An Essay on A Statistical Theory of Turbulence
|
|
- Νεφέλη Παπάγος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 53 特集 注目研究 in 年会 04 ɹ Պڀݚ Ӄཧ ژ দɹຊ ਓ Պ ཧ ɹ ɹ ɹ ɹوɹ೭ ɹ ࡔ Պڀݚ Ӄཧ ژ Kolmogorov Onsager Kármán-Howarth- Monin Euler An Essay on A Statistical Theory of Turbulence Takeshi MATSUMOTO, Faculty of Science, Kyoto University Hayato NAWA, Dept. of Math. School of Science and Technology, Meiji University Takashi SAKAJO, Faculty of Science, Kyoto University (Received DD Month, 04) Revisiting Kolmogorov s statistical laws (appearing in so-called Kolmogorov s Theory of 94) and Onsager s conjecture (949), we make an assessment of their mathematical relevance from the view point of stochastic processes. Then we need to examine the exact meaning of Kolmogorov s fundamental hypothesis, so that we introduce a new energy dissipation rate, which is inspired by the Kármán-Howarth-Monin relation. Our mathematical strategy viewing turbulence may not be a conventional one: we don t assume any fluid equations describing the turbulence at first, but we regard turbulence as an infinite dimensional probability measure on an ensemble of appropriate time-dependent vector fields on the flat torus T 3, which describes (a part of) Kolmogorov s statistical laws. We then consider necessary properties of the ensemble in which the desired probability should be constructed. Now we have a speculation that a family of incompressible Euler flows could be our candidate, according to a number of mathematical results on the Euler flows, e.g., Constantin-E-Titi (994), Duchon-Robert (000), Eyink (003), De Lellis-Székelyhidi (0), Isett (0), Buckmaster- De Lelis-Székelyhidi (04). This speculation could lead us to a (pseudo) Gibbs measure on the ensemble. (KEY WORDS): Turbulence, fluid mechanics, Kolmogorov, Onsager, Euler flow, Gibbs measure takeshi@kyoryu.scphys.kyoto-u.ac.jp nawa@meiji.ac.jp sakajo@math.kyoto-u.ac.jp 04 日本流体力学会 A reprint from symposium proceedings, not an original paper
2 54 T 3 Ω := C(T 3 0, T ]; ), B: Ω Borel P : B (Ω, B, P ) P Ω B P V x,t : Ω T x T 3 = E P f Ef(V x,t )] Ef(V x,t )] := f(v x,t (u))p (Du) Ω = f(v)p Vx,t (dv) 3 P Ω P Vx,t V x,t 4 f(u(x, t)) := Ef(V x,t )]. Kolmogorov Onsager Kolmogorov Onsager Kolmogorov ϵ := lim inf ν 0 ν u > 0 () u u(x, t) =: V x,t (u); (evaluation map) (projection) (x, t) V x,t x, y T 3 EV x,t ] = EV y,t ]. f C L ( ) F (0) = 0 F C(0, )) Ef(V x,t, V y,t )] = F ( x y ). h > 0 EV x,t ] = EV x,t+h ]. 5 Kolmogorov p S p ( p N ) ( ] p ) h S p u] : = E (V x+h,t (u) V x,t (u)) h ] p h = (u(x + h, t) u(x, t)). h K4 3 5) h p N 3 P Vx,t Lebesgue L 3 P V x,t (dv) L 3 (dv) () = p(v; x, t) p(v; x, t) v (x, t) f(v)p Vx,t (dv) = f(v)p(v; x, t)l 3 (dv) P Lebesgue dx 4 5 ν > 0 t T > 0 ν u = ν T 3 i,j 3 ( ) ui dx x j
3 55 C p h (x, t) T 3 0, T ] S p u] = C p ( ϵ h ) p/3. (3) 6 Kolmogorov Onsager Hölder Hölder /3 (u(x + h, t) u(x, t)) h h h α, 0 < α /3. (4) (u(x + h, t) u(x, t)) h h h α, α>/3. (5) L u(x, t) dx = u(x, 0) dx. (6) T 3 T 3 Onsager Euler Besov 3, 4) Hölder Onsager Hölder /3,, 5, 0) Kolmogorov E V x,t V y,t ] Modulus Onsager 7) u u(x, t) u(y, t) Kolmogorov Onsager ˆω 7 ) Kolmogorov - Čentsov Modulus Hölder {X x,t ˆω,s } s 0,] p > Kolmogorov Hölder /3 Onsager (4) 0 < α < /3 Kolmogorov - Čentsov Kolmogorov Navier- Stokes Onsager Euler T 3 Ω P ν > 0 () Ω 3 Navier-Stokes Monin Kármán-Howarth-Monin 9) η η < ξ δ ξ u := u(x + ξ, t) u(x, t) ϵ = 4 div ξ δξ u δ ξ u. (9) X x,t ˆω,s (u) := V x+sˆω,t(u) ˆω = u(x + sˆω, t) ˆω, s > 0 t x s 0, ] (Ω, B, P ) {X x,t ˆω,s } s 0,] (3) p X x,t E p ] r p/3 (8) ˆω,s+r Xx,t ˆω,s (7) ν ξ = 0 Ω ϵu](x, t) := 4 div ξ = 4 div ξ ( ) δ ξ u δ ξ u ξ=0 ( ξ V x,t u] ξ V x,t u]) ξ=0 (0) 7 Kolmogorov - Čentsov 6 p = 3 C 3 = 4 Kolmogorov 4/5-5 (8) implicit constant (3)
4 56 4 Euler 8 ξ V x,t u] := V x+ξ,t u] V x,t u] = u(x + ξ, t) u(x, t) = δ ξ u Onsager Hölder /3 (0) C 0 φ ε (ε > 0) T 3 φ ε δ 0 (ε 0) ϵu](x, t) := 4 lim δ ξ u δ ξ u φ ε (ξ) dξ () ε 0 ϵu](x, t) := 4 lim r 0 L 3 δ ξ u δ ξ u (B(0; r)) ξ =r ξ ξ H (dξ) = 3 4 lim δ rˆω u δ rˆω u ˆω H (dˆω). r 0 4πr ˆω = 9 () 0 4 lim δ ξ u δ ξ u φ ε (ξ) dξ ε 0 = 3 4 lim δ rˆω u δ rˆω u ˆω H (dˆω). r 0 4πr ˆω = (3) 6) 8 ϵ ](x, t) Ω 9 H Hausdorff u B(0;r) ( div ξ δξ u δ ξ u ) dξ = δ ξ u ξ δ ξ u ξ =r ξ H (dξ). Duchon-Robert 6) u L 3 (T 3 (0, T )) Euler (3) D (T 3 (0, T )) Du](x, t) := 4 lim δ ξ u δ ξ u φ ε (ξ) dξ (4) ε 0 Du] = ( ) ( ( )) u u div u t + p. (5) Du] () ϵu] (5) Du] 0 (3) (3) 4 Du] = lim δ rˆω u δ rˆω u ˆω H (dˆω). 3 r 0 4πr ˆω = (6) Duchon-Robert 6) (6) Kármán- Howarth-Monin 4/3-4 3 ϵ ξ = δ ξ u δ ξ u ξ, η < ξ, ξ Eyink 7) Duchon-Robert 6) 4 lim δ ξ u δ ξ u φ ε (ξ) dξ ε 0 = 5 4 lim δ r ˆω u ˆω] 3 H (dˆω); r 0 4πr ˆω = (7) (4) Du] 4 Du] = lim 5 r 0 4πr δ rˆω u ˆω] 3 H (dˆω) (8) ˆω = Eyink 7) Duchon-Robert 6) (3) p = 3 Kolmogorov 4/5-4 5 ϵ ξ = δ ξ u ] 3 ξ, η < ξ, ξ Eyink-Sreenivasan 8) Onsager 0 Ω () () (4) - (5) Onsager
5 57 Duchon-Robert 6) Eyink 7) Euler Du] > 0 (6) (8) Du] > 0 ϵ ] Ω Duchon-Robert 6) Eyink 7) Ω P Euler 5 Euler Euler T 0 T 3 Du](x, t) dxdt > 0 (9) 3 Euler 8, 9) Onsager,, 5, 0) Hölder /3 ε ( ε > 0), ) Hölder /3 4 Hölder /3 Onsager (5) (6) 3 (4) Du] 4 L e = e(t) > 0 u(t) = e(t) Euler Euler Duchon-Robert 6) Eyink 7) T 3 0, T ] t x Hölder Hölder /3 (6) (8) Du] = 0 (5) (9) Euler P Kolmogorov (3) p = 3 6 Kato ) Navier-Stokes (ν 0 ) u L T 3 0, T ] 5 Ω () () () Duchon-Robert 6) (4) (9) ξ Euler t t, t + ] t Du] ϵ x,t u] := t t+ t/ t t/ ds Du](y, s) dy. x+ t t, t + ] t Minimal Flow Unit (MFU ) T 3 0, T ] N 6 5 6
6 58 (x + ) t t, t + t ] MFU (x, t) T 3 (0, T ) N (x, t) MFU 7 (x,t) MF U { (x + ) t t, t + t ]} (x, t) (y, s) { (x + ) t t { (y + ), t + t ]} s t, s + t = T 3 (0, T ), ]} =. MFU MFU 8 N MFU T 3 0, T ] A 9 N MFU T 3 0, T ] A N 0 0) Shannon- McMillan N 7 8 Shannon-McMillan A N Shannon-McMillan A N Shannon-McMillan Shannon-McMillan A MFU ϵ x,t, ϵ > 0 ϵ > 0 Ω Dv MFU Z x,t Ω β := β exp t t+ t/ t t/ ] ds Dv](y, s)dy Dv. x+ β (0) (β > 0 ) ϵ x,t v] Hölder /3 Hölder Ω (0) Ω Z x,t β MFU N MFU Ω 9 0 A N N MFU A Ω MFU Shannon-McMillan MFU
7 59 Shannon-McMillan β t+ t/ ] Theorem (Shannon - McMillan). exp ds Dv](y, s)dy t A = {a (x,t) MFU t t/ x+, a,..., a k } Ω = A N N X i = X i (ω) := ω i ( ω = (ω, ω,..., ω N ) Ω ) () (i =,,..., N) Nβ T ] = exp ds Dv](y, s)dy. () T 0, T ] 0 T A 3 = a a... a k p p p... p k β MFU N ϵ 3 N H H := k p j ln p j. j= JSPS (B) This work is partially supported by Grant-in-Aid for Scientific Research (B) # of JSPS. Kolmogorov-Čentsov Theorem (Kolmogorov - Čentsov ). (Ω, B, P ) X = { X t 0 t T } α β C E X t X s α ] C t s +β, 0 s, t T, X Hölder (modification) X { } = Xt 0 t T Hölder γ γ (0, β/α) P ω Ω sup 0<t s<h(ω) s, t 0,T ] δ t s γ X t (ω) X s (ω) =. h(ω) δ > 0 (7) {X x,t ˆω,s } s 0,] p > Kolmogorov (8) α = p β = p 3 Hölder /3 Brown n α = n β = n Brown Hölder Hölder {X x,t ˆω,s } s 0,] Hölder 3 Onsager 3 α β N(α, β) N N(α, β) Ω Ω N Shannon-McMillan () P (Ω N ) > α, () ω Ω N e N(H+β) P ({ω}) e N(H β), (3) Ω N (events) #Ω N e N(H β) #Ω N e N(H+β). Ω N δ k ln p j β δ > 0 { Ω N := ω Ω Ni(ω) N pi j= } < δ, i k. N i(ω) ω A N a i P N () () (3) {A N } {B N } 3 A N B N def lim N ln A N ln B N = A a a... a k =. p p(a ) p(a )... p(a k ) 0 p(a i ) (i =,,..., k) k p(a i ) = i= Ω = A N P
8 530 () (3) P ({ω}) e NH #Ω N e NH (3) ln #Ω N lim N N = H. () P ({ω}) e N{D(p q)+h} q i = N i(ω) D(p q) N D(p q) := k j= p j ln p j q j. ) Buckmaster, T.: Onsager conjecture almost everywhere in time, arxiv: v3 (03) ) Buckmaster, T., De Lellis, C. & Székelyhidi, L. Jr.: Dissipative Euler flows with Onsager-critical spatial regularity, arxiv: v (04) 3) Cheskidov, A., Constantin, P., Friedlander, S. & Shvydkoy, R.: Energy conservation and Onsager s conjecture for the Euler equations, Nonlinearity vol (003) ) Constantin, P., E,W., & Titi, E. S.: Onsager s conjecture on the energy conservstion for solutions of Euler s equation, Commun. Math. Phys. vol 65: (994) ) De Lellis, C. & Székelyhidi, L. Jr.: Dissipative Euler flows and Onsager s conjecture, arxiv:0.75v (0) 6) Duchon, J. & Robert, R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations, Nonlinearity vol 3 (000) ) Eyink, G. L.: Local 4/5-law and energy dissipation anomaly in turbulence, Nonlinearity vol (003) ) Eyink, G. L. & Sreenivasan, K. R.: Onsager and the theory of hydrodynamic turbulence, Rev. Mod. Phys. vol 78 (006) ) Frisch, U.: Turbulence, Legacy of A. N. Kolmogorov, Cambridge University Press (996). 0) Isett, P.: Continuous Euler flows in three dimensions with compact support in time, arxiv:.4065v (0) ) Karatzas, I, & Shreve, S. E.: Brownian Motion and Stochastic Calculus, nd Edition, GTM, Springer, New York, (99). ) Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary, Seminar on Nonlinear Differential Equations, Chern, S.S. (ed.), Springer-Verlag (984), ) Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dkl. Akad. Nauk SSSR, vol 30 (94) 9-3 4) Kolmogorov, A. N.: On degeneration of isotropic turbulence in an incompressible viscous liquid, Dkl. Akad. Nauk SSSR, vol 3 (94) ) Kolmogorov, A. N.: Dissipation of energy in locally isotropic turbulence, Dkl. Akad. Nauk SSSR, vol 3 (94) 6-8 6) Kolmogorov, A. N.: A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynords number, J. Fluid Mech., vol 3 (96) ) Onsager, L.: Statistical hydrodynamics, Nuovo Cimento Suppl. vol 6 (949) ) Scheffer, V.: An inviscid flow with compact support in space-time, J. Geom. Anal. vol 3 (993) ) Schnirelman, A.: On the uniqueness of weak solution of the Euler equation, Comm. Pure Appl. math.. vol 50 (997) ) Shiryaev, A. N.: Probability, nd ed., Springer, New York, (995)
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality
The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D
Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D Shijin Ding Changyou Wang Huanyao Wen Abstract We consider the equation modeling the compressible hydrodynamic flow of liquid crystals
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Part III - Pricing A Down-And-Out Call Option
Part III - Pricing A Down-And-Out Call Option Gary Schurman MBE, CFA March 202 In Part I we examined the reflection principle and a scaled random walk in discrete time and then extended the reflection
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Phase-Field Force Convergence
Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection
Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu
Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα
Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα Ιωάννης Ε. Αντωνίου Τμήμα Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκη 54124 iantonio@math.auth.gr Η συμβολή του Δ. Κάππου στην Kβαντική Πιθανότητα
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying