THÈSE DE DOCTORAT. Explicit Calculations of Siu s Effective Termination of Kohn s Algorithm and the Hachtroudi-Chern-Moser Tensors in CR Geometry
|
|
- Αριάδνη Παπαφιλίππου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 NNT : 2018SACLS041 THÈSE DE DOCTORAT de L UNIVERSITÉ PARIS-SACLAY École doctorale de mathématiques Hadamard EDMH, ED 574 Établissement d inscription : Université Paris-Sud Laboratoire d accueil : Laboratoire de mathématiques d Orsay, UMR 8628 CNRS Spécialité de doctorat : Mathématiques fondamentales Wei Guo FOO Explicit Calculations of Siu s Effective Termination of Kohn s Algorithm and the Hachtroudi-Chern-Moser Tensors in CR Geometry Date de soutenance : 14 mars 2018, à l Institut de Mathématique d Orsay. Après avis des rapporteurs : XIAONAN MA Université Paris-Diderot 7 GERD SCHMALZ University of New England JEAN ECALLE Université Paris-Saclay Examinateur HERVÉ GAUSSIER Université Grenoble-Alpes Président du jury Jury de soutenance : XIAONAN MA Université Paris-Diderot 7 Rapporteur JOËL MERKER Université Paris-Saclay Directeur de thèse PAWEŁ NUROWSKI University of Warsaw Examinateur ALEXANDRE SUKHOV Université Lille 1 Examinateur
2 2
3 Contents 1 Introduction Première Partie: Méthode de Siu pour l algorithme de Kohn Deuxième partie: Tenseur de Hachtroudi-Chern-Moser en géométrie CR Tenseur de Hachtroudi-Chern-Moser pour les variétés CR Kohn s Algorithm and Siu s Effective Methods 15 1 Kohn s Algorithm Introduction The -Neumann problem a survey The Cauchy-Riemann geometry of boundary and subelliptic multipliers The geometry of Kohn s algorithm complex-valued, real-analytic case Examples Local Geometry of Complex Spaces and Local Intersection Theory Local Analytic Geometry Local Intersection Theory I Local Intersection Theory II Ideals Generated by the Components of Gradient Ideals Generated by Components of Gradients: Effective Aspects Application Multiplicity of an ideal Multiplicities of Analytic Sets Multiplicity of an Ideal Case of a Curve Generic Selection of Linear Combinations for Effective Termination Proper maps and projections Calculation of Explicit ε in Dimension 2 Preliminaries Ideal Generated by Gradient and Generic Selection in Dimension Calculation of Explicit ε in Dimension Siu s method: Starting Point Siu s method: Inductive Step Siu s method: Conclusion and End of Calculation Homogeneous Polynomials in Two Variables Some Properties of Homogeneous Polynomials Resultants Resultants and Jacobians Kohn s Algorithm Applied to Homogeneous Polynomials in 2 Variables The Hachtroudi-Chern-Moser invariants in CR geometry Introduction 90 1 Umbilical points in CR ellipsoids in C Holomorphic curves in Lorentzian CR manifolds The Hachtroudi-Chern-Moser Tensor
4 4 Umbilic Points in Ellipsoid in C M as a graph of a function Ellipsoids in C n Holomorphic curves in Lorentzian rigid hypersurfaces in C CR Geometry of Real-Analytic Hypersurfaces M 2n+1 C n Some Remarks Recall on Real-Analytic Functions The Geometry of C N Defining function of M CR bundles induced on M Frames of T 1,0 M and T 0,1 M Contact Form CR frame and CR coframe The Levi form Diagonalisation of the Levi form Explicit Diagonalisation of the Levi form The Geometry of Lorentzian Real Hypersurfaces in C n Holomorphic Curves in Hypersurfaces Holomorphic curves in Lorentzian real hypersurfaces The Sphere Bundle and the First Prolongation Partial Pullback The Second Prolongation and the Second Lifted Space The hyperplane and sphere equation on the fibres µ 2,..., µ n C n Rigid Real hypersurface M 5 and the Hachtroudi-Chern-Moser Tensor in C Lorentzian rigid real hypersurfaces M 5 in C 3 -Calculations Setting The Exterior Derivative The Pfaffian system Calculations of dα 1 and dα Calculation of dω 2 and the expression of L Equation of the hyperplane The differential forms τ and dτ The expressions A, B, C and the equation of the Sphere The Hachtroudi-Chern-Moser tensor components The components of the invariant tensor Relation to the defining function u = F z, z Hachtroudi-Chern-Moser tensor in CR geometry First and Second Jet Lifts of Equivalences Completely Integrable Second Order Systems Initial G 1 -structure and Its First Reduction Reduced G 2 -structure and Stabilization Unparametric Cartan Lemma Reasonings Parametric Determination of ϕ, ϕ α, ϕα, ϕ α The 1-form ψ The term α ωα ϕ α α ω α ϕ α The term d ϕ The S tensor a review The S tensor an explicit calculation
5 9.1 The term ω α ϕ The term ϕ α ω The term δα σ ϕ σ ω σ Collecting terms with ω ω from ω α ϕ, ϕ α ω and δα σ ϕ σ ω σ The term γ ϕγ α ϕ γ Collecting terms with ω ω in γ ϕγ α ϕ γ The term dϕ α The S tensor Normalisation of the S tensor Explicit calculation of Sασ ρ id Appendix: Cartan Lemma for 1-Forms and for 2-Forms Hachtroudi-Chern-Moser tensor in CR geometry Some preliminaries Real Manifold M 2n+1 C n Tangent bundle on M, extrinsic version Commutator properties and the Levi matrix M as a graph of complex-valued function Some identities between r and Θ The expression δ ij The Levi non-degenerate condition Translation between Θ and r The vector field wzk and the Hachtroudi-Chern-Moser tensor for CR geometry An alternative formulation A direct approach to the alternative formulation
6 Acknowledgements This thesis would not have been possible without the help of some people who have played key roles in my life during the past few years, and I would like to dedicate this space to express my most sincere appreciation to them. First and foremost, I would like express my heartfelt gratitude to my Ph.D supervisor Professor Joël Merker, whose support has without a doubt given me this wonderful opportunity to do a Ph.D in mathematics at the Département de Mathématiques d Orsay. This opportunity has opened my eyes to the vast world of mathematical research, which would have otherwise been impossible had I chosen to go back to Singapore after my Masters in I have immensely benefited from his guidance and tutelage, without which it would be practically unimaginable for me to see my Ph.D through to the end. I am sincerely grateful to the professors and researchers who have agreed to be members of the jury for my Ph.D defense. I would like to thank Xiaonan Ma and Gerd Schmalz for agreeing to be the reviewers of my Ph.D report despite having other heavy professional responsibilities. I would also like to express my appreciation to Jean Ecalle, Hervé Gaussier, Alexandre Sukhov and Paweł Nurowski for coming here to sit on the jury in spite of their busy schedules. I want to thank the Fondation Mathématique Jacques Hadamard, and the École Doctorale Mathématique Hadamard for their financial assistance during my Masters and Ph.D studies respectively. I would also like to specially thank the directors of the École Doctorale professors David Harari, Frédéric Paulin, Stéphane Nonnenmacher; as well as the secretaries Valérie Lavigne, Florence Rey and Christelle Pires for their wonderful administrative support. I want to thank some professors who have taught me in their courses: Andrei Moroianu, Anna Cadoret, Jérémie Szeftel, Jacques Tilouine, Claire Voisin, Fabrice Orgogozo, Gaetan Chenevier, Nessim Sibony, Antoine Chambert-Loir, Joël Merker, David Harari, Jean-Michel Bismut, Sébastien Boucksom, and Xiaonan Ma for my M2 mémoire. I am thankful to Professor Jean-Michel Bismut for organising the weekly seminar Opérateurs de Dirac and allowing me to give a talk during one of the sessions. I want to thank professors Julien Duval and Guy David for being willing to write recommendation letters for me for my post-doc applications, and Gan Wee Teck for useful career advices. I also want to express my sincere thanks to Professor Frank Pacard for allowing me to do my summer internship under his supervision in 2010, which has led me to make the decision to come to France for my graduate studies. I would like to express my appreciation to my friends and colleagues with whom I have spent a wonderful time together in France not in order of preference: Lek Huo, Chern Hui, Jason, Sandoko, Raymond, Wu Shuang, Manyu, Xiu Wei, Yuhe, Boyuan, Arifin, Derrick, Bryan, Shirley, Madelyn, Doris, Qihao, Nathan Grosshans, Guilhem Beausoleil, Sai, Trung Nguyen Quang, Dinh Tuan Huynh, Songyan Xie, Bingxiao Liu, Quang Huy Nguyen, Yang Cao, Cong Xue, Ruoci Sun, Xianglong Duan, Louis, Christophe Sigmund, Shéhérazade, Daphné, Kim Ng, Weichao Liang, Jun Zhu, Chi Jin, Tiba, Diane, Lionel Thiong, Amy, Egert Moritz, Hoang-Chinh Lu, The-Anh Ta, Patrice and Monique. Finally I want to tell Jonathan, Eugene, and Ming Han that our online conversations have made some nights easier to get by. I also want to tell my family members that I love them, and I am grateful to them for being ever understanding and being ever patient with me. I genuinely wish the very best for every one listed here, as well as for the others whom I have crossed path with yet whom I have inadvertently left out in the list. 6
7 Chapter 1 Introduction Cette thèse consiste en deux parties: la première partie est l étude d un article de Siu sur la terminaison effective de l algorithme de Kohn pour les domaines pseudoconvexes spéciaux dans C 3, tandis que la deuxième partie est l étude du tenseur de Hachtroudi-Chern-Moser pour les variétés CR Première Partie: Méthode de Siu pour l algorithme de Kohn En 1979, J.J. Kohn introduit dans son article [Koh79] un algorithme qui établit les relations entre la géométrie du bord d un domaine, la régularité des solutions au problème de -Neumann, et les propriétés algébriques des idéaux multiplicateurs. Soient z 1,..., z n, z n+1 les coordonnées holomorphes sur C n+1, et soient F 1 z 1,..., z n,..., F N z 1,..., z n des germes de fonctions holomorphes en les n premières variables qui s annulent au point origine. Un domaine spécial Ω est décrit par une inéquation définissante donnée par une fonction analytique réelle de la forme r := Rez n+1 F k z 1,..., z n 2 < 0, 1 k N dont le bord bω de Ω est le lieux d annulation de r: Rez n+1 F k z 1,..., z n 2 = 0. 1 k N Une forme différentielle φ de type p, q peut s écrire comme φ = φ IJ dz I d z J, I =p J =q où les φ IJ sont des fonctions sur Ω. Si ces φ IJ sont C 1, l opérateur de Dolbeault, noté, agit sur φ par φ = zj φ IJ d z j dz I d z J. 1 j n+1 I =p J =q Cette forme φ est de type p, q + 1. Si f est une p, q + 1-forme lisse, une question importante est la recherche des solutions φ qui satisfont l équation φ = f, assujettie à la condition que f = 0. Ce problème, qui s appelle le problème de -Neumann, est étudié dans un cadre plus général en utilisant la théorie L 2 de Hörmander. Pour tout 1 p, q n + 1, l espace de Hilbert L 2 p,qω consiste en les formes différentielles de type p, q dont les coefficients φ IJ sont L 2 -intégrable sur Ω par rapport à dλ la mesure de Lebesgue. 7
8 L opérateur agit sur une telle forme différentielle au sens des distribution, mais φ n est pas forcément dans L 2 p,q+1 Ω. Donc, l opérateur est une application linéaire non-bornée de L 2 p,qω vers L 2 p,q+1 Ω, et qui est bien définie sur son domaine Dom p,q. Ce domaine est dense, parce qu il contient les p, q-formes lisses à support compact. Cet espace L 2 p,q+1ω, muni d un produit scalaire φ IJ dz I d z J, ψ IJ dz I d z J := φ IJ ψ IJ dλ, I =p J =q I =p J =q L 2 I =p J =q Ω fournit un opérateur adjoint de au sens de von Neumann. Cet opérateur est non-borné de L 2 p,q+1 Ω vers L2 p,q Ω défini sur un sous-espace dense Dom p,q+1 de L 2 p,q+1ω, et qui satisfait la relation de dualité φ, ψ L 2 = φ, ψ L 2 pour tout φ Dom p,q et tout ψ Dom p,q+1. L opérateur laplacien := + : L 2 p,q Ω L 2 p,qω, avec son domaine de définition Dom p,q, est fermé au sens du graphe, et auto-adjoint au sens de von Neumann. La régularité des solutions pour le problème de -Neumann se ramène à l étude de la régularité du laplacien au bord bω de Ω voir Proposition Plus précisément, soit x bω un point dans le bord. Existe-t-il un voisinage U C n+1 de x et un nombre strictement positif ε > 0 tels que pour tout φ D p,q Ω Définition 1.13, l estimée suivante φ 2 ε C φ 2 + φ 2 + φ soit satisfaite? Ici, 2 est la norme de Sobolev tangentielle Section 1.2.4, et la constante C ne dépend pas de φ. C est à ce moment que Kohn introduit la notion de multiplicateurs sous-elliptiques Définition Ce sont les fonctions-germes lisses g Cx en x avec des voisinages U C n+1 de x, et des nombres strictement positifs ε, C tels que pour toute forme différentielle φ D p,q Ω, une variante de l estimée sous-elliptique gφ 2 ε C φ 2 + φ 2 + φ 2 soit satisfaite. Les données U, ε, C dépendent de g. L ensemble J x des multiplicateurs souselliptiques est un idéal radical réel de l anneau C x Proposition Évidemment, l inégalité est établie si et seulement si 1 J x. Comme la fonction définissante r et le déterminant de la forme de Levi Levr sont des multiplicateurs avec régularités respectives ε = 1 et ε = 1/2 Propositions 1.20, 1.24 et remarque avant le paragraphe 1.2.7, Kohn crée un algorithme qui permet de déduire dans quelles conditions g = 1 est atteint. L algorithme pour les domaines spéciaux est le suivant. Definition Soit F 1,..., F N un idéal de l anneau local O C n,0 des fonctions holomorphes. Soient g 1,..., g n des éléments de l idéal F 1,..., F N, avec le déterminant jacobien z1 g 1 zn g 1 detg := Jacg 1,..., g n = det z1 g n zn g n L idéal I # 1 est engendré par les éléments de la forme detg, et I 1 est son radical. Si I k est déjà construit, l idéal I # k+1 est engendré par I k avec deth 1,..., h n, où h i est une fonction holomorphe qui appartient à I k ou bien une des fonctions F 1,..., F N. Ensuite, soit I k+1 le radical de I # k+1. 8
9 Alors il est évident qu il y a une suite croissante d inclusions d idéaux I 1 I 2, et comme l anneau O C n,0 est noethérien, la suite se stabilise. S il existe un nombre K tel que 1 I K, l algorithme s arrête, et l estimée sous-elliptique est obtenue. Kohn donne aussi une interprétation géométrique des idéaux de multiplicateurs sous-elliptiques qui sont produits par cet algorithme. En utilisant le théorème de Diederich-Fornæss Théorème 1.35, le fait que l algorithme se termine avec 1 I K pour quelque K équivaut à dire qu il n existe pas de germe de variété analytique complexe contenu dans bω et passant par x. Dans un domaine spécial avec x := 0 bω, cela revient à demander que l intersection des germes de variétes analytiques complexes N {F i = 0} = {0} i=1 consiste uniquement en le point origine. Dans le langage de la géométrie analytique locale, l intersection totale des variétés définies par les F i est équivalente à la finitude de la dimension de l espace vectoriel quotient suivant dim C O C n,0/ F 1,..., F N := s < Une question pertinente, c est l existence d un processus effectif qui termine l algorithme de Kohn si la condition est satisfaite. Pour un domaine spécial dans C n, l énoncé de Siu dans son article [Siu10] est suivant: Théorème Il existe un nombre explicite m qui ne dépend que n et s tel que I m = O C n,0. Le but de cette partie de la thèse est la vérification de ce thèorème pour le cas n + 1 = 3, avec approfondissement de la méthode de Siu. Le théorème suivant exprime la régularité ε en fonction de s: Théorème Soient z 1, z 2, z 3 les coordonnées holomorphes dans C 3 avec z i = x i + 1y i. Pour N 2, soient F 1,..., F N des germes de fonctions holomorphes en z 1, z 2 dans O C 2,0 qui s annulent à l origine, tels que dim C O C 2,0/ F1,..., F N := s <. Soit Ω C 3 le domaine spécial défini par Ω = { z 1, z 2, z 3 C 3 : 2Rez 3 1 i N } F i z 1, z 2 2 < 0. Alors, l algorithme de Kohn se termine en au plus 4s 2 1 étapes. De plus, pour tout φ D 0,1 Ω à support compact, φ 2 ε φ 2 + φ 2 + φ 2, où ε 1 2 4s2 1s+3 s 2 4s s+1. 8s 1 En revanche, la même méthode ne peut pas s appliquer aux dimensions supérieures n Le problème réside dans l assertion [Siu10, page 1234]: 9
10 Assertion Soient F 1,..., F N des germes de fonctions holomorphes sur C n qui s annulent à l origine telles que l idéal engendré par les F i contient m E pour quelque nombre effectif E ici, m est l idéal maximal unique de l anneau local O C n,0. Pour tous 1 i 1 < < i ν N et 1 j 1 < < j ν n, soit J ν l idéal engendré par F i1,..., F iν z ii,..., z jν. Alors il existe un autre nombre effectif E tel que cet idéal J ν contient m E. Cette assertion a un contre-exemple direct: dans C 3 avec ses coordonnées holomorphes z 1, z 2, z 3, il suffit de considérer l idéal z 1, z 2 2, z 2 3. La dernière sous-section de cette partie donne des exemples de domaines spéciaux dans C 3 avec terminaison effective de l algorithme en deux étapes. Soient F et G des polynômes homogènes en deux variables z, w. Sous l hypothèse que l intersection des variétés {F = 0} {G = 0} := {0} ne consiste qu en le point-origine, en utilisant des résultant, avec une hypothèse de généricité, deux étapes suffisent. Théorème Étant donné deux polynômes homogènes F, G C[z, w] génériques tels que ResultantF, G 0, il existe une transformation linéaire inversible A : C 2 C 2 tel que l algorithme de Kohn se termine en deux étapes pour F A et G A Deuxième partie: Tenseur de Hachtroudi-Chern-Moser en géométrie CR La deuxième partie est consacrée au calcul des invariants des variétés CR dans diverses situations. La première situation est de déterminer l existence des lieux CR-ombilics pour les ellipsoïdes dans C 2. La deuxième partie est la géométrie des hypersurfaces réelles M dans C n+1 qui sont lorentzienne, d après le travail de Bryant [Bry82]. Dans cette partie, en cherchant les équations explicites qui permettent de trouver les champs de vecteurs possibles pour les courbes holomorphes plongées dans M, les composantes de l invariant de Chern-Moser peuvent être calculées. Dans la troisième partie, étant donné les équations aux dérivées partielles: y x α x = F α x γ, y, y x δ 1 α,,γ,δ n, nous reconstruisons l invariant Sαρ σ associé à ces équations, trouvé par Hachtroudi dans sa thèse, soutenue pendant l entre-deux-guerres sous la direction d Élie Cartan. Ensuite, le tenseur Sαρ σ sera adapté pour le cas où l hypersurface réelle M est donnée par une équation définissante implicite r = Les lieux CR-ombilics des ellipsoïdes dans C 2 Pour n 2, l espace complexe C n qui s identifie avec R 2n, est équipé des coordonnées holomorphes z 1,..., z n où z i = x i + 1y i. Un ellipsoïde est l image de la sphère de rayon 1: S 2n 1 = {z C n : z z n 2 = 1} 10
11 sous une transformation affine de R 2n. Un tel ellipsoïde est donc défini par une équation de la forme αi x 2 i + i yi 2 = 1, i n où les α i i > 0 sont des constantes réelles. En changeant les variables z i z i / i, puis en posant a i := α i / i 1, l equation se transforme en ai x 2 i + yi 2 = i n Ensuite, avec A i := a i 1 2a i + 2 qui satisfont 0 A i 1/2, le deuxième changement de coordonnées 1 i n. z i 1 2A i z i, z i 1 2A i z i, conduit à l équation finale d un ellipsoïde considérée par Webster [Web00] z i z i + A i zi 2 + z i 2 = 1. 1 i n Avec ce formalisme, pour n 3, et si les A i sont choisis génériquement avec 0 < A 1 < < A n < 1/2, Webster démontre qu il n y a pas de point CR-ombilics. Dans C 2 avec z = x+ 1y et w = u+ 1v, Huang et Ji dans leur article [XS07] ont démontré que les ellipsoïde de C 2 ont toujours au moins 4 points CR-ombilics. La deuxième partie de cette thèse établit le résultat nouveau suivant, montrant que l ensemble des points CR-ombilics est de cardinal infini. Ce résultat, qui est dans un travail en commun avec Professeur Merker et un doctorant The-Anh Ta, va apparaître dans Comptes Rendus Académie des Sciences: Théorème cf [FMT]. Pour a 1 et b 1 avec a, a 1, 1, soit γθ la courbe parametrée par θ R à valeur dans C 2 = R 4 : γ : θ xθ + 1yθ, uθ + 1vθ où a 1 ba 1 xθ = cosθ, yθ = aab 1 ab 1 sinθ, b 1 ab 1 uθ = bab 1 sinθ, vθ = ab 1 cosθ. Alors son image γr est contenue dans le lieu CR-ombilic γr Umb CR E a,b E a,b, où E a,b est l ellipsoïde défini par ax 2 + y 2 + bu 2 + v 2 = 1. 11
12 L idée de la preuve est de considérer les fonctions suivantes, avec l invariant I [w] = Hρ := ρ 2 zρ ww 2ρ z ρ w ρ zw + ρ 2 wρ zz, Lρ := ρ z ρ z ρ w w ρ z ρ w ρ zw ρ z ρ w ρ z w + ρ w ρ w ρ z z. [ ] 3 Lρ Hρ L ρ 2 w ρ 3 w [ ] 2 [ ] 2 Lρ Lρ Hρ Lρ Lρ Hρ 6 L L 3 4 L2 L 2 ρ 2 w ρ 2 w ρ 3 w ρ 2 w [ ] 2 Lρ Lρ Hρ L3 L + 15 Lρ [ ρ 2 w +10 Lρ ρ 2 w ρ 2 w Lρ L ρ 2 w L 2 Lρ ρ 2 w ρ 3 w ρ 2 w Hρ L ρ 3 w L ρ 2 w ρ 3 w ] 2 Lρ Hρ L2 ρ 2 w [ 15 L ρ 3 w ] 3 Lρ Hρ L qui s annule sur la courbe γθ, et par conséquent, l ellipsoïde contient des points CR-ombilics Courbes holomorphes dans les hypersurfaces réelles lorentziennes d après Bryant Soit M une hypersurface réelle dans C n+1 localement définie par une équation définissante r = 0, et soient z 1,..., z n, w = u + 1v les coordonnées holomorphes de C n+1. Dans cette partie, la variété M est supposée rigide, c est-à-dire qu elle est de la forme Les champs de vecteurs suivants pour 1 k n r := u F x 1,..., x n, y 1,..., y n = 0. L k := z k + L k := z k + F z k 1 F v F zk 1 F v forment des repères de T 1,0 M := CT M T 1,0 C n+1 et de T 0,1 M := CT M T 0,1 C n+1 respectivement. En revanche, un co-repère de CT M naturel est défini par θ = dv + θ k = dz k, θ k = d z k, v, F zk dz k + 1 k n 1 F v 1 k n v F zk ρ 2 w 1 F v d z k, où k est compris entre 1 et n. Évidemment, les θ k engendrent T 1,0 M et les θ k engendrent T 0,1 M. Par un changement des co-repères, la 2-forme dθ peut s écrire dθ = 1±α 1 ᾱ 1 ± ± α n ᾱ n mod θ. La variété M est dite lorentzienne si la signature de dθ est 1, n 1, ou autrement dit, dθ = 1α 1 ᾱ 1 α n ᾱ n mod θ. Soient A i et A i les champs de vecteurs qui sont duaux de α i et α i respectivement. S il y a une courbe holomorphe φ : D M qui est contenue dans M, le champ de vecteurs L φt qui est tangent à φd est donné par L φt = φ it = f 1 t, ta f n t, ta n, z i 1 i n+1 12 ρ 3 w
13 pour quelques f i correspondant au changement de repères. Ce champ de vecteurs est dans le noyau de dθ qui est une forme quadratique, et donc f 1 2 f 2 2 f n 2 = 0. Puisque φ est une immersion, la fonction f 1 ne s annule pas à l origine, et alors en divisant partout par f 1, l équation d une sphère est obtenue. L idée de Bryant est de traiter les f i /f 1 comme des inconnues, et d introduire de nouvelles variables λ 1,...,λ n 1 qui satisfont λ i 2 = 1. 1 i n 1 Donc, ces λ i constituent des coordornées locales du fibré en sphére M S 2n 3 au dessus de M. Dans le formalisme des co-repères, le système de Pfaff suivant est établi: ω 0 := θ, ω 1 := α 1, ω k := α k λ k α 1, ω k := ᾱ 1, ω k := ᾱ k λ k ᾱ k. Il existe des fonctions L k telles que si τ est la 1 forme τ := 2 k n λ k dλ k + 2 k n λ k L k ᾱ 1 2 k n λ k Lk α 1, sa tirée en arrière φ τ par φ au disque D est zéro. Pour le cas n = 2, le fibré en sphères est M S 1, avec λ = 1. Si I + := θ, α 2,..., α n, α 2,..., α n, τ, est l idéal engendré par ces 1-formes, la 2-forme dτ modulo I + dτ = [a 2 λ 2 + 4a 1 λ + 6a 0 + 4ā 1 λ + ā2 λ2 ] ω 1 ω 1 mod I +, est un polynôme en λ, λ, et par la théorie de Chern-Moser, les a 2, a 1, a 0 font partie du composantes du tenseur de Chern-Moser. La section suivante donne une formule explicite pour ces coefficients Tenseur de Hachtroudi-Chern-Moser pour les variétés CR Dans la dernière partie de cette thèse, soient x 1,..., x n, y les coordonnées de C n+1. Le but est l étude d un système d équations aux derivées partielles avec la condition de compatibilité où D x α est la dérivée totale y x α x = F α, x γ, y, y x δ, 1 α,,γ,δ n F,α = F α,, D x γf α = D x F αγ, D x α = x + y α x α y + 1 n F α, x γ, y, y x δ. y x δ 13
14 Dans sa thèse, Hachtroudi [Hac37] utilisait la méthode d Élie Cartan pour obtenir l invariant suivant Sαρ σ = Fy α,ρ x,y x σ 1 δρ σ Fy α,ε n + 2 x,y x ε + δα σ Fy ρ,ε x,y x ε + δρ Fy α,ε x σ,y x ε + δα Fy ρ,ε x σ,y x ε 1 + n + 1n + 2 ε δ ε δ σ ρ δ α + δ ρ δ σ αf δ,ε y x δ,y x ε. Pour adapter cet invariant au cas CR, soient z 1,..., z n, z n+1 := w les coordornées holomorphes de C n+1 et M l hypersurface réelle définie par r = 0. Pour 1 k, l n + 1, définissons H k,l := [r w r w r zk z l r zl r w r zk w r zk r w r zl w + r zk r zl r ww ], H k, l := [r w r w r zk z l r zl r w r zk w r zk r w r zl w + r zk r zl r ww ]. Notons r le determinant de la matrice suivante r z1 r zn r zn+1 H 1, 1 H 1, n H 1,n+1 r :=....,.. H n, 1 H n, n H n,n+1 et soit i,j+1 r le déterminant mineur de la matrice r en enlevant la i-ème colonne et la j + 1-ième ligne. En ré-adaptant les raisonnements de la section sur les ellipsoïdes, nous retrouvons l invariant associé à l hypersurface réelle M dans C n+1 définie par une équation définissante r = 0: S σ αρ id = k rz 3 n+1 k,σ+1 r l r 1 { r δρ σ z 3 n+1 k,ε+1 r n + 2 ε k l r rz 3 n+1 k,ε+1 r +δ σ α +δ ρ +δ α ε k l r rz 3 n+1 k,ε+1 r ε k l r rz 3 n+1 k,ε+1 r ε k l r 1 + n + 1n + 2 ε [ r 3 ] zn+1 l,+1 r Hα,σ zk zl r rz 3 n+1 qui est une formule analogue à celle d Hachtroudi. δ k l ε [ r 3 zn+1 k,+1 r Hα,ε zk zl r rz 3 n+1 ] [ r 3 zn+1 k,+1 r Hρ,ε zk zl r ε r 3 z n+1 [ r 3 zn+1 k,σ+1 r Hα,ε zk zl r r 3 z n+1 [ r 3 zn+1 k,σ+1 r Hρ,ε zk zl r rz 3 n+1 δ σ ρ δ α + δ ρ δ σ α r3 z n+1 k,ε+1 r r ] ]} ε ] [ r 3 zn+1 k,δ+1 r Hδ,ε zk zl r rz 3 n+1 ] 14
15 Chapter 2 Kohn s Algorithm and Siu s Effective Methods 1 Kohn s Algorithm Introduction 1.1 The -Neumann problem a survey The equation One of the most important results in analysis in several complex variables is the solution to the Levi problem. In summary, the theorem is as follows: Theorem 1.1. Let O C n be the sheaf of holomorphic functions on C n. The following conditions are equivalent for a domain Ω C n : 1. Ω is a domain of holomorphy, 2. Ω is pseudoconvex, 3. for all q 1, and for all smooth 0, q forms α such that α = 0, there exists a smooth 0, q 1 form u such that u = α. In the language of cohomology, H q Ω, O C n = 0. Such an equation u = α is called the Cauchy-Riemann equation, and Kohn s works study the behaviour of the equation near the boundary Some settings Let z 1,..., z n be holomorphic coordinates on C n, and let Ω C n be a domain. Then a p, q form α on Ω can be expressed as α = α i1,...,i p,j 1,...j q z 1,..., z n dz ii dz ip d z j1 d z jq, or simply 1 i 1 < <i p n 1 j 1 < <j q n α = I =p J =q α IJ dz I d z J, where the α IJ s are functions on Ω. Then α belongs to Cp,qΩ the space of smooth p, q forms if α IJ s are smooth. The space Cp,q Ω Cp,qΩ consists of smooth p, q form α that has a smooth extension to a slightly larger open neighbourhood of Ω. For f and g that are p, q forms which are written as f = f IJ dz I d z J and g = g IJ dz I d z J, I =p J =q I =p J =q define the inner product f, g := I =p J =q Ω f IJ g IJ dλ, 15
16 16 Wei Guo FOO, Orsay University, Paris, France where dλ is the Lebesgue measure on C n. Then the space L 2 p,qω consists of p, q forms α such that α 2 = α, α = α IJ 2 dλ <. I =p J =q Ω The Operator Let α C 0,qΩ. The operator is defined by α := J =q 1 j n zj α J d z j d z J. In the L 2 setting, the operator is not a bounded operator as can be seen for L 2 0,1Ω. For example, if Ω is bounded, let f n = e n z i d z j, i<j. Then Therefore, and so f n = ne n z i d z i d z j. f n 2 = n 2 e n z i 2 = n 2 f n 2, f n 2 f n 2 = n2 + as n +. On the other hand, it may happen that there are some elements u L 2 0,1Ω such that u may not be in L 2 0,2Ω. For example, in C 2 with coordinates z 1, z 2, write z i = x i + 1y i for i = 1, 2. Let Ω be the open set of C 2 given by Ω = {z 1, z 2 C 2 : 1 < x i < 1, 1 < y i < 1 for i = 1, 2}. Let u L 2 0,1Ω given by u = 1 + x 1 d z 2. Under the action of the -operator, u = x 1 d z 1 d z 2, which is not integrable since u 2 = Ω x 1 dλ = +. This requires that be defined on a suitable set Dom 0,q L 2 0,qΩ given by Dom 0,q := { u L 2 0,qΩ : u L 2 0,q+1 Ω }. This set is dense in L 2 0,qΩ since it contains all smooth 0, q forms that are compactly supported in Ω. Also the operator : L 2 0,qΩ L 2 0,q+1Ω is a closed operator in the sense of graph.
17 1. Kohn s Algorithm Introduction The Hilbert Space Adjoint The Hilbert space adjoint of on the other hand needs to be defined on a certain set Dom 0,q+1 of L 2 0,q+1Ω, given by Dom 0,q+1 = { v L 2 0,q+1Ω : the map T v : Dom 0,q C given by u u, v is continuous }. With this, the action of can be found by first applying Hahn-Banach theorem, followed by the Riesz representation theorem. More precisely, Hahn-Banach theorem allows the unique extension of T v to a continuous operator T v : L 2 0,qΩ C. Then by Riesz representation theorem, there exists the unique element, denoted by v, such that for all f L 2 0,qΩ, Tv f = f, v. Then for all u Dom 0,q, u, v = T v u = T v u = u, v Concrete description of on C0,1 Ω 1 Dom 0,1 on bounded domains Ω Let Ω C n be a bounded domain given by a C defining equation Ω = {r < 0}, and assume that r is C. For φ C0,1 Ω 1 Dom 0,1 given by φ = φ i d z i, the Hilbert space adjoint has a geometric description. In fact, f, φ = f φ j dλ z j 1 j n = 1 j n Ω Ω f φ z j dλ + 1 j n bω fφ j r z j ds, where ds is the surface measure on bω. Take a sequence of smooth functions f n with compact support so that f n f in L 2 Ω. By definition that φ Dom 0,1, the map f f, φ is continuous on Dom 0,0, and hence f n, φ f, φ as n. This easily implies that bω f r φ j ds = 0 1 j n z j for all f Dom 0,0. Moreover, since φ and zj r are continuous on Ω, the function 1 j n r φ j z j is therefore in L 2 0,0Ω because Ω is bounded. This defines a continuous map T : L 2 0,0 Ω C g bω g r φ j ds. 1 j n z j Here L 2 0,0 Ω L 2 0,0Ω is the set of all L 2 integrable functions on Ω such that they can be extended to L 2 integrable functions on a slightly bigger open neighbourhood of Ω. Hence, every element g in L 2 0,0 Ω may be approximated by elements in Cc Ω L 2 0,0 Ω, and in particular, there exists a sequence g n Cc Ω L 2 0,0 Ω such that g n 1 j n r φ j z j in L 2 0,0 Ω.
18 18 Wei Guo FOO, Orsay University, Paris, France Consequently, by continuity of T, and the fact that T g n = 0 for all n: r T φ j = lim n T g n = 0, 1 j n z j or Hence almost everywhere on bω. Since bω r φ j z 1 j n j 1 j n 1 j n r φ j z j 2 r φ j = 0 z j ds = 0. is continuous on bω, it is therefore zero everywhere The Laplacian Having introduced and, the laplacian is given by defined on the domain := + : L 2 0,q Ω L 2 0,qΩ, Dom 0,q = { f L 2 0,qΩ : f Dom 0,q, f Dom 0,q+1 f Dom 0,q, f Dom 0,q 1 }, which is also a dense set. It is to be emphasised that this is not to be seen as a differential operator but rather as an unbounded operator on the Hilbert space L 2 0,qΩ. For example, it is known that is a closed and self-adjoint operator in the sense of von Neumann. For the self-adjointness, one has to show that not only = on Dom 0,q Dom 0,q, one also has to show that Dom 0,q = Dom 0,q. These difficulties disappear if Ω is a closed, compact, complex manifold as every smooth differential forms on Ω are automatically smooth differential forms with compact support, and hence the Hilbert space adjoint is the same as the formal adjoint. Then the laplacian as a Hilbert space operator is in this case the same as the differential operator in the usual sense Pseudoconvexity and the closedness of R Let T : X Y be an unbounded closed operator from a Hilbert space X to a Hilbert space Y defined on Dom X T X, which is assumed to be dense in X. Let RT denote the range of T. Recall that T has closed range if RT = RT. There are several equivalent conditions of closedness of RT. Theorem 1.2 See [CS01], Chapter 4. Let T be as above. The following statements are equivalent: 1. RT is closed in X. 2. There is a constant C such that f X C T f Y for all f Dom X T RT. 3. RT is closed in Y. 4. There exists the same constant C such that g Y C T g X for all g Dom Y T RT. Let Ω C n be a bounded domain which this time is assumed to be pseudoconvex. The following result is due to Hörmander: Theorem 1.3 Hörmander s Existence Theorem for. Let Ω be a bounded pseudoconvex domain in C n. For every α L 2 p,qω, where 1 p n and 1 q n, with α = 0, there exists u L 2 p,q 1Ω such that u = α and q u 2 eδ α 2, where e is the Euler constant and δ is the diameter of Ω.
19 1. Kohn s Algorithm Introduction 19 As a consequence, there is a very important observation: Corollary 1.4. Let Ω be a bounded pseudoconvex domain of C n. The range of : L 2 p,qω L 2 p,q+1ω is closed. Proof. Consider the following complex: L 2 p,qω p,q L 2 p,q+1ω p,q+1 L 2 p,q+2ω. The theorem of Hörmander above implies that ker p,q+1 = R p,q. Since p,q+1 is a closed operator in the sense of graph, ker p,q+1 is a closed subspace of L 2 p,q+1ω and hence so is R p,q Consequence of Hörmander s theorem and closedness of R Given that : L 2 0,qΩ L 2 0,qΩ is a closed operator, its kernel ker is a closed subspace of L 2 0,qΩ. Therefore, basic Hilbert space theory shows that there is a decomposition L 2 0,qΩ = ker ker. Moreover, ker = R = R where the last equality follows from the fact that is selfadjoint in the sense of von Neumann. Therefore, L 2 0,qΩ = ker R. Hörmander s theorem implies that ker = {0} i.e. the operator is injective. To see this, observe that ker = ker ker since it follows immediately from u, u = u 2 + u 2. Next, observe that ker ker = {0}. This is because if u ker ker, then by Hörmander s theorem, there exists v L 2 0,q 1Ω such that v = u. Hence u 2 = u, u = v, u = v, u = 0, so that u = 0. Thus the decomposition may be rewritten as L 2 0,qΩ = R. The closedness of R implies the closedness of R. This is because since is closed, its kernel is a closed subspace of L 2 0,qΩ so that L 2 0,qΩ = ker ker, and ker = R. Since R is closed, by Theorem 1.2, R is also a closed subspace of L 2 0,qΩ, and hence L 2 0,qΩ = ker R. By Hörmander s theorem, ker = R and so L 2 0,qΩ = R R. Let f Dom 0,q Dom 0,q which contains Dom 0,q. Hence f may be written as f = f 1 f 2 where f 1 R and f 2 R. Applying and to both sides lead to f = f 2 and f = f 1.
20 20 Wei Guo FOO, Orsay University, Paris, France Hence both f 1 and f 2 belong to Dom 0,q Dom 0,q. By Theorem 1.2, there exists a constant C such that so that Dividing f from both sides, f 1 2 C f 1 2 f 2 2 C f 2 2, f 2 = f f 2 2 C f f 1 2 = C f 2 + f 2 = C f, f + f, f = C f, f C f f. f C f, from which, combining with Theorem 1.2, implies that has closed range. Therefore, L 2 0,qΩ = R and : Dom 0,q L 2 0,qΩ is a vector space isomorphism Canonical solution to the -Neumann problem Given that : Dom 0,q L 2 0,qΩ is a vector space isomorphism, it has an inverse N : L 2 0,qΩ Dom 0,q, so that N = id L 2 0,q Ω and N = id Dom0,q. From, f = Nf + Nf. by applying to both sides, and noting that 2 = 0, f = Nf, it follows that N f = N Nf = N + Nf = Nf. Therefore, for any α such that α = 0, the equation u = α has a solution u = Nα as can be easily verified from u = Nα = Nα + N α }{{} =0 = Nα + Nα = Nα = α. Moreover, the solution u is orthogonal to the kernel of since for every v ker, u, v = Nα, v = Nα, v = 0. This solution Nα is called the Kohn s solution, or the canonical solution to the -Neumann problem.
21 1. Kohn s Algorithm Introduction The Cauchy-Riemann geometry of boundary and subelliptic multipliers The Cauchy-Riemann Geometry of the boundary bω Let Ω be a domain in C n, and suppose that the boundary bω is a smooth manifold. Then a smooth real-valued defining function r is a local defining function for Ω if bω is locally given by the zero set of r. More precisely, if p bω, then r is a local defining function near p if there is a neighbourhood U p C n such that r : U p R is C, r < 0 on Ω U p, r = 0 on bω U p, r > 0 on Ω c U p, and dr 0 on U p. Assume moreover that r is real-analytic so that r may be expressed in terms of the convergent power series r = r i1,...,i n,j 1,...,j n z i 1 1 zn in z j 1 1 z n jn, with r0 = 0 i.e. 0 bω. The fact that r is real implies that r i1,...,i n,j 1,...,j n = r j1,...,j n,i 1,...,i n. The first few terms of the expansion of r is given by r = r i z i + 1 i n 1 i n r i z i + O z 2. By renumbering if necessary, r n 0 may be assumed. Then by a biholomorphic change of coordinates z 1,, z n w 1,, w n := z 1,, z n 1, r 1 z r n z n, the function r may be re-expressed as r = w n + w n + hw, w = 2Re w n + hw, w, where hw, w = O w 2. Renaming back to z, the real-valued, real-analytic defining function may be assumed to be of the form with hz, z = O z 2. For 1 i n 1, both r = 2Re z n + hz, z, 1.5 r i = zi r = zi h, r ī = zi r = zi h, vanish at the origin. Based on equation 1.2, for 1 i, j n 1, define the following local frames of CT C n L i := z i L j := L j, L n := 1 r zn r z i, r zn z n z n, T := L n L n = 1 r zn 1 z n r zn z n. The proposition below describes the commutator properties of the vector fields on bω:
22 22 Wei Guo FOO, Orsay University, Paris, France Proposition 1.6. Let M be a real hypersurface of C n containing the origin. For 1 i n 1, the vector fields L i, L i and T defined above form a local frame of CT M, and they satisfy the following properties: 1. For 1 i, j n 1, [L i, L j ] = 0, 2. For 1 i, j n 1, [L i, L j ] = λ ij T, where λ ij := r i jr n r n r i n r n r j r n jr i r n + r n n r i r j r n 2. The matrix λ with the coefficients λ ij 1 i,j n is called the Levi matrix. For the n 1 by n 1 matrix minor λ n 1 := λ ij 1 i,j n 1, at 0 C n, observe that its coefficients are given by λ ij 0 = r i j0 since r i 0 = r j0 = 0 by equation 1.2. At every point p bω, each X CTp 1,0 C n may be written in terms of the local frames L 1,..., L n as X = x i L i p x i C, 1 i n or sometimes in vector notation, X = x 1,..., x n 1, x n. If X is also tangent to bω, then x n = 0. Moreover, the Levi matrix, seen as a bilinear form when restricted to Tp 1,0 bω Tp 0,1 bω, gives for every X and Y = y 1,..., y n in Tp 1,0 bω that XλY = x 1,..., x n 1 λ n 1 y 1,..., y n 1, which is also called as the Levi form. The Levi form at a point p bω has other descriptions. Let X and Y be 1, 0 vector fields on a neighbourhood of p. It is also described as the following map: λ : Tp 1,0 bω Tp 1,0 bω CT M / Tp 1,0 bω Tp 0,1 bω 1.7 1,0 X p, Y p [X, Ȳ ]p mod Tp bω Tp 0,1 bω. 1.8 This map is well-defined, in the sense that this is independent of the choice of vector fields X and Y whose evaluation at p are respectively X p and Y p. These two definitions of the Levi forms are related by the following 1-form 1 r CT bω = 1 r zk dz CT k bω. 1 k n This is a real differential form because on bω, the equation is given by r = 0, and whose tangent bundle is given by the vanishing of dr. Therefore 0 = dr CT bω = r CT bω + r CT bω. Hence 1 r CT bω = 1 r CT bω = 1 r CT bω. The one-form 1 r satisfies the following identities 1 rl i = 1 r zk dz k r z i 1 k n z i r zn z n = 1 r zi r z i r zn = 0, r zn 1 r L i = 0, 1 1 rt = r zk dz k 1 k n = 1. r zn 1 z n r zn z n
23 1. Kohn s Algorithm Introduction 23 Therefore, for local sections X and Y of the T 1,0 bω bundle, the Levi form may simply be recovered by λx p, Y p = 1 rp, [X, Ȳ ]p. Note that by the Cartan-Lie formula applied to 1 r, 1d rx Ȳ = 1X rȳ 1Ȳ X 1 r[x, Ȳ ]. Recognising that r vanishes on T 1,0 bω and T 0,1 bω sections, an alternative expression of the Levi form at p can be written as λx p, Y p = 1 rp, X p Ȳp Kernel of the Levi form for pseudoconvex domains Recall that bω is pseudoconvex at p bω if the Levi map in equation 1.7 is non-negative definite at p, and strongly pseudoconvex at p if the matrix is strictly positive definite at p. The following definitions introduce the notions of the kernel of the Levi form, isotropic cone of the Levi form, and the kernel of the Levi matrix. Definition 1.9 Kernel of Levi form. Let λ denote the Levi form on the boundary bω. At p bω, the kernel of the Levi form is the subspace of Tp 1,0 bω given by K 1,0 p bω := { X p T 1,0 p bω : 0 = λx p, Y p for all Y p T 1,0 p bω }. Definition 1.10 Isotropic cone of the Levi form. At p bω, the isotropic cone of the Levi form is given by C 1,0 p bω = {X p T 1,0 p bω : 0 = λx p, X p }. Proposition Let bω be the boundary of a domain Ω C n. Suppose that it is pseudoconvex at p bω, then the kernel of the Levi form and the isotropic cone of the Levi form are the same, in other words K 1,0 p bω = Cp 1,0 bω. Proof. The containment Kp 1,0 bω Cp 1,0 bω is trivial. For the reverse, since λ is pseudoconvex at p, it follows from the Cauchy-Schwarz inequality λx p, Y p 2 λx p, X p λy p, Y p that if X p lies in the isotropic cone of the Levi form at p, then immediately it belongs to the kernel of the Levi form. The following proposition is clear and will be stated without proof. Proposition Let bω be the boundary of a domain Ω C n. Suppose that it is pseudoconvex at p bω, then X p Cp 1,0 Ω if and only if the vector X p λ annihilates the first n 1 columns of the Levi matrix. Definition 1.13 Definition of N x. For the rest of the introduction, to follow the exposition of Kohn s paper [Koh79], N x will be used to denote the isotropic cone, or the kernel of the Levi matrix, whenever pseudoconvexity is assumed.
24 24 Wei Guo FOO, Orsay University, Paris, France Subellipticity of and regularity of the canonical solution As explained earlier, the pseudoconvexity condition of the bounded domain Ω C n implies the existence of Kohn s canonical solution to the -Neumann problem: u = α, α = 0, with u a 0, 1-form. Suppose that x 0 Ω, and α L 2 0,2Ω or L 2 0,2 Ω so that it is smooth in a neighbourhood of x 0, then the question is whether Kohn s canonical solution to the equation is also smooth in some neighbourhood of x 0. A sufficent condition for this to hold is the notion of subelliptic estimates for the operator. Definition 1.14 Subelliptic Estimates. If x 0 Ω, the -Neumann problem for p, q forms satisfies a subelliptic estimate at x 0 if there exist a neighbourhood U C n of x 0, and constants ε > 0 and C > 0, such that for all the following estimate holds: φ D p,q U := { φ Dom p,q : φ IJ C c U Ω }, φ 2 ε C φ 2 + φ 2 + φ Here 2 ε denotes the Sobolev norm of order ε. To ease some notations, given any two p, q-forms φ and ψ, let Qφ, ψ denote the bilinear pairing Qφ, ψ := φ, ψ + φ, ψ + φ, ψ. A consequence of the subelliptic estimate in equation 1.15 is the following theorem which answers the question of local regularity of the canonical solution to the equation: Theorem 1.16 Kohn-Nirenberg, see [Koh79]. Suppose that Ω C n is a bounded pseudoconvex domain with C boundary. Assume also that equation 1.15 holds at x 0 Ω. If α L 2 p,qω is smooth in a neighbourhood of x 0, then Nα is also smooth in a neighbourhood of x 0. More precisely, if α is in H s which is the Sobolov space of order s in a neighbourhood of x 0, then Nα H s+2ε and Nα H s+ε. A point to emphasise is that the smoothness of the solution is guaranteed only when such an ε > 0 exists. For x 0 Ω, subelliptic estimates always hold with ε = 1, as is elliptic on the interior of Ω. The problem appears when x 0 bω. The following definition will then be used to explain in the next paragraph the relation between subelliptic estimates and the tangential subelliptic estimates when x 0 bω: Definition For ε > 0, let E q ε denote the subset of Ω consisting of elements x 0 such that there exists a neighbourhood U of x 0 on which equation 1.15 holds Tangential Sobolev Norm Kohn, in the paper [Koh79], shows that for x 0 bω, the subelliptic estimate in equation 1.15 can be reduced to the study of regularity property near the boundary of Ω. For this, the tangential Sobolev norm needs to be introduced. Let Ω C n be a bounded domain with smooth boundary, and let x 0 bω. Assume that in a neighbourhood U C n of x 0, the boundary bω U may be defined by a defining function Ω U = {r < 0} so that dr does not vanish anywhere on the set {r = 0} = bω U. By the Implicit Function Theorem, there exists a change of local coordinates on U such that with the new system t 1,..., t 2n 1, r R 2n 1 R = C n, the boundary bω U is given by r = 0. The tangential Fourier transform is then given by ˆfτ, r := 1 2π 2n 1 2 R 2n 1 e 1t τ ft, r dt,
25 1. Kohn s Algorithm Introduction 25 where t := t 1,..., t 2n 1, τ := τ 1,..., τ 2n 1, and t τ := 1 i n t iτ i. The tangential pseudodifferential operator of order s is given by Λ s 1 ft, r := e 1t τ 1 + τ 2 s/2 ˆfτ, r dτ, 2π 2n 1 2 R 2n 1 and the tangential Sobolev norm of order s is defined as 0 f 2 s := Λ s ft, r 2 dt dr. R 2n 1 For a p, q form φ = I =p J =q φ IJ dz I d z J, its tangential Sobolev norm of order s is φ 2 s = I =p J =q φ IJ 2 s. Near the boundary, the subelliptic estimates as in inequality 1.15 can be expressed entirely in terms of tangential Sobolev norm instead of the Sobolev norm. Proposition 1.18 See [Koh79]. For ε > 0, if x 0 bω, then x 0 E q ε if and only if there exists a neighbourhood U of x 0 and a constant C > 0 such that for all φ D p,q U, φ 2 ε C Qφ, φ Since for the rest of the introduction x 0 is always assumed to be in the boundary bω, equation 1.19 will also be referred to as the subelliptic estimate of without much ambiguity. This definition appears in several literatures such as in [D A93] Subelliptic multipliers To solve the -Neumann problem for bounded pseudoconvex domains, Kohn introduced the notion of subelliptic multipliers. Definition 1.20 Subelliptic multipliers. Let Ω be a smoothly bounded pseudoconvex domain in C n and let x 0 bω be a point. Let Cx 0 denote the ring of germs of smooth functions at that point. An element g Cx 0 is called a subelliptic multiplier for 0, 1-forms if there is a neighbourhood U C n of x 0, and positive constants C > 0 and ε > 0, such that gφ 2 ε CQφ, φ for all φ D 0,1 U. The open set U, and the constants C and ε, depend on g. An example of a subelliptic multiplier is the following: Proposition 1.21 See [D A93]. Let x 0 be a point in the smooth boundary bω of the bounded pseudoconvex domain Ω C n, which has a defining function r defined in a small neighbourhood U C n of x 0. Then there exists a constant C > 0 such that for all φ D 0,1 U, rφ 2 1 CQφ, φ. Let Jx 0 Cx 0 be the collection of all subelliptic multipliers at x 0. Then Jx 0 is an ideal. In fact, it is also a real radical ideal in the following sense: for any ideal I Cx 0, the real radical of I, denoted by rad R I, is the set of elements g Cx 0 such that there exists a positive integer N, and an element f I so that g N f. More precisely,
26 26 Wei Guo FOO, Orsay University, Paris, France Proposition 1.22 See [D A93]. Let Ω C n be a bounded pseudoconvex domain and x 0 bω. Suppose f Jx 0 so that there exist U C n a neighbourhood of x 0, and constants C f > 0 and ε > 0, with for all φ D 0,1 U, fφ 2 ε C f Qφ, φ. If g Cx 0 be such that g N f for some positive integer N, then there exists a constant C g > 0 such that for all φ D 0,1 U, gφ 2 ε/n C g Qφ, φ Vector and matrix multipliers Similar to subelliptic multipliers, there are also vector and matrix multipliers. Definition 1.23 Vector Multipliers. Let x 0 bω be a point in the boundary of a bounded pseudoconvex domain Ω C n with smooth boundary. A 1, 0-vector field v = v j 1 j n is a vector multiplier if there is a neighbourhood U of x 0, and positive constants C > 0 and ε > 0 such that for all φ D 0,1 U, 2 v j φ j CQφ, φ. 1 j n ε z j An example of a vector multiplier is the following proposition: Proposition 1.24 See [D A93]. Let x 0 bω be a point in the smooth boundary of a bounded pseudoconvex domain Ω C n. Suppose that f Cx 0 is a subelliptic multiplier, that is there exist U C n a neighbourhood of x 0, and positive constants C > 0 and ε > 0, such that fφ 2 ε CQφ, φ for all φ D 0,1 U, then there exists a constant C > 0 such that for all φ D 0,1 U, 2 f φ j z j C Qφ, φ. 1 j n ε/2 In other words, the 1, 0-form f is a vector multiplier. For example, since r is a subelliptic multiplier by Proposition 1.21, r is also a multiplier with regularity ε 1/2. Another example of a vector multiplier is the first n 1 columns of the Levi matrix. Proposition 1.25 See [Koh79], page 97. Assuming the hypothesis as in the definition Each of the first n 1 columns of the Levi form λ is a vector multiplier. In other words, there exist constant C > 0 and an open neighbourhood U C n of x 0 such that for all φ D 0,1 U, 2 λ ij φ i 2 λ ij φ i CQφ, φ. 1 i n 1/2 1 j n 1 Next, let A be an n n matrix with entries in C x 0 1 i n given by 1/2 A = a ij 1 i,j n, a ij C x 0. The action of A on 0, 1 forms φ = φ j dz j can then be defined in the usual way of matrix multiplication Aφ = a 11 a 1n φ 1 a jk φ k d z j. = j n 1 k n a n1 a nn φ n
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
COURBES EN POLAIRE. I - Définition
Y I - Définition COURBES EN POLAIRE On dit qu une courbe Γ admet l équation polaire ρ=f (θ), si et seulement si Γ est l ensemble des points M du plan tels que : OM= ρ u = f(θ) u(θ) Γ peut être considérée
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
THE BIGRADED RUMIN COMPLEX. 1. Introduction
THE BIGRADED RUMIN COMPLEX JEFFREY S. CASE Abstract. We give a detailed description of the bigraded Rumin complex in dimensions three and five, including formulae for all of its constituent operators.
La Déduction naturelle
La Déduction naturelle Pierre Lescanne 14 février 2007 13 : 54 Qu est-ce que la déduction naturelle? En déduction naturelle, on raisonne avec des hypothèses. Qu est-ce que la déduction naturelle? En déduction
The Pohozaev identity for the fractional Laplacian
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
MA 342N Assignment 1 Due 24 February 2016
M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
de Rham Theorem May 10, 2016
de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Differential forms and the de Rham cohomology - Part I
Differential forms and the de Rham cohomology - Part I Paul Harrison University of Toronto October 30, 2009 I. Review Triangulation of Manifolds M = smooth, compact, oriented n-manifold. Can triangulate
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Symmetric Stress-Energy Tensor
Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Chapter 3: Ordinal Numbers
Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
12. Radon-Nikodym Theorem
Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Iterated trilinear fourier integrals with arbitrary symbols
Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter