Relativistic Kinematics. Chapter 1 of Modern Problems in Classical Electrodynamics by Charles Brau

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Relativistic Kinematics. Chapter 1 of Modern Problems in Classical Electrodynamics by Charles Brau"

Transcript

1 Relativistic Kinematics Chapter of Modern Problems in Classical Electrodynamics by Charles Brau Spring 28

2 Relativistic Formalism of Electrodynamics Special relativity Lorentz transformations Electromagnetic field tensor Covariant formalism of electrodynamics Electromagnetic field of a charge moving at constant speed Spring 28 2

3 Experimental Inconsistencies Spring 28

4 Background Around mid-to-late 8' all waves were assumed to require a material medium to propagate (e.g. sound waves, ocean waves, vibration on a solid material, acoustic guitar, etc) As a consequence, the wave speed depends on the properties of the material medium where it propagates (T, P, Y, ρρ, etc) Relative motion between the observer and the material medium carrying the wave affect the measured speed of a particular wave Following on this tradition, a material medium named ether was assumed as the medium where electromagnetic radiation propagates Spring 28 4

5 Michelson-Morley Experiment An attempt to detect the existence of the ether (luminiferous medium, the light medium) Their goal was to show that different types of motion with respect to the ether give different speeds of light propagation Applied an interferometric technique (known today as Michelson interferometer) to detect small changes in the transit time along different paths Used Earth orbital speed around the sun ( Km/s) as a lower limit of the motion of the Earth through the absolute ether Spring 28 5

6 Michelson Interferometer LL LL 2 6

7 Spring 28 7

8 B A C Spring 28 8

9 tt tt = tt AA BB + tt BB CC = LL cc 2 vv 2 + LL cc 2 vv 2 = 2 LL cc 2 vv 2 tt ll = tt AA CC + tt CC AA = LL cc + vv + LL cc vv = 2 LL cc cc 2 vv 2 tt = tt ll tt tt = 2 LL cc cc 2 vv 2 2 LL cc 2 vv 2 = 2 LL cc vv cc 2 vv cc 2 /2 Spring 28 9

10 vv cc mm/ss 8 mm/ss 4 tt = 2 LL cc vv cc 2 vv cc 2 /2 2 LL cc + vv cc vv cc 2 LL vv2 cc φφ = ωω tt 2 ππ cc λλ LL vv 2 cc = 2 ππ LL λλ vv 2 cc 2 LL m 2 ππ LL λλ 8 λλ 5 9 m Spring 28

11 The Experiments on the relative motion of the earth and ether have been completed and the result decidedly negative. The expected deviation of the interference fringes from the zero should have been.4 of a fringe the maximum displacement was.2 and the average much less than. and then not in the right place. As displacement is proportional to squares of the relative velocities it follows that if the ether does slip past the relative velocity is less than one sixth of the earth s velocity. Albert Abraham Michelson, 887 Spring 28

12 Theoretical Inconsistencies Spring 28 2

13 Preliminary Concepts System of reference to describe an event: position in space (coordinate system) time (clocks) An inertial system of reference: In this system, a particle with no force acting on it will remain at rest or move at constant speed. Systems of reference: If two systems of reference move at constant speed with respect to each other, and one of them is an inertial system of reference, then the other one is also an inertial frame of reference. Spring 28

14 Galilean Transformation for two inertial systems of reference yy KK yyy KK zz OO vv oo zzz OOO xx xxx tt = tt rr = rr vv oo tt Spring 28 4

15 Velocity and Acceleration ddxx ddttt ddyy ddttt ddzz = vv xx vv yy vv zz = vv xx vv oooo vv yy vv oooo vv zz vv oooo ddttt velocity ddvvv xx ddttt ddvvv yy ddttt ddvvv zz ddttt = aaa xx aaa yy aaa zz = aa xx aa yy aa zz acceleration Invariance of Newton s Law Spring 28 5

16 Galilean Transformation as a four-vector linear transformation tt = tt yy KK yyy KK fourcomponents vector = four-vector tt xx yyy zzz rr = rr vv oo tt = tt xx vv ooxx tt yy vv ooyy tt zz vv oozz tt = zz OO vv oooo vv oooo vv oooo vv oo zzz OOO xx tt xx yy zz xxx ddttt ddxxx ddddd ddddd = ddtt ddxx vv ooxx dddd ddyy vv oooo dddd ddzz vv oooo dddd = vv oooo vv oooo vv oooo ddtt ddxx dddd dddd Spring 28 6

17 Four-Vector Position ddxxx ddttt ddtt ddxxx ddxxx vv oooo ddxx = ddxxx 2 = ddddd vv = oooo ddyy ddxxx ddddd vv oooo ddzz vv oooo vv oooo vv oooo ddxx ddxx ddxx 2 ddxx xxx μμ ddxxx μμ = ddxxνν xxνν νν= = νν= GG νν μμ ddxx νν GG νν μμ xxxμμ xx νν μμ: row νν: collumn Spring 28 7

18 Inverse Galilean Transformation tt xx yy zz = tt xx + vv ooxx tt yy + vv ooyy tt zz + vv oozz tt tt = tt rr = rr + vv oo tt = vv oooo vv oooo vv oooo zz yy OO KK vv oo zzz ttt xxx yyy zzz yyy xx KK OOO xxx ddtt ddxx dddd dddd = ddttt ddxxx + vv ooxx ddddd ddyyy + vv oooo dddd ddzzz + vv oooo dddd = vv oooo vv oooo vv oooo ddttt ddxxx ddddd ddddd Spring 28 8

19 ddxx ddtt ddttt ddxx vv ddxx oooo ddxxx = dddd vv ddxx 2 = = oooo ddddd dddd vv ddxx oooo ddddd vv oooo vv oooo vv oooo ddxxx ddxxx ddxxx 2 ddxxx ddxx αα = xx αα μμ= ddxx μμ xxxμμ = μμ= HH μμ αα ddddd μμ = μμ= HH μμ αα νν= GG νν μμ ddxx νν = νν= μμ= xx αα xxx μμ xxx μμ ddxxνν xxνν Spring 28 = νν= δδ αααα ddxx νν = ddxx αα HH μμ αα xxαα xxx μμ αα: row μμ: collumn 9

20 HH αα μμ GG μμ νν = μμ= vv oooo vv oooo vv oooo vv oooo vv oooo vv oooo = = δδ αααα Spring 28 2

21 Four-Vector Gradient Operator ttt xxx yyy zzz = xxx xxx xxx 2 xxx = xx αα xxx xx αα αα= xx αα αα= xx αα xxx xx αα xxx 2 xx αα αα= xx αα αα= xxx xx αα xx αα xx μμ = xxx μμ αα= xx αα = αα= αα HH μμ xx αα Spring 28 2

22 Four-Vector Gradient Operator for the Galilean Transformation ttt xxx yyy zzz = xxx xxx xxx 2 xxx = vv oooo vv oooo vv oooo xx xx xx 2 xx = tt + vv oo. xx yy zz Spring 28 22

23 Second-Order Four-Vector Operator for the Galilean Transformation 2 ttt 2 2 xxx 2 2 yyy 2 2 zzz 2 = 2 tt 2 + 2vv oo. tt + vv oo. 2 xx 2 2 yy 2 2 zz 2 vv oo. Spring 28 2

24 On the Galilean noninvariance of classical electromagnetism Eur. J. Phys. (29) 8 9 Giovanni Preti, Fernando de Felice, and Luca Masiero Spring 28 24

25 Special Relativity Spring 28 25

26 Spring 28 26

27 The Two Postulates of Special Relativity. Laws of physics are the same (invariant) in any inertial system of reference, there is no absolute rest. 2. Light propagates in vacuum at a constant speed Spring 28 27

28 Consequence of the Two Postulates of Special Relativity What affects the speed of a wave is the relative motion between the medium carrying the wave and the observer. If light propagates in vacuum (therefore, if there is no medium carrying the light wave), then the speed of light (in empty space) is the same for any observer even if they have a relative motion with respective to each other. For light propagating in vacuum, the speed of light is the same for any inertial system of reference. Spring 28 28

29 Two inertial systems of reference KK and KK. The axes along (x,y,z) are parallel to the corresponding axes along (x,y,z ). 2. The relative motion between the two inertial systems of reference is along the x-axis (and x -axis).. Consider that the origins OO and OO of the two systems coincide at tt = ttt = As seen by KK As seen by KK OO OOO vv oo vv oo OO OOO Spring 28 29

30 Two events as described by each inertial system of reference Event : When the origins of the two systems coincide, a pulse of light is emitted. KK: tt xx yy zz = KK : tt xxx yyy zzz = Event 2: The pulse of light reaches a detector at a certain point in space and at a certain time. KK: tt 2 xx 2 yy 2 zz 2 KK : tt 2 xx 2 yy 2 zz 2 Spring 28

31 KK: xx 2 xx 2 + yy 2 yy 2 + zz 2 zz 2 = cc 2 tt 2 tt 2 ddxx 2 + ddyy 2 + ddzz 2 = cc 2 ddtt 2 ddxx 2 + ddyy 2 + ddzz 2 cc 2 ddtt 2 = KKK: xxx 2 xxx 2 + yyy 2 yyy 2 + zzz 2 zzz 2 = cc 2 tt 2 tt 2 ddxxx 2 + ddyyy 2 + ddzzz 2 = cc 2 ddttt 2 ddxxx 2 + ddyyy 2 + ddzzz 2 cc 2 ddttt 2 = Spring 28

32 dddd 2 + dddd 2 + dddd 2 cc 2 dddd 2 = = ddddd 2 + ddddd 2 + ddddd 2 cc 2 ddddd 2 Spring 28 2

33 ddyy = ddddd ddzz = ddddd as in Galilean transformation dddd 2 + dddd 2 + dddd 2 cc 2 dddd 2 = = ddddd 2 + ddddd 2 + ddddd 2 cc 2 ddddd 2 dddd 2 cc 2 dddd 2 = ddddd 2 cc 2 ddddd 2 Spring 28

34 ddxx = γγ ddxx vv oo dddd linear modification due to symmetry ddxx = γγ ddxxx + vv oo ddddd = γγ γγ ddxx vv oo dddd + vv oo ddddd solve for: ddddd = γγ vv oo γγ 2 ddxx + γγ dddd Spring 28 4

35 dddd 2 cc 2 dddd 2 = ddddd 2 cc 2 ddddd 2 ddxx = γγ ddxx vv oo dddd ddddd = γγ vv oo γγ 2 ddxx + γγ dddd dddd 2 cc 2 dddd 2 = γγ ddxx vv oo dddd 2 cc 2 γγ vv oo γγ 2 ddxx + γγ dddd 2 Spring 28 5

36 dddd 2 : = γ 2 cc2 γγ 2 2 vv γγ2 2 oo γγ 2 = cc2 γγ 2 2 vv oo γγ 2 = vv oo cc 2 2 dddd 2 : cc 2 = γγ 2 2 vv oo cc 2 γγ 2 γγ 2 = vv 2 oo cc 2 2 ddxx dddd: = γγ 2 vv oo cc 2 vv oo γγ 2 γγ 2 vv oo = cc 2 vv oo γγ 2 vv oo 2 cc 2 = γγ 2 γγ 2 = ββ 2 ββ vv oo cc Spring 28 6

37 ddxx = γγ ddxx γγ vv oo dddd = γγ ddxx γγ ββ dd cc tt ddddd = γγ vv oo γγ 2 ddxx + γγ dddd γγ 2 = γγ vv oo γγ vv oo vv 2 oo cc 2 γγ2 = γγ vv oo cc 2 ddtt = γγ vv oo cc 2 ddxx + γγ dddd dd cc tt = γγ vv oo cc ddxx + γγ dd cc tt = γγ ββ ddxx + γγ dd cc tt Spring 28 7

38 ddxx ddxx ddxx 2 ddxx = dd cc ttt ddxxx ddddd ddddd = γγ ββ ddxx + γγ dd cc tt γγ ddxx γγ ββ dd cc tt ddyy ddzz = γγ γγ ββ γγ ββ γγ dd cc tt ddxx dddd dddd = γγ γγ ββ γγ ββ γγ ddxx ddxx ddxx 2 ddxx Spring 28 8

39 Lorentz Transformation cc ttt xxx yyy zzz xx xx xx 2 xx OO OOO vv oo xx xx xx 2 xx cc tt xx yy zz γγ = ββ 2 ββ vv oo cc ddxxx ddxxx ddxxx 2 ddxxx = γγ γγ ββ γγ ββ γγ ddxx ddxx ddxx 2 ddxx Spring 28 9

40 ddxxx = γγddxx γγ ββ ddxx = ddxxx = γγ ββ ddxx + γγ ddxx = ddxx ddxx = ββ ddxx ddxx = ββ cccc cccc ββ = θθ xx θθ xx tttttt θθ = ββ Spring 28 4

41 Inverse Lorentz Transformation cc tt xx yy zz xx xx xx 2 xx vv oo OO OOO xx xx xx 2 xx cc ttt xxx yyy zzz ββ vv oo cc γγ = ββ 2 ddxx ddxx ddxx 2 ddxx = γγ + γγ ββ + γγ ββ γγ ddxx ddxx ddxx 2 ddxx Spring 28 4

42 A Few Remarks ββ = then γγ = ddddd = dddd ddddd = dddd Although in general ddxx ddxx and ddddd = dddd, we always have: dddd 2 + dddd 2 + dddd 2 cc 2 dddd 2 = ddddd 2 + ddddd 2 + ddddd 2 cc 2 ddddd 2 = ddss 2 dddd: space-time distance Spring 28 42

43 Lorentz Transformation of the four-vector coordinates OO OOO vv oo ddxxx ddxxx ddxxx 2 ddxxx = γγ γγ ββ γγ ββ γγ ddxx ddxx ddxx 2 ddxx xxx μμ ddxxx μμ = αα= LL αα μμ ddxx αα = αα= ddxxαα xxαα LL αα μμ = xxxμμ xx αα Spring 28 4

44 Lorentz Transformation for other four-vectors xxx μμ = xxx μμ xx, xx, xx 2, xx = LL μμ αα xx αα αα= where LL αα μμ = xxxμμ xx αα contravariant tensor of rank = four-vector ddxxx μμ = LL μμ αα ddxx αα αα= VV μμ = LL μμ αα VV αα αα= Spring 28 44

45 Another Contravariant Vector The phase of a wave should be invariant φφ = φφ = constant: kk xx ωω cc cc tt = kk xx ωω cc cc tt kk = (kk,,) = kk γγ xxx + γγ ββ cc ttt ωω cc γγ cc tt + γγ ββ xx = γγ kk γγ ββ ωω cc xx γγ ωω cc γγ ββ kk cc tt ωω cc = γγ ωω cc γγ ββ kk kk = γγ kk γγ ββ ωω cc ωω cc kkk xx kk yy kk zz = γγ γγ ββ γγ ββ γγ ωω cc kk xx kk yy kk zz Spring 28 45

46 Four-Vector K contravariant tensor of rank kk μμ = ωω cc kk xx kk yy kk zz kk μμ = αα= LL αα μμ kk αα Spring 28 46

47 Proper Time cc 2 ddtt 2 dddd 2 dddd 2 dddd 2 = ddss 2 = cc 2 ddττ 2 cc 2 vv xx 2 vv yy 2 vvzz 2 = cc 2 ddττ dddd 2 ββ 2 = ddττ dddd 2 ddττ = dddd γγ Spring 28 47

48 Four-Vector Velocity contravariant tensor of rank vv μμ ddddμμ ddττ = ddττ cc dddd dddd ddyy ddzz = γγ ddtt cc dddd dddd dddd dddd = γγ γγ cc dddd dddd ddyy γγ dddd γγ ddzz dddd vvv μμ = αα= LL αα μμ vv αα Spring 28 48

49 Four-Vector Momentum contravariant tensor of rank pp μμ mm dddd μμ ddττ = mm ddττ cc dddd dddd ddyy ddzz = mm γγ ddtt cc dddd dddd dddd dddd = γγ mm cc γγ mm dddd dddd ddyy γγ mm dddd γγ mm ddzz dddd = EE cc pp xx pp yy pp zz EE γγ mm cc 2 pp ii γγ mm ddxx ii dddd EE 2 cc pp xx 2 cc pp yy 2 cc ppzz 2 = mm 2 cc 4 ppp μμ = LL αα μμ pp αα Spring 28 αα= 49

50 pp ii γγ mm vv ii EE 2 cc pp xx 2 cc pp yy 2 cc ppzz 2 = mm 2 cc 4 EE 2 cc γγ mm vv xx 2 cc γγ mm vv yy 2 cc γγ mm vv zz 2 = mm 2 cc 4 EE 2 = mm 2 cc 4 + ββ 2 ββ 2 EE = mm cc 2 ββ 2 Spring 28 5

51 Four-Vector Force contravariant tensor of rank FF μμ ddddμμ ddττ = γγ dd ddtt EE cc γγ mm dddd dddd γγ mm dddd dddd γγ mm dddd dddd = γγ cc ddtt dd ddxx γγ mm γγ ddtt ddtt γγ mm dd ddtt γγ mm dd ddtt ddee ddyy γγ ddtt ddzz γγ ddtt = γγ cc PP FF xx FF yy FF zz Spring 28 5

52 Linear Transformations: xxx μμ = xxx μμ xx, xx, xx 2, xx = νν= AA νν μμ xx νν where AA νν μμ xxxμμ xx νν contravariant tensor of rank = four-vector xxx μμ ddxxx μμ = ddxxνν xxνν νν= xxx μμ VV μμ = νν= VVνν xxνν covariant tensor of rank = four-vector xx νν xxx μμ = xxx μμ νν= xx νν WWW μμ = xx νν νν= xxx μμ WW νν Spring 28 52

53 Inner Product of a Contravariant and a Covariant tensor of rank xxx μμ VVV μμ = VVνν WWW xxνν νν= μμ = xx αα αα= xxx μμ WW αα xxx μμ xx αα μμ= VVV μμ WWW μμ = μμ= νν= xx νν VVνν αα= xxx μμ WW αα = μμ= νν= xxx μμ xx νν αα= xx αα xxx μμ VVνν WW αα = νν= αα= δδ νν αα VV νν WW αα = νν= VV νν WW νν invariant!! Spring 28 5

54 Example : Charge Conservation =. JJ + ρρ =. JJ + cc ρρ cc tt = cc ρρ cc tt + JJ xx + JJ yy yy + JJ zz zz = cc ρρ xx + JJ xx xx + JJ yy xx 2 + JJ zz xx Spring 28 = μμ= JJμμ xxμμ covariant contravariant JJ μμ = cc ρρ JJ xx JJ yy JJ zz 54

55 Four-Vector Current Density J contravariant tensor of rank JJ μμ = cc ρρ JJ xx JJ yy JJ zz JJJ μμ = LL μμ αα JJ αα αα= Spring 28 55

56 Consider a charge qq at rest at a particular point rr in space. What are the charge density and current density for a frame of reference moving along x-axis at a constant speed vv = ββ cc? Spring 28 56

57 ρρ rr, tt = qq δδ rr rr & JJ rr, tt = (,,) JJ μμ rr, tt = cc ρρ JJ xx JJ yy JJ zz = cc qq δδ rr rr JJJ μμ = LL μμ αα JJ αα = αα= γγ γγ ββ γγ ββ γγ cc qq δδ rr rr = γγ cc qq δδ rr rr γγ ββ cc qq δδ rr rr Spring 28 57

58 δδ rr rr = δδ xx xx δδ yy yy δδ zz zz cc tt tt xx xx yy yy zz zz II, = LL μμ αα xxx αα xx αα = αα= γγ + γγ ββ + γγ ββ γγ cc tt tt xxx xx yy yy zz zz = γγ cc tt tt + γγ ββ xxx xxx γγ xxx xxx + γγ ββ cc tt ttt yy yy zz zz δδ rr rr = δδ γγ xxx xxx + γγ ββ cc tt ttt δδ yyy yyy δδ zzz zzz = γγ δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz Spring 28 58

59 JJJ μμ = γγ cc qq δδ rr rr γγ ββ cc qq δδ rr rr δδ rr rr = γγ δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz JJJ μμ = cc qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz ββ cc qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz ρρ = qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz JJJ xx = vv qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz Spring 28 59

60 ρρ rr, ttt = qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz JJ xx rr, ttt JJ yy rr, ttt JJ zz rr, ttt = vv qq δδ xxx xxx + vv tt ttt δδ yyy yyy δδ zzz zzz ttt = xx = rr tt = vv tt yyy zzz ρρ rr, ttt = qq δδ xxx + vv tt δδ yyy yyy δδ zzz zzz = qq δδ rr rrr tt JJJ rr, tt = vv qq δδ xxx + vv tt δδ yyy yyy δδ zzz zzz = vv qq δδ rrr rrr tt Spring 28 6

61 Example 2: Lorenz Gauge =. AA + μμ oo εε Φ =. AA + Φ/cc cc tt = Φ/cc cc tt + AA xx + AA yy yy + AA zz = Φ/cc xx + AA xx xx + AA yy xx 2 + AA zz xx = μμ= AAμμ xxμμ contravariant AA μμ = Φ/cc AA xx AA yy AA zz Spring 28 covariant 6

62 Four-Vector Potential A contravariant tensor of rank AA μμ = Φ/cc AA xx AA yy AA zz AAA μμ = αα= LL αα μμ AA αα Spring 28 62

63 Consider a charge qq moving at a constant speed vv = ββ cc along a straight line parallel to the x-axis.. What are the scalar potential and vector potential created by this moving charge? 2. What are the electric field and magnetic field created by this moving charge? Spring 28 6

64 Hard Way 2 Φ rr, tt + μμ oo εε 2 Φ rr, tt tt 2 = ρρ rr, tt εε ρρ rr, tt = qq δδ xx + vv tt δδ yy yy δδ zz zz = qq δδ rr rr tt 22 AA rr, tt + μμ oo εε 2 AA rr, tt tt 2 = μμ oo JJ rr, tt JJ rr, tt = vv qq δδ xx vv tt δδ yy yy δδ zz zz = vv qq δδ rr rr tt Spring 28 64

65 Easier Way: Start with an inertial frame of reference K moving in the same way as the charge ρρ rr = qq δδ rrr rrr Φ rr = + ρρ rrrr 4 ππ εε rr rrrr ddvvvv electrostatic problem = 4 ππ εε qq rr rr Spring 28 65

66 JJ rrr = magnetostatic problem AA rrr = μμ + oo JJ rrrr 4 ππ rr rr dddddd = Spring 28 66

67 AA μμ II, = LL μμ αα AAA αα αα= LL αα II, μμ = γγ + γγ ββ + γγ ββ γγ AAA αα = Φ /cc AAA xx AAA yy AAA zz = Φ /cc AA μμ = γγ Φ /cc γγ ββ Φ /cc Φ rr, tt = γγ Φ = AA rr, tt = γγ ββ Φ /cc γγ qq 4 ππ εε rrr rrr = γγ qq vv 4 ππ εε cc 2 rrr rrr Spring 28 67

68 rrr rrr cc tt ttt xxx xxx yyy yyy zzz zzz = LL μμ αα xx αα αα xx = αα= γγ γγ ββ γγ ββ γγ cc tt tt xx xx yy yy zz zz = γγ cc tt tt γγ ββ xx xx γγ xx xx γγ ββ cc tt tt yy yy zz zz rrr rrr = xxx xxx 2 + yyy yyy 2 + zzz zzz 2 = γγ xx xx γγ ββ cc tt tt 2 + yy yy 2 + zz zz 2 Spring 28 68

69 tt = xx = Φ rr, tt = = γγ qq 4 ππ εε rrr rrr γγ qq 4 ππ εε γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 AA rr, tt = γγ qq vv 4 ππ εε cc 2 rrr rrr = γγ qq vv 4 ππ εε cc 2 γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 Spring 28 69

70 HW: From the previous expressions for the vector and scalar potentials, prove:. AA rr, tt + μμ oo εε Φ rr, tt = HW: Calculate the electric field of a charge moving at constant speed EE rr, tt = Φ rr, tt AA rr, tt HW: Calculate the magnetic field of a charge moving at constant speed BB rr, tt = AA rr, tt Spring 28 7

71 Metric Tensor and Invariants dddd 2 = cc 2 dddd 2 dddd 2 dddd 2 dddd 2 = ddxx 2 ddxx 2 ddxx 2 2 ddxx 2 ddxx = ddxx ddxx = ddxx ddxx 2 = ddxx 2 ddxx = ddxx dddd μμ = νν= gg μμμμ ddxx νν dddd 2 = νν= dddd νν dddd νν gg μμμμ = Spring 28 Metric Tensor 7

72 kk μμ = ωω cc kk xx kk yy kk zz kk μμ = νν= gg μμμμ kk νν = ωω cc kk xx kk yy kk zz μμ= kk μμ kk μμ = ωω cc 2 kk 2 2 xx kk yy 2 kkzz = cccccccccccccccc Spring 28 72

73 JJ μμ = cc ρρ JJ xx JJ yy JJ zz JJ μμ = νν= gg μμμμ JJ νν = cc ρρ JJ xx JJ yy JJ zz JJ μμ JJ μμ = cc ρρ 2 JJ 2 2 xx JJ yy 2 JJzz = cccccccccccccccc μμ= Spring 28 7

74 AA μμ = Φ/cc AA xx AA yy AA zz AA μμ = νν= gg μμμμ AA νν = Φ/cc AA xx AA yy AA zz AA μμ AA μμ = μμ= 2 Φ cc 2 2 AAxx AA yy 2 AAzz = cccccccccccccccc Spring 28 74

75 pp μμ = EE cc pp xx cc pp yy cc pp zz pp μμ = νν= gg μμμμ pp νν = EE cc pp xx cc pp yy cc pp zz pp μμ pp μμ = EE 2 cc pp 2 xx cc pp 2 xx cc pp 2 zz = cccccccccccccccc μμ= Spring 28 75

76 dddd νν = μμ= gg νννν ddxx μμ dddd νν = gg νννν dddd μμ μμ= dddd 2 = dddd νν dddd νν = gg ννμμ ddxx μμ dddd νν νν= νν= μμ= = νν= gg νννν dddd μμ dddd νν μμ= gg νννν = gg νννν = Spring 28 76

77 Tensors of Rank contravariant ddxx μμ gg νννν, gg νννν covariant dddd μμ xx μμ μμ gg νννν, gg νννν xx μμ μμ Spring 28 77

78 Contravariant Tensor of Rank 2 TT αααα VV αα WW ββ VV αα = xxx αα μμ= xx μμ VVμμ = μμ= LL μμ αα VV μμ xxx ββ WW ββ = xx νν WWνν = νν= νν= LL νν ββ WW νν xxx αα xxx ββ TTT αααα = VV αα WW ββ = μμ= xx μμ VVμμ νν= WWνν xxνν = μμ= LL μμ αα VV μμ νν= LL νν ββ WW νν = μμ= LL μμ αα νν= LL νν ββ TT μμνν tt ααββ = LL TT LL Spring 28 78

79 Electromagnetic Field Tensor xx αα = αα AA ββ = Φ/cc AA xx AA yy AA zz FF αααα αα AA ββ ββ AA αα FF αααα = FF ββββ FF αααα = Spring 28 79

80 Electric Field as a component of the electromagnetic field tensor EE rr, tt = Φ rr, tt AA rr, tt AA μμ = Φ/cc AA xx AA yy AA zz ii, 2, EE ii = Φ AAii xxii cc AA = xx ii cc AAii xx = cc AA AAii xxii xx EE ii cc = AA AAii xxii xx = ii AA AA ii = FF iii Spring 28 8

81 Magnetic Field as a component of the electromagnetic field tensor ii, jj, kk, 2, BB rr, tt = AA rr, tt BB ii = jj= kk= εε iiiiii AA kk xx jj = jj= kk= AA μμ = εε iiiiii jj AA kk Φ/cc AA xx AA yy AA zz Spring 28 BB = 2 AA AA 2 = FF 2 BB 2 = AA AA = FF BB = AA 2 2 AA = FF 2 8

82 Components of the Electromagnetic Field Tensor EE ii cc = FFiii BB = 2 AA AA 2 = FF 2 BB 2 = AA AA = FF BB = AA 2 2 AA = FF 2 FF αααα αα AA ββ ββ AA αα = cc EE EE 2 EE EE cccc ccbb 2 EE 2 ccbb cccc EE cccc 2 cccc Spring 28 82

83 How the Electromagnetic Field Tensor changes under a Lorentz transformation: FF ααββ = LL FF LLtt ααββ FF = cc EE EE 2 EE EE cccc ccbb 2 EE 2 ccbb cccc EE cccc 2 cccc LL = γγ γγ ββ γγ ββ γγ For a frame of reference K moving along x-axis at a constant speed vv = ββ cc Spring 28 8

84 FF = cc EE EE EE 2 EE ccbb ccbb 2 EE 2 EE ccbb 2 ccbb ccbb ccbb = LL FF LL tt EEE = EE EEE 2 = γγ EE 2 ββ cc BB BB = BB BB 2 = γγ BB 2 + ββ cc EE EEE = γγ EE + ββ cc BB 2 BB = γγ BB ββ cc EE2 Spring 28 84

85 Note: Galilean transformation leads to different and incorrect relations: vv : particle velocity with respect to K FF = qq EEE + qq vvv BBB = qq EE + qq vv BB vv = vv + vv = qq EE + qq vv + vv BB = qq EE + vv BB + qq vv BB EE = EE + vv BB BB = BB Spring 28 85

86 Electric and Magnetic Fields of a Moving Charge Spring 28 86

87 Consider a charge qq moving at a constant speed vv = ββ cc along a straight line parallel to the x-axis. What are the electric and magnetic fields created by this moving charge? Spring 28 87

88 Consider that the charge is at rest in the reference frame K EEE = qq 4 ππ εε xxx xxx xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 BB = EEE 2 = qq 4 ππ εε yyy yyy xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 BB 2 = EEE = qq 4 ππ εε zzz zzz xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 BB = Spring 28 88

89 EEE = EE BB = BB EEE 2 = γγ EE 2 ββ cc BB EEE = γγ EE + ββ cc BB 2 BB 2 = γγ BB = γγ BB 2 + ββ cc EE BB ββ cc EE2 EE = EE BB = BBB EE 2 = γγ EE 2 + ββ cc BB BB 2 = γγ BBB 2 ββ cc EEE EE = γγ EE ββ cc BB 2 BB = γγ BBB + ββ cc EEE2 Spring 28 89

90 EE = EE BB = BBB EE 2 = γγ EE 2 + ββ cc BB BB 2 = γγ BBB 2 ββ cc EEE EE = γγ EE ββ cc BB 2 BB = γγ BBB + ββ cc EEE2 EE = EE EE 2 = γγ EEE 2 EE = γγ EEE BB = BB 2 = BB = γγ ββ cc EEE γγ ββ cc EEE2 = ββ cc EE = ββ cc EE2 Spring 28 9

91 EE = EE = qq 4 ππ εε xxx xxx xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 EE 2 = γγ EEE 2 = qq 4 ππ εε γγ yyy yyy xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 EE = γγ EEE = qq 4 ππ εε γγ zzz zzz xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 Spring 28 9

92 BB = BB 2 = γγ ββ cc EE ββ = cc qq 4 ππ εε γγ zzz zzz xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 BB = γγ ββ cc EEE2 = ββ cc qq 4 ππ εε γγ yyy yyy xxx xxx 2 + yyy yyy 2 + zzz zzz 2 /2 Spring 28 92

93 cc tt ttt xxx xxx = yyy yyy zzz zzz γγ γγ ββ γγ ββ γγ cc tt tt xx xx yy yy zz zz tt = ttt = xx = xx = cc tt ttt xxx xxx = yyy yyy zzz zzz γγ cc tt ββ xx γγ xx vv tt yy yy zz zz Spring 28 9

94 EE = qq γγ xx vv tt 4 ππ εε γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 /2 EE 2 = qq 4 ππ εε γγ yy yy γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 /2 EE = qq 4 ππ εε γγ zz zz γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 /2 Spring 28 94

95 γγ 2 xx vv tt 2 + yy yy 2 + zz zz 2 = ββ 2 xx vv tt 2 + yy yy 2 + zz zz 2 ββ 2 ssssss θθ 2 xx, yy, zz vv tt, yy, zz θθ dd xx vv ssssss 2 θθ yy yy 2 + zz zz 2 xx vv tt 2 + yy yy 2 + zz zz 2 dd xx vv tt, yy yy, zz zz Spring 28 95

96 EE rr, tt = qq dd ββ 2 4 ππ εε dd ββ 2 ssssss 2 θθ /2 classical Coulomb term The electric field points away from the charge at present time (t). However, it is not isotropic. relativistic correction θθ 9 ββ 2 ββ =.99 ββ =.9 ββ =.7 The electric field amplitude depends on the direction away from the vv θθ charge. ββ 2 The amplitude shows higher strength for directions perpendicular to the direction of propagation. Spring 28 ββ =. &.2 96

97 Spring 28 97

98 BB = BB 2 = ββ cc EE BB = ββ EE cc BB = ββ cc EE2 BB rr, tt = μμ 4 ππ qq vv dd dd ββ 2 ββ 2 ssssss 2 θθ /2 classical Biot-Savart term relativistic correction Spring 28 98

99 Maxwell s Equations in terms of the Electromagnetic Field Tensor FF αααα αα AA ββ ββ AA αα = cc JJ μμ = EE EE 2 EE EE cccc ccbb 2 EE 2 ccbb cccc EE cccc 2 cccc cc ρρ JJ xx JJ yy JJ zz sources fields Spring 28 99

100 The Four Inhomogeneous Maxwell s Equations. EE rr, tt = ρρ rr, tt εε Gauss s Law BB rr, tt μμ oo εε EE rr, tt = μμ oo JJ rr, tt Ampere s Law Spring 28

101 EE ii = cc FF iii. EE rr, tt = ρρ rr, tt εε ii= xx ii EE ii = xx ii cc FF iii = cc ii FF iii ii= ii= + cc FF = cc αα FF ααα αα= ρρ rr, tt = JJ cc = ρρ rr, tt εε = JJ εε cc αα FF ααα = μμ JJ αα= Spring 28

102 BB rr, tt μμ oo εε EE rr, tt = μμ oo JJ rr, tt jj= kk= BB kk εε iiiiii xx jj μμ EE ii oo εε = jj= kk= εε iiiiii jj BB kk EE ii cc cc tt = εε iiiiii jj BB kk + EE ii cc jj= kk= = μμ oo JJ ii Spring 28 2

103 jj= kk= εε iiiiii jj BB kk + EE ii cc = μμ oo JJ ii BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FF ii ii = 2 BB BB 2 + FF = 2 FF 2 + FF + FF + FF = αα FF αα = μμ oo JJ αα= αα FF αα = μμ JJ Spring 28 αα=

104 jj= kk= εε iiiiii jj BB kk + EE ii cc = μμ oo JJ ii BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FF ii ii = 2 BB BB + FF 2 = FF 2 + FF 2 + FF FF 22 = αα FF αα2 = μμ oo JJ 2 αα= αα FF αα2 = μμ JJ 2 Spring 28 αα= 4

105 jj= kk= εε iiiiii jj BB kk + EE ii cc = μμ oo JJ ii BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FF ii ii = BB 2 2 BB + FF = FF + 2 FF 2 + FF + FF = αα FF αα = μμ oo JJ αα= αα FF αα = μμ JJ Spring 28 αα= 5

106 The Four Inhomogeneous Maxwell s Equations (Gauss s and Ampere s Laws) can be written as: αα= αα FF ααββ = μμ JJ ββ fields sources Spring 28 6

107 αα FF αααα = μμ JJ ββ FF αααα αα AA ββ ββ AA αα Lorenz gauge αα FF αααα = αα αα AA ββ ββ AA αα = αα αα AA ββ ββ αα AA αα = αα αα AA ββ = μμ JJ ββ αα αα AA ββ = μμ JJ ββ αα αα 2 d Alembertian, which is an invariant Spring 28 7

108 The Four Homogeneous Maxwell s Equations. BB rr, tt = Gauss s Law of Magnetism EE rr, tt + BB rr, tt = Faraday s Law Spring 28 8

109 . BB rr, tt = ii= BB = FF 2 BB 2 = FF BB = FF 2 xx ii BB ii = BB xx + BB2 xx 2 + BB xx = FF2 xx FF xx 2 FF2 xx = FF FF + FF 2 = FF FF + FF 2 = Spring 28 9

110 EE rr, tt + BB rr, tt = jj= kk= EE kk BBii εε iiiiii + cc xxjj cc = jj= εε iiiiii jj EE kk /cc + BB ii = kk= jj= kk= εε iiiiii jj EE kk /cc BB ii = Spring 28

111 jj= kk= εε iiiiii jj EE kk /cc BB ii = BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FFiii ii = 2 EE /cc EE 2 /cc BB = 2 FF + FF 2 + FF 2 = Spring 28

112 jj= εε iiiiii jj EE kk /cc BB ii = kk= BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FFiii ii = 2 EE /cc EE /cc BB 2 = FF + FF + FF = Spring 28 2

113 jj= kk= εε iiiiii jj EE kk /cc BB ii = BB = FF 2 BB 2 = FF BB = FF 2 EE ii cc = FFiii ii = EE 2 /cc 2 EE /cc BB = FF FF + FF 2 = Spring 28

114 ii = FF FF + FF 2 = 2 ii = 2 FF + FF 2 + FF 2 = 2 ii = 2 FF + FF + FF = 2 ii = FF 2 + FF FF = 2 Spring 28 4

115 The Four Homogeneous Maxwell s Equations (Gauss s Law of Magnetism and Faraday s Law) can be written as: αα FF ββββ + ββ FF γγγγ + γγ FF αααα = or εε δδδδδδδδ εε δδδδδδδδ αα FF ββββ = 2 Spring 28 5

116 Electromagnetic Theory JJ μμ = cc ρρ JJ xx JJ yy JJ zz AAμμ = Φ/cc AA xx AA yy AA zz FF αααα αα AA ββ ββ AA αα = cc EE EE 2 EE EE cccc ccbb 2 EE 2 ccbb cccc EE cccc 2 cccc αα FF αααα = μμ JJ ββ Spring 28 αα FF ββββ + ββ FF γγγγ + γγ FF αααα = 6

117 A Few Notes on Relativistic Mechanics and Field Theory Chapter 2 of Modern Problems in Classical Electrodynamics by Charles Brau Spring 28 7

118 Lagrangian of Discrete Particles LL = LL ii qq ii, qq ii ii dd ddtt LL qq ii = qq ii tt 2LL SS = qqii, qq ii tt ddtt Spring 28 8

119 Lagrangian of Continuous Fields and Particles: φφ kk : AA μμ & JJ μμ LL = LL ii qq ii, qq ii LL = L φφ kk, ββ φφ kk dddd ii dd ddtt LL qq ii = qq ii ββ L ββ φφ kk = L φφ kk tt 2LL SS = qqii, qq ii tt ddtt tt 2 SS = dddd L φφkk, ββ φφ kk tt dddd = cc tt tt 2L φφkk, ββ φφ kk dd 4 xx Spring 28 9

120 Relativistic Lagrangian of Fields and Particles L = 4 μμ FF μμμμ FF μμμμ JJ μμ AA μμ ββ L ββ AA αα = L AA αα HW: L ββ AA αα = μμ FF ββββ ββ L ββ AA αα = μμ ββ FF ββββ L AA αα = JJ αα ββ FF ββββ = μμ JJ αα Spring 28 2

121 Hamiltonian of Particles HH = ii pp ii qq ii LL ii qq ii, qq ii pp ii qq ii Spring 28 2

122 Relativistic Hamiltonian of Fields and Particles HH = ii qq ii qq ii LL ii qq ii, qq ii H αα ββ = L αα AA γγ ββ AA γγ gg αα ββ L = μμ FF ααγγ ββ AA γγ gg αα ββ 4 μμ FF μμμμ FF μμμμ JJ μμ AA μμ Spring 28 22

123 H αα ββ = μμ FF ααγγ ββ AA γγ gg αα ββ 4 μμ FF μμμμ FF μμμμ JJ μμ AA μμ = μμ FF ααγγ FF ββγγ + γγ AA ββ + 4 μμ FF μμμμ FF μμμμ gg αα ββ + JJμμ AA μμ gg αα ββ = μμ FF ααγγ FF ββγγ + 4 μμ FF μμμμ FF μμμμ gg αα ββ μμ FF ααγγ γγ AA ββ + JJ μμ AA μμ gg αα ββ = TT αα ββ μμ FF ααγγ γγ AA ββ + JJ μμ AA μμ gg αα ββ TT αα ββ μμ FF ααγγ FF ββγγ + 4 μμ FF μμμμ FF μμμμ gg αα ββ Spring 28 2

124 TT αα ββ μμ FF ααγγ FF ββγγ + 4 μμ FF μμμμ FF μμμμ gg αα ββ TT ααββ = uu ccgg xx ccgg yy ccgg zz ccgg xx TT xxxx TT yyxx TT zzzz ccgg yy TT xxyy TT yyyy TT zzzz ccgg zz TT xxzz TT yyyy TT zzzz ββ = αα TT αα = uu+ ccgg xx + 2 ccgg yy + ccgg zz = cc uu tt +. SS ββ = ii αα TT ααii = ccgg ii + jj TT jjjj Spring 28 24

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

A. Two Planes Waves, Same Frequency Visible light

A. Two Planes Waves, Same Frequency Visible light Interference 1 A. Two Planes Waves, Same Frequency EE 1 rr, tt = EE 0,1 cccccc αα 1 ωω tt αα 1 kk 1. rr + εε 1 EE 2 rr, tt = EE 0,2 cccccc αα 2 ωω tt αα 2 kk 2. rr + εε 2 ωω = 4.3 7.5 10 14 HHHH Visible

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Electronic Analysis of CMOS Logic Gates

Electronic Analysis of CMOS Logic Gates Electronic Analysis of CMOS Logic Gates Dae Hyun Kim EECS Washington State University References John P. Uyemura, Introduction to VLSI Circuits and Systems, 2002. Chapter 7 Goal Understand how to perform

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Access Control Encryption Enforcing Information Flow with Cryptography

Access Control Encryption Enforcing Information Flow with Cryptography Access Control Encryption Enforcing Information Flow with Cryptography Ivan Damgård, Helene Haagh, and Claudio Orlandi http://eprint.iacr.org/2016/106 Outline Access Control Encryption Motivation Definition

Διαβάστε περισσότερα

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION 25 April 2 Page of 6 (Document Released: 4:3, 4/24) Theoretical Question 2: Strong Resistive Electromagnets SOLUTION Part A. Magnetic Fields on the Axis of the Coil (a) At the point xx on the axis, the

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

EE434 ASIC & Digital Systems Arithmetic Circuits

EE434 ASIC & Digital Systems Arithmetic Circuits EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

Προσομoίωση Απόκρισης Συστήματος στο MATLAB Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. The magnetic flux through a coil of N turns is increased uniformly from zero to a maximum value in a time t. An emf, E, is induced across the coil. What is the maximum value

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Meta-Learning and Universality

Meta-Learning and Universality Meta-Learning and Universality Conference paper at ICLR 2018 Chelsea Finn & Sergey Levine (US Berkeley) Youngseok Yoon Contents The Universality in Meta-Learning Model Construct (Pre-update) Single gradient

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles Sandeep Kumar,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΣΕ60 Ακαδημαϊκό Έτος: 207-208 η Γραπτή Εργασία Επιβλέπων

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 6.03/ESD.03J Electromagnetics and Applications, Fall 005 Please use the following citation format: Markus Zahn, 6.03/ESD.03J Electromagnetics and Applications, Fall

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα