju Nevis Laboratories, Columbia University, NY 10533 1. Heat load rate per surface area @4K 2. LHe boil-off rate (heat load) @4K 3. Heat load
APPENDIX A. Summary of the English Engineering (EE) System of Units
Appendixes A. Summary of the English Engineering (EE) System of Units B. Summary of the International System (SI) of Units C. Friction-Factor Chart D. Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) E.
STEAM TABLES. Mollier Diagram
STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2
A BALANCE Proses = 120 / 31 391 t/h T Gun = 29 T Gun = 31 [38oC] A-101-JCA 443 / 2.46 10" TG = 31 05 November 2012 Rate 102.075% Proses = 0 / 33 349 t/h T Gun = 29 T Gun = 37 [38oC] A-101-JCB 261 / 1.42
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES
PROPERTIES OF ORDINARY WATER SUBSTANCE AT SATURATION FROF TME CRITICAL POINT DOWN TO 66 C EQUATIONS & TABLES M. CONDE ENGINEERING, 2002 M. CONDE ENGINEERING, Zurich 2002 Properties of ordinary water substance
Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E
Type 441, 442 Full nozzle DIN Flanged Safety Relief Valves spring loaded Capacities The-Safety-Valve.com LWN 468.3-E Approvals Approvals DN O 5 65 8 Actual Orifice diameter d [mm] 23 37 46 Europe Coefficient
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
Fin coil calculation with NTU
Fin coil calculation with NTU In all our software applications we never use values like Wi, Pi, Ri, NTUi and ϴ because one don't need it to calculate a heat exchanger like a fin coil. Somebody like the
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16
Ύγρανση και Αφύγρανση Ψυχρομετρία η μελέτη των ιδιοτήτων του υγρού αέρα δηλαδή του μίγματος αέρα-ατμού-νερού. Ένα βασικό πρόβλημα: Δεδομένων των P (bar) Πίεση T ( o C) Θερμοκρασία Υ (kg/kg ξβ) Υγρασία
PETROSKILLS COPYRIGHT
Contents Solution Gas-Oil Ratio... 2... 2... 2... 2 Formation Volume Factor... 3... 3... 3... 3 Viscosity... 4... 4... 4... 4 Density... 5 Bubble Point Pressure... 5... 6... 6... 6 Compressibility... 6
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Ανάπτυξη ενός «μηχανικού» εργαλείου διαχείρισης της ποιότητας του ελαιόλαδου
Ανάπτυξη ενός «μηχανικού» εργαλείου διαχείρισης της ποιότητας του ελαιόλαδου Καναβούρας, Α. & Κουτελιέρης Φ. GreekLipidsForum, Εθνικό Ίδρυμα Ερευνών, Ιούνιος 015. Επιστημονική διερεύνηση απρόβλεπτο και
v R = c v 2 v P = R v = v 3 v n P = n 3 v 1 v = n 1 n P 1 P = c 1 c P 1 P = n 1 c 1 n 3 c = v 1 v 3 3 3 c P P = c v 4.5 P = c v 4 P = c v 3.5 v 1 = 24 v 2 = 18 c 1 c 1 4.5 = v 1 c 2 v 4.5 2 = 244.5 = 3.65
ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ
Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E
Type 441 DIN 442 DIN Flanged Safety Relief Valves spring loaded Capacities The-Safety-Valve.com LWN 462.03-E Approvals Approvals DN I 20 200 DN O 32 300 Actual Orifice diameter d0 [mm] 18 165 Actual Orifice
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
LEVITEC INDUSTRIAL BOILERS Steam Way S /5
A1 Type 400 Τύπος A2 Production norm EN-12953 Πρότυπο κατασκευής A3 Quality managment system EN ISO 9001:2008 Σύστημα διαχείρισης ποιότητας B1 Steam production kg/h 400 Ατμοπαραγωγή B2 Working pressure
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Μάθημα: ΤΕΧΝΙΚΗ ΦΥΣΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΙΙ 6ο Εξάμηνο Χημικών Μηχανικών ΞΗΡΑΝΤΗΡΕΣ 1 Characteristics of Food Dryers
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
( ) Sine wave travelling to the right side
SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv
Number All 397 Women 323 (81%) Men 74 (19%) Age(years) 39,1 (17-74) 38,9 (17-74) 40,5 (18-61) Maximum known weight(kg) 145,4 (92,0-292,0) 138,9 (92,0-202,0) 174,1 (126,0-292,0) Body mass index (kg/m 2
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
PROPERTY VALUES OF METALS AT 20 C OR AS INDICATED
HEAT AND MASS TRANSFER DATA BOOK 1 PROPERTY VALUES OF METALS AT 20 C OR AS INDICATED Density Thermal Diffusivity Specific Heat Thermal Conductivity Metal ρ α = k/ρc c k kg/m 3 m 2 /s J/kgK W/mK Aluminium,
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
LEVITEC INDUSTRIAL BOILERS Steam Way S /5
A1 Type 300 Τύπος A2 Production norm EN-12953 Πρότυπο κατασκευής A3 Quality managment system EN ISO 9001:2008 Σύστημα διαχείρισης ποιότητας B1 Steam production kg/h 300 Ατμοπαραγωγή B2 Working pressure
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
12 2006 Journal of the Institute of Science and Engineering. Chuo University
12 2006 Journal of the Institute of Science and Engineering. Chuo University abstract In order to study the mitigation effect on urban heated environment of urban park, the microclimate observations have
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Injection Molded Plastic Self-lubricating Bearings
Injection Molded Plastic Self-lubricating Bearings Injection Molded Plastic Self-lubricating Bearings CSB-EPB : Injection molded thermoplastic P-P CSB-EPB Plastic Compound Bearings RoHS Structure CSB-EPB
TEST REPORT Nο. R Έκθεση Ελέγχου α/α
- Ergates Industrial Estate, PO Box 16104, Nicosia 2086, Cyprus Tel: +357 22624090 Fax: +357 22624092 TEST REPORT Nο. R01.4222 Page 1 of 9 Σελίδα 1 από 9 Test Description περιγραφή δοκιμής/ελέγχου Client
Class 03 Systems modelling
Class 03 Systems mdelling Systems mdelling input utput spring / mass / damper Systems mdelling spring / mass / damper Systems mdelling spring / mass / damper applied frce displacement input utput Systems
Consolidated Drained
Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),
Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Bayes Rule and its Applications
Bayes Rule and its Applications Bayes Rule: P (B k A) = P (A B k )P (B k )/ n i= P (A B i )P (B i ) Example : In a certain factory, machines A, B, and C are all producing springs of the same length. Of
Conductivity Logging for Thermal Spring Well
/.,**. 25 +,1- **-- 0/2,,,1- **-- 0/2, +,, +/., +0 /,* Conductivity Logging for Thermal Spring Well Koji SATO +, Tadashi TAKAYA,, Tadashi CHIBA, + Nihon Chika Kenkyuusho Co. Ltd., 0/2,, Hongo, Funabashi,
PETROSKILLS COPYRIGHT
Contents Dew Point... 2 SI Conversions... 2 Output... 2 Input... 2 Solution Condensate-Oil Ratio... 3 SI Conversions... 3 Output... 3 Input... 3 Gas Density... 4 SI Conversions... 5 Output... 5 Input...
2 nd Law: m.s in + Q in /T in + S gen = ds/dt + m.s out + Q out /T out. S gen /ṁ = -(Q in /m)/t + Δs,
P 444 5 xercises + f 4 6 Jan + Jan 5. kg ice at 6 K kg ater at 9 K. Heat Q at = is supplie y the surrunings. Specific heat ice : c i = 4 kj/kgk; ater c = 48 kj/kgk melting heat Δ m H = 4 kj/kg n La: m.s
ΙΑΤΡΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ ΑΝΑΛΩΣΙΜΑ ΕΞΕΤΑΣΤΙΚΟΙ ΦΑΚΟΙ & ΦΩΤΙΣΜΟΣ
ΙΑΤΡΙΚΟΣ ΕΞΟΠΛΙΣΜΟΣ ΑΝΑΛΩΣΙΜΑ ΕΞΕΤΑΣΤΙΚΟΙ ΦΑΚΟΙ & ΦΩΤΙΣΜΟΣ ZOOM Modern LE Ds lamp of cold light with a 5X magni - fication. The intensity of light can be adjusted. Its articulated arm eases the movement
Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at
Δύναμη F F=m*a kgm/s 2 1 kg*m/s 2 ~ 1 N 1 N ~ 10 5 dyn Ισχύς Ν = Έργο / χρόνος W = F*l 1 N*m = 1 Joule ( J ) N = W / t 1 J / s = 1 Watt ( W ) 1 1 kp*m / s 1 HP ~ 76 kp*m / s ~ 746 W 1 PS ~ 75 kp*m / s
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
A31. Aluminium heat exchanger A31
Aluminium heat exchanger A A Before using the heat exchanger, carefully read the document entitled GENERAL OPERATING INSTRUCTIONS FOR HEAT EXCHANGER USE 98SAE7EN - 9-5-8 A V-V Dimensions ± 5 5 L MAX 99
DLG Series. Lowara SPECIFICATIONS APPLICATIONS ACCESSORIES MATERIALS. General Catalogue
DLG Series Submersible pumps with open impeller with grinder assembly for pumping sewage, liquids, wastewater in general and industrial sludge, draining of flooded excavations. SPECIFICATIONS Delivery:
ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ
ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Επιμέλεια: Νίκος Βασιλειάδης (φοιτητής ΤΜΜ, ΠΘ) Αναπτύσσεται πρόγραμμα, το οποίο επιλύει ηλιακά θερμικά συστήματα. Αρχικά εισάγονται αρχικά
Μικροβιολογία Τροφίμων Ι
Μικροβιολογία Τροφίμων Ι Ενότητα 6: Ενδογενείς Παράγοντες Ενεργότητα Ύδατος (1/2), 2ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Διδάσκοντες: Γεώργιος - Ιωάννης Νύχας Ευστάθιος Πανάγου Μαθησιακοί
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
.. 1,.. 1,.. 2 [1, 2]. - , ( ) [3].,, - . /., - , - «+». ( ) ( ), p T e T e > T 0. G; ;,, ...,.,
536. 59.63 DOI: 0.459/mmh7003........... E-mal: bedeser@yandex.ru -. - -.. -. : ; ; - ;.. [ ]. - - 0 000. 3 (- 50. 3 [3]. -.. - -. -. - [4] /. - - -. -. (. ( 0 - T 0. T e T e > T 0. : G; ; Bulletn of the
TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT
TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT .5 C, φ, deg Tan(φ) Total.7 2.2 Effective.98 8.33 Shear,.5.5.5 2 2.5 3 Total Normal, Effective Normal, Deviator,.5.25.75.5.25 2.5 5 7.5 Axial Strain, % Type of
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.
Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel
ΣΥΝΟΨΗ 2 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
PETROSKILLS COPYRIGHT
Contents Density (Standard Conditions)... 2... 2... 2... 2 Formation Volume Factor... 2... 3... 3... 3 Density (In-Situ)... 3 Compressibility... 3... 4... 4... 4 Viscosity... 4... 5... 5... 5 Viscosibility...
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. 9 Απριλίου 2012 Δήμος Πεταλούδων, Ρόδος
PREMARPOL Πρόληψη και Περιστολή Θαλάσσιας Ρύπανσης σε Εμπορικούς και Τουριστικούς Λιμένες ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Εργαστήριο Περιβαλλοντικής Κατάλυσης
Properties of Nikon i-line Glass Series
786.7098.750 86.77 86.6 Wavelength [µm] Refractive Index Partial Dispersion Fluorescence [Class] * - 2.252.5786 F - C 0.0056 Solarization [%] 2.5 λ [nm] τ (0 mm) - 2.05809.6052 F' - C' 0.005505 *: JOGIS
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Θερμοδυναμικές ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών. Επαμεινώνδας Βουτσάς Νοέμβριος 2011
Θερμοδυναμικές ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών Επαμεινώνδας Βουτσάς Νοέμβριος 2011 Μονοφασικά συστήματα Τα περισσότερα ισοζύγια μάζας σε μονοφασικά συστήματα περιλαμβάνουν υγρά
ΜΟΝΑΔΑ ΓΕΩΘΕΡΜΙΚΗ ΑΝΣΛΙΑ ΘΕΡΜΟΣΗΣΑ ΣΗ ΕΔΡΑΗ Β. ΡΑΜΟΤΣΑΚΗ
ΜΟΝΑΔΑ ΓΕΩΘΕΡΜΙΚΗ ΑΝΣΛΙΑ ΘΕΡΜΟΣΗΣΑ ΣΗ ΕΔΡΑΗ Β. ΡΑΜΟΤΣΑΚΗ Κτήριο Κεντρικό κτήριο γραφείων Έδρασης Επιφάνεια 2860 m² Θερμικά φορτία 249 kw - Ψυκτικά φορτία 273 kw Παραγωγή Τπάρχον σύστημα θέρμανσης-ψύξης
Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.
Υδραυλική Εργαστήριο 4 Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α. Πρόγραμμα Άνοιξη 2014 ΗΜ/ΝΙΑ ΔΕΥΤΕΡΑ ΤΕΤΑΡΤΗ ΠΑΡΑΣΚΕΥΗ ΜΕΛΕΤΗ ΑΣΚΗΣΕΙΣ ΚΑΘΕ ΠΑΡΑΣΚΕΥΗ Part I: ΥΔΡΟΛΟΓΙΚΟΣ ΚΥΚΛΟΣ-ΥΔΡΟΛΟΓΙΚΕΣ
Περιεχόµενα Παρουσίασης 2.9
Πυρηνική Τεχνολογία - ΣΕΜΦΕ Κ ε φ ά λ α ι ο ο Π α ρ ο υ σ ί α σ η. 9 1 Περιεχόµενα Παρουσίασης.9 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Θερμοδυναμικές Ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών. Βουτσά Επαμεινώνδα Αναπλ. Καθηγητή ΕΜΠ
Θερμοδυναμικές Ιδιότητες και ισορροπία φάσεων για προσομοίωση διεργασιών Βουτσά Επαμεινώνδα Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commons. Για
ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ
ΛΟΓΙΣΜΙΚΟ ΛΕΙΤΟΥΡΓΙΑΣ ΚΑΙ ΕΛΕΓΧΟΥ ΗΛΙΑΚΟΥ ΘΕΡΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ Επιμέλεια: Νίκος Βασιλειάδης (φοιτητής ΤΜΜ, 6 ο εξάμηνο) 1 η έκδοση προγράμματος (Μάιος 2014) Αναπτύσσεται πρόγραμμα, το οποίο προσομοιώνει
Type. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E
Type 526 Flanged Safety Relief Valves spring loaded Capacities The-Safety-Valve.com LWN 469.16-E Approvals Orifice D E T Europe Coefficient of discharge K dr PED/DIN EN ISO 4126-1 Approval No. 07 202 1111Z0012/2/26
n b n Mn3C = n Mn /3 = 0,043 mol free Fe n Fe = n Fe 3n Fe3C = 16,13 mol, no free C b Mn3C = -Δ f G for Mn 3 C +3 b Mn + b C = 1907,9 kj/mol
PET 44304 015 Exercses 3+4 f 4 10 Feb + 13 Feb 015 1. deal gas: Δs = s - s 1 = c p ln(t /T 1 ) - R ln(p /p 1 ) (T
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9
BSL Transport Phenomena e Revised: Chapter - Problem C.4 Page 1 of 9 Problem C.4 Falling-cylinder viscometer see Fig. C.4. 6 A falling-cylinder viscometer consists of a long vertical cylindrical container
Προσομοίωση ηλιακού θερμικού συστήματος με τα εξής δεδομένα: Ηλιακή ακτινοβολία και θερμοκρασία περιβάλλοντος:
Προσομοίωση ηλιακού θερμικού συστήματος με τα εξής δεδομένα: Ηλιακή ακτινοβολία και θερμοκρασία περιβάλλοντος: q 800 W/m 2 S,ref t trise qs t qs, ref sin W/m 2 td trise 7π.μ.=420min td 10h=600min (διαθέσιμος
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
motori elettrici electric motors
motori elettrici electric motors MORGAN LLOYD INSPECTION AND TESTING SERVICES Frame size Level of sound pressure Lp - Livello della pressione sonora Lp Grandezza motore p = Lp - db (A) p = Lp - db (A)
Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1
Technical data Data Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1 Oil type: 160PZ Crankcase heater type: PTC 35 W Maximum
Κινητική θεωρία ιδανικών αερίων
Κινητική θεωρία ιδανικών αερίων (γέφυρα μακροσκοπικών και μικροσκοπικών ποσοτήτων) Εμπειρικές σχέσεις Boyle, Gay-Lussac, Charles, υπόθεση Avogadro «όταν δυο ή περισσότερα αέρια έχουν τα ίδια V, P και Τ
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
ECOL Motors In Aluminum Housing
ECOL Motors In Aluminum Housing FEATURES APPLICATIONS E TBS C TBW B L K AC TBH A AA KK H AD N T E TBS R TBW L AC M 56-160 IM B3 56-160 IM B5 56-160 IM B14 TBH 4-S KK P HD N TBS T E R TBW L AC P M TBH 4-S
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises
Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises Page 11 CHAPTER 1 V LSB 5.1V 10 bits 5.1V 104bits 5.00 mv V 5.1V MSB.560V 1100010001 9 + 8 + 4 + 0 785 10 V O 786 5.00mV or
ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GAS CHROMATOGRAPHY) ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2015
ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GAS CHROMATOGRAPHY) ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2015 Η ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GC) Η GC ξεκίνησε το 1940 με αναλύσεις ελαφρών κλασμάτων του πετρελαίου. Σήμερα αποτελεί μια σημαντική μέθοδο διαχωρισμού
0 valable on request Motors: Permanent Magnet, Seres ound, Sepex, syncronous oltages:,,,,, 0 Ø Holes M at 0 MR.000 Type : Power (S - 0 mn) Motor voltage Permanent magnet Max axal load orkng temperature
RECIPROCATING COMPRESSOR CALCULATION SHEET
Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Surface Mount Aluminum Electrolytic Capacitors
FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING