([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
|
|
- Καλλιστώ Ζάχος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59-
2 , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv. [] Musso []. [9] mkdv,,. R M p TpM = {at + bn a bκ = 0}. M presymplectic ω ωpat + bn, T + N = at + bn, αt + βn ds = b + aκβds S S M H Hp = S κs ds H X H X H = κ T + κ N mkdv KdV [3], [5], [].,.,,. [5], [6], [8] mkdv 977 [4]. mkdv -60-
3 .,., R, Z n p n. p n+ p n =. p n..,. p n+ p n =. p n+ p n ϵ = ϕ n. p n, p n = p n+ p n p n. p p n ϕ n. p n p n+ S n. p n. T n = p n + p,. Tim Hoffmann.,. ps. rs. κs = /rs κs., +, /rs κs.. p n p, p n+ 3 C v n p n. 3-6-
4 . p n, T n C v n. r v n r v n = sin ϕ n, κ v n = ±/r v n = ± sinϕ n / S, S n, S n+. p p n p, p n. p n, p n+, O e n., 3 S, S n, S n+, p n. r e n r e n = tan ϕ n + tan ϕ n+. /rn e, 3,. Hoffmann [8]. p n,, S S n. r n = tan ϕ n. /r n κ n,. [8]. 4, O, Musin[] S. Tabachnikov[6],. 3 Hoffmann Kutz[9] mkdv.. p n+ p n ϵ = -6-
5 d dt p n = ϵ p n+ p n p n+ p n d dt κ n = + ϵ ϵ 4 κ n κ n+ κ n mkdv [7] ϕ n,. [9]. n, m p m n p m n+ p m n =, a n, p m n+ p m n a n p m+ n p m n b m = RK m n pm n p m a, Frenet, = RW m n pm n+ p m n a n, RK m n K m n p m n+ p m n a n = t cos Ψ m n, sin Ψ m n K m n = Ψ m n Ψ m. 3 [9] p n+ m+ = p m+ n+. Θ m n tan Θ m+ n+ Θm n = b m + a n Θ m+ n Θ m n+a tan 4 b m a n 4. W m n n Θ m n+, Kn m = Θm n+ Θ m = Θm+ mkdv [5]. mkdv ps = xs, ys T s = x s, y s = cos θs, sin θs -63-
6 θ s = κs mkdv θs, t mkdv. θ t + θ s 3 + θ sss = 0 mkdv. Hoffmann-Kutz κ m n = tan Km n a n [4], a n = a, b m = b t := n + m, l := n m, δ := a + b, ϵ := a b δ 0 Hoffmann-Kutz 4 mkdv bilinear method, 3 fs, y, t gs, y, t D i sd j yd k t f g := s s i y y j t t k fx, y, tgx, y, t s=s,y=y,t=t. D s. n D n s f g = n r=0 n r s n r f s r g 4 [3] τ m n s, t; y D sd y τ m n τ m n = τ m n, 3 D sτ m n τ m n = 0, 4 D 3 s + D t τ m n τ m n = 0, 5 D y τ m n+ τ m n = a n τ m n+ τ m n, 6 D y τn m+ τn m = b m τ n+ τ m n m, 7 b m τ n m+ τn+ m a n τ n+τ m n m+ + a n b m τ n+ m+ n m =
7 p m n s, t; y := Θ m n s, t; y := log τ m n τ m n y logτ m n τ m n logτ m n / τ m n m, n Z, y R s, t p m n s, t; y mkdv s, t, y R n, m p m n s, t; y mkdv τ m n. breather solution [3]. N Z 0, τ m n u = τ m n s, t; y, z; u τ m n u = exp f i u [ s + n a n + m b m = f u i s, t; y, z; m, n i =,..., N y ] det f i u+j, i,j=,...,n f i u s = f i u+, f u i z = f i u+, f u i t = 4f i u+3, f u i y = f i u, f u i m, n f u m, n = f i u+ a m, n, f u i m, n f u m, n = f i u+ m, n n b m. N = 0, detf i u+j i,j=...,n =. f u i f u i = e η i + e µ i, 9 e η i = α i p u i a n p i b m p i e pis+p i z 4p3 i t+ p y i, n m 0 e µ j = β i qi u a n q i b m q i e qis+q i z 4q3 i t+ q y i, p i, q i, α i, β i. n m -65-
8 τ τ m n = exp [ s + n a n + m b m y ] det f i j, i,j=,...,n e η i e µ j n f i u = e η i + e µ i, = α i p u i a n p i b m p i e pis 4p n m 3 i t+ p i y, = β i p i u + a n p i + b m p i e pis+4p m 3 i t p i y. p i, α i R, β i R i =,..., N, τ m n mkdv mkdv N- N = M, τ m n p i, α i, β i C i =,..., M, p k = p k k =,..., M, α k = α k, β k = β k k =,..., M mkdv mkdv M- 5 mkdv ps, t px, t = x, yx, t. mkdv u x u t = + u 3/, u = y x xx WKI rs, t := exp θs, t, zs, t := s 0 rs, t ds Dym r t = r 3 r zzz []. -66-
9 [] B.-F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno and Y. Ohta, Discrete integrable systems and hodograph transformations arising from motion of deiscrete plane curves, preprint, arxiv:07.48, 0. [] A. Fujioka and T. Kurose, Hamiltonian formalism for the higher KdV flows on the space of closed complex equicentroaffine curves, Int. J. Geom. Methods Modern Phys. 700, no., [3] R. E. Goldstein and D. M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett. 6799, no. 3, [4], Nonlinear partial difference equations. I. A difference analogue of the Kortewegde Vries equation, J. Phys. Soc. Japan 43977, no. 4, [5], Discretization of the potential modified KdV equation, J. Phys. Soc. Japan 67998, no. 4, [6],,, 003. [7] M. Hisakado, K. Nakayama, and M. Wadati, Motion of discrete curves in the plane, J. Phys. Soc. Japan 64995, no. 7, [8] T. Hoffmann, Discrete Differential Geometry of Curves and Surfaces, COE, Vol. 8, 009 [8]. [9] T. Hoffmann and N. Kutz, Discrete curves in CP and the Toda lattice, Stud. Appl. Math [0],,, 007. [],,, 00. [],,, 00 0, 6 3. [3] J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Motion and Bäcklund transformations of discrete plane curves, Kyushu J. Math., to appear arxiv: [4] J. Inoguchi, K. Kajiwara, N. Matsuura, Y. Ohta, Explicit solutions to semi-discrete modified KdV equation and motion of discrete plane curves, preprint. [5],, [8]. [6] W. Rossman,, 48 00, 9 5. [7] G. L. Lamb Jr., Solitons and the motion of helical curves, Phys. Rev. Lett , no. 5, [8],,,, 000, pp [9] N. Matsuura, Discrete KdV and discrete modified KdV equations arising from motions of planar discrete curves, Int. Math. Res. Notices, to appear doi:0.093/imrn/rnr
10 9, [0],,, A0-580,, pp [] O. R. Musin, Curvature extrema and four-vertex theorems for polygons and polyhedra, J. Math. Sci , no. 0, [] E. Musso, An experimental study of Goldstein-Petrich curves, Rend. Sem. Mat. Univ. Pol. Torino 67009, no. 4, [3] U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Results Math.7995, no. 3-4, [4] W. Rossman, Discrete Constant Mean Curvature Surfaces via Conserved Quantities, COE 5, 00. [5] G. Segal, The geometry of the KdV equation, Int. J. Modern Phys. A 6 99, [6] S. Tanachnikov, A four vertex theorem for polygons, Amer. Math. Monthly 07000, no. 9, [7] M. Umehara, A unified approach to the four vertex theorems. I.,in: Differential and Symplectic Topology of Knots and Curves, 85 8, Amer. Math. Soc. Transl. Ser., 90999, pp [8],,, 00. inoguchi@sci.kj.yamagata-u.ac.jp -68-
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
Curved Fold Origami. Marcelo A. Dias & Christian D. Santangelo NSF DMR
Curved Fold Origami Marcelo A. Dias & Christian D. Santangelo http://www.flickr.com/photos/31375127@n07/ NSF DMR-0846582 http://www.flickr.com/photos/31375127@n07/ (Origami) oru to fold + kami, paper =
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
( ) Kähler X ( ),. Floer -Oh- - [6]. X Fano *, X ( = (C ) N ) W : X C ( ) (X,W). X = P, W (y) =y + Q/y. Q P. Φ:X R N, Δ=Φ(X). u Int Δ, Lagrange L(u) =
Floer Cohomologes of Non-torus Fbers of the Gelfand-Cetln System (X, ω) 2N. X N Φ=(ϕ,...,ϕ N ):X R N, Posson, Φ. Φ, Arnold-Louvlle Largange. Φ (u) = T N, ω Φ (u) =0.. Gelfand-Cetln, Gullemn-Sternberg [9]
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
Jacobian Elliptic Function Method and Solitary Wave Solutions for Hybrid Lattice Equation
Commun. Theor. Phys. (Beijing China) 45 (2006) pp. 057 062 c International Academic Publishers Vol. 45 No. 6 June 5 2006 Jacobian Elliptic Function Method Solitary Wave Solutions for Hybrid Lattice Equation
( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.
( ),.,,, 1, [17]. 1. 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K. 1.2. Σ g g. M g, Σ g. g 1 Σ g,, Σ g Σ g. Σ g, M g,, Σ g.. g = 1, M 1 M 1, SL(2, Z). Q. g = 2, 2000 M 2 (Korkmaz [20], Bigelow Budney [5])., Bigelow
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping
5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation
ΟΛΟΚΛΗΡΩΣΙΜΕΣ ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΟΛΟΚΛΗΡΩΣΙΜΕΣ ΜΗ ΓΡΑΜΜΙΚΕΣ ΜΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΚΤΗΣΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ
Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.
338-8570 255 e-mail: tkishimo@rimath.saitama-u.ac.jp 1 C T κ(t ) 1 [Projective] κ = κ =0 κ =1 κ =2 κ =3 dim = 1 P 1 elliptic others dim = 2 P 2 or ruled elliptic surface general type dim = 3 uniruled bir.
IUTeich. [Pano] (2) IUTeich
2014 12 2012 8 IUTeich 2013 12 1 (1) 2014 IUTeich 2 2014 02 20 2 2 2014 05 24 2 2 IUTeich [Pano] 2 10 20 5 40 50 2005 7 2011 3 2 3 1 3 4 2 IUTeich IUTeich (2) 2012 10 IUTeich 2014 3 1 4 5 IUTeich IUTeich
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
ITU-R P ITU-R P (ITU-R 204/3 ( )
1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
arxiv: v1 [math.dg] 31 Jan 2009
arxiv:0902.0086v1 [math.dg] 31 Jan 2009 Maurer Cartan Forms of the Symmetry Pseudo-Group and the Covering of Plebañski s Second Heavenly Equation Oleg I. Morozov Department of Mathematics, Moscow State
New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction
ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.15013) No.,pp.18-19 New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές
ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές 1. Patsis, P. A. & Zachilas, L.: 1990, Complex Instability Of Simple Periodic-Orbits In A Realistic 2-Component Galactic Potential, Astron. & Astroph., 227, 37 (ISI,
n+1 v2 2 1 + x 3 1 + x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =
Κεφάλαιο 2 Λείες πολλαπλότητες Σύνοψη Παρουσιάζουμε τον ορισμό μιας λείας (διαφορικής) πολλαπλότητας και αναλύουμε δύο βασικά παραδείγματα, τη μοναδιαία σφαίρα και τον προβολικό χώρο. Στη συνέχεια, μελετάμε
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
1 The problem of the representation of an integer n as the sum of a given number k of integral squares is one of the most celebrated in the theory of numbers... Almost every arithmetician of note since
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Higher spin gauge theories and their CFT duals
Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)
Geodesic paths for quantum many-body systems
Geodesic paths for quantum many-body systems Michael Tomka, Tiago Souza, Steve Rosenberg, and Anatoli Polkovnikov Department of Physics Boston University Group: Condensed Matter Theory June 6, 2016 Workshop:
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Dispersive estimates for rotating fluids and stably stratified fluids
特別講演 17 : msjmeeting-17sep-5i4 Dispersive estimates for rotating fluids and stably stratified fluids ( ) 1. Navier-Stokes (1.1) Boussinesq (1.) t v + (v )v = v q t >, x R, v = t >, x R, t v + (v )v = v
LTI Systems (1A) Young Won Lim 3/21/15
LTI Systems (1A) Copyright (c) 214 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u
. (1) Nehari c (c, 2c) 2c Bahri- Coron Bahri-Lions (2) Hénon u = x α u p α (3) u(x) u(x) + u(x) p = 0... (1) 1 Ω R N f : R R Neumann d 2 u + u = f(u) d > 0 Ω f Dirichlet 2 Ω R N ( ) Dirichlet Bahri-Coron
(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
Java Applets. Visual Simulation of Classical Mechanics in terms of Java Applets. Toshiaki Izumoto 1 and Yuki Irokawa 1. Java Graphics 1) 2) 6)
Java Applets 1 1 2 Applets Runge-Kutta 3 Applet 3, Web Visual Simulation of Classical Mechanics in terms of Java Applets Toshiaki Izumoto 1 and Yuki Irokawa 1 In this paper, some Java applets are made
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3
Mathematical Problems in Engineering Volume 20, Article ID 9849, pages doi:0.55/20/9849 Research Article Weingarten and Linear Weingarten Type Tubular Surfaces in E 3 Yılmaz Tunçer, Dae Won Yoon, 2 and
Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1
International Mathematical Forum, Vol. 9, 2014, no. 3, 137-144 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.312238 Exact Two Waves Solutions with Variable Amplitude to the KdV Equation
Chapter 6 BLM Answers
Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative
Lectures on Quantum sine-gordon Models
Lectures on Quantum sine-gordon Models Juan Mateos Guilarte, Departamento de Física Fundamental (Universidad de Salamanca IUFFyM (Universidad de Salamanca Universidade Federal de Matto Grosso Cuiabá, Brazil,
New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients
Commun. Theor. Phys. (Beijing, China) 44 (005) pp. 80 806 c International Academic Publishers Vol. 44, No. 5, November 15, 005 New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation
Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation Uwe C. Täber 1 and Sebastian Diehl Weigang Li 1 1 Department of Physics, Virginia Tech, Blacsbrg, Virginia, USA Institte of Theoretical
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle
Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles
ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )
39 1 Vol. 39 No. 1 2009 1 25 ADVANCES IN MECHANICS Jan. 25, 2009 *, 100081. 5 3. Noether, Lie,, Lagrange,,.,,, 1 1.1 1687 Newton (1642 1727), 3,., Newton. 1743 d Alembert (1717 1783), Newton, d Alembert.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
[4], [5], [6], [7], [8], [9], [10], [11].
Κεφάλαιο 8 Συναλλοίωτη παράγωγος και παραλληλία Σύνοψη Ορίζουμε την έννοια του διανυσματικού πεδίου σε μια επιφάνεια και τη συναλλοίωτη παράγωγο αυτού κατά μήκος μιας λείας καμπύλης. Ενα διανυσματικό πεδίο
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems
Lotka Volterra Stability Analysis of Delayed Periodic Lotka Volterra Systems 25 4 ii iii 1 1.1 1 1.2 2 1.3 5 8 2.1 8 2.2 12 2.3 14 2 3.1 2 3.2 21 26 4.1 26 4.2 28 32 35 36 Lotka Volterra 2 2 Lotka Volterra
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Smarandache Curves of a Spacelike Curve According to the Bishop Frame of Type-2
International J.Math. Combin. Vol.4(016), 9-43 Smarache Curves of a Spacelike Curve According to the Bishop Frame of Type- Yasin Ünlütürk Department of Mathematics, Kırklareli University, 39100 Kırklareli,
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
3-dimensional motion simulation of a ship in waves using composite grid method
1 E14-1 3-dimensional motion simulation of a ship in waves using composite grid method matsuo@triton.naoe.t.u-tokyo.ac.jp, park@triton.naoe.t.u-tokyo.ac.jp, sato@triton.naoe.t.u-tokyo.ac.jp, miyata@triton.naoe.t.u-tokyo.ac.jp,
A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles
Applied Matheatical Sciences Vol. 11 017 no. 6 65-7 HIKARI Ltd www.-hikari.co https://doi.org/10.1988/as.017.6195 A Laplace Type Proble for a Lattice with Cell Coposed by Three Triangles with Obstacles
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
On Asymptotic Behaviour of Positive Solutions of x = t α/2 2 x 1+α in the Superlinear Case
COMMENTARII MATHEMATICI UNIVERSITATIS SANCTI PAULI Vol. 64, No. 1 2015 ed. RIKKYO UNIV/MATH IKEBUKURO TOKYO 171 8501 JAPAN On Asymptotic Behaviour of Positive Solutions of x = t α/2 2 x 1+α in the Superlinear
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
l 1 p r i = ρ ij α j + w i j=1 ρ ij λ α j j p w i p α j = 1, α j 0, j = 1,..., p j=1 R B B B m j [ρ 1j, ρ 2j,..., ρ Bj ] T = }{{} α + [,,..., ] R B p p α [α 1,..., α p ] [w 1,..., w p ] M m 1 m 2,
The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points
Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,
Τίτλος Μαθήματος: Διαφορική Γεωμετρία II
Τίτλος Μαθήματος: Διαφορική Γεωμετρία II Ενότητα: Γεωδαιζιακές καμπύλες Όνομα Καθηγηηή: Ανδρέας Αρβανιηογεώργος Τμήμα: Μαθημαηικών 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
page: 2 (2.1) n + 1 n {n} N 0, 1, 2
page: 1 1 1 ( ) ( ) ( ) ( 1 ) 1) 2 1 page: 2 2 [ 4 ] [11] ( [11] ) Chapter I 0 n ( n ) (2.1) n + 1 n {n} 0, 1, 2, 3, 4,..., { }, {, { }}, {, { }, {, { }}}, {, { }, {, { }}, {, { }, {, { }}}},... n n =
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
第 61 回トポロジーシンポジウム講演集 2014 年 7 月於東北大学 Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons E. Witten Chern-
Kontsevich-Kuperberg-Thurston ( ) Kontsevich-Kuperberg-Thurston Kontsevich Chern-Simons 3 1 1989 E. Witten Chern-Simons 3 ( ) ([14]) Witten 3 Chern-Simons M. Kontsevich [5], S. Axerod I. M. Singer [2]
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
Phase Response Curve of Spike Response Model
Vol.29-MPS-76 No.39 Vol.29-BIO-19 No.39 29/12/18 1 1, 2 3, 2 1, 2 Phase Response Curve of Spike Response Model Munenori Iida, 1 Toshiaki Omori, 1, 2 Toru Aonishi 3, 2 and Masato Okada 1, 2 Phase response
γ γ(t) x 2 + y2 tan t. , et e t a 2 t +e t
Εισαγωγή στη Διαφορική Γεωμετρία Καμπυλών και Επιφανειών Σημειώσεις παραδόσεων εαρινού εξαμήνου 011-01 Αντώνιος Μελάς Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 013 Περιεχόμενα 1 Καμπύλες 1 1.1 Καμπύλες
THE GEOMETRY OF VORTEX FILAMENTS FOR MHD IN MINKOWSKI 3-SPACE
International Journal of Pure and Applied Mathematics Volume 91 No. 2 2014, 219-229 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v91i2.8
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
Expansion formulae of sampled zeros and a method to relocate the zeros
Vol., No., /7 29 Expansion formulae of sampled zeros and a method to relocate the zeros Takuya SOGO It is known that the transfer function of sampled-data system has so-called intrinsic and discretization
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation
KelvinKei Notations Traditional name Kelvin function of the second kind Traditional notation kei Mathematica StandardForm notation KelvinKei Primary definition 03.5.0.000.0 kei kei 0 Specific values Values
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΙΑΧΥΤΟΤΗΤΩΝ ΜΕΡΙΚΩΣ ΚΟΡΕΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΥΛΙΚΩΝ ΜΕΣΩ ΣΤΟΧΑΣΤΙΚΑ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΟΜΩΝ
ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΙΑΧΥΤΟΤΗΤΩΝ ΜΕΡΙΚΩΣ ΚΟΡΕΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΥΛΙΚΩΝ ΜΕΣΩ ΣΤΟΧΑΣΤΙΚΑ ΑΝΑΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΠΟΡΩ ΩΝ ΟΜΩΝ Α.Ν. Γαλάνη, ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ, 153 10 Αγία Παρασκευή Αττικής Εθνικό Μετσόβιο Πολυτεχνείο, Τµήµα
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
CYLINDRICAL & SPHERICAL COORDINATES
CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3
大阪電気通信大学研究論集 ( 自然科学編 ) 第 51 号 A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3 Takuya IWATA and Kiyoshi
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Smarandache Curves and Applications According to Type-2 Bishop Frame in Euclidean 3-Space
International J.Math. Combin. Vol.(6), -5 Smarandache Curves and Applications According to Type- Bishop Frame in Euclidean 3-Space Süha Yılmaz (Dokuz Eylül University, Buca Educational Faculty, 355, Buca-Izmir,
Curves of Constant Curvatures in Four Dimensional Spacetime
Curves of Constant Curvatures in Four Dimensional Spacetime Kurt Nalty September 18, 011 Abstract Curves of constant curvature, torsion τ and lift γ trace curves on the surface of a hypersphere with fixed
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
> ##################### FEUILLE N3 237 ###################################### Exercice 1. plot([cos(3*t), sin(2*t), t=-pi..pi]);
##################### FEUILLE N3 37 ###################################### Exercice. plot([cos(3*t), sin(*t), t=-pi..pi]); ###################################### Exercice. restart:plot([*t^4-*t^3,t^-t,