A. Two Planes Waves, Same Frequency Visible light
|
|
- Ἀντιόπη Γκόφας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Interference 1
2 A. Two Planes Waves, Same Frequency EE 1 rr, tt = EE 0,1 cccccc αα 1 ωω tt αα 1 kk 1. rr + εε 1 EE 2 rr, tt = EE 0,2 cccccc αα 2 ωω tt αα 2 kk 2. rr + εε 2 ωω = HHHH Visible light EE rr, tt = EE 1 rr, tt + EE 2 rr, tt = EE 0,1 cccccc αα 1 ωω tt + EE 0,2 cccccc αα 2 ωω tt
3 SS = nn εε oo cc EE 2 EE 2 = EE. EE = EE 1 + EE 2. EE 1 + EE 2 = EE 1. EE 1 + EE 2. EE EE 1. EE 2 3
4 EE 2 = EE 1. EE 1 + EE 2. EE EE 1. EE 2 = EE 1. EE 1 + EE 2. EE EE 1. EE 2 = EE 0,1 cccccc αα 1 ωω tt. EE 0,1 cccccc αα 1 ωω tt + EE 0,2 cccccc αα 2 ωω tt. EE 0,2 cccccc αα 2 ωω tt + 2 EE 0,1 cccccc αα 1 ωω tt. EE 0,2 cccccc αα 2 ωω tt 4
5 EE 2 = EE 0,1 2 cccccc αα1 ωω tt cccccc αα 1 ωω tt + EE 0,2 2 cccccc αα2 ωω tt cccccc αα 2 ωω tt + 2 EE 0,1. EE 0,2 cccccc αα 1 ωω tt cccccc αα 2 ωω tt = EE 0, cccccc 2αα 1 2ωω tt + EE 0, cccccc 2αα 2 2ωω tt + 2 EE 0,1. EE 0, cccccc AA cccccc BB = 1 2 cccccc AA BB + 1 cccccc AA + BB 2 2 cccccc αα 1 αα cccccc αα 1 + αα 2 2ωω tt 5 0
6 EE 2 = 1 2 EE 0, EE 0,2 2 + EE 0,1. EE 0,2 cccccc αα 1 αα 2 II EE 2 II 1 EE 1 2 = 1 2 EE 0,1 2 II 2 EE 2 2 = 1 2 EE 0,2 2 cccccc γγ EE 0,1. EE 0,2 δδ αα 1 αα 2 II = II 1 + II II 1 II 2 cccccc γγ cccccc δδ 6
7 kk 1 kk 1 kk 1 θθ θθ θθ kk 2 kk 2 γγ = θθ kk 2 cccccc γγ = 0 = 1 cccccc γγ = θθ 1 cccccc γγ = 90 = 0 Ideal to observe interference, regardless of θθ Will attenuate interference term, attenuation will depend on θθ No interference term, regardless of θθ 7
8 Assume from now on: cccccc γγ = 1 II = II 1 + II II 1 II 2 cccccc δδ δδ = kk 1. rr + εε 1 kk 2. rr εε 2 cccccc δδ = cccccc kk 1 kk 2. rr + εε 1 εε 2 rr = 0 cccccc δδ = cccccc εε 1 εε 2 8
9 Two waves from two independent light sources TT 1 νν tt TT tt averaging time = tt > TT δδ = RRRRRRRRRRRR 0, 2ππ cccccc δδ = 0 II = II 1 + II 2 +2 II 1 II 2 cccccc δδ 9
10 Two waves from one single light source LL 1 LL 2 TT tt averaging time = tt > TT tt δδ = RRRRRRRRRRRR 0, 2ππ cccccc δδ = 0 II = II 1 + II 2 +2 II 1 II 2 cccccc δδ 10
11 εε 1 εε 2 = εε εε/ωω < TT εε = 2 ππ λλ oo 2 nn LL 1 2 nn LL 2 LL 1 LL 2 tt TT averaging time = tt > TT tt εε cccccc δδ = cccccc εε ωω < TT { II = II 1 + II II 1 II 2 cccccc δδ cccccc εε 11
12 Required condition to observe interference εε < ωω TT εε = 2 ππ λλ oo 2 nn LL 1 2 nn LL 2 = 2 ππ λλ oo OOOOOO 1 OOOOOO 2 ωω TT = ωω cc cc TT = 2 ππ λλ oo ll OOOOOO 1 OOOOOO 2 = OOOOOO < ll II = II 1 + II II 1 II 2 cccccc εε 2 ππ OOOOOO λλ 1 OOOOOO 2 oo 12
13 From now on: OOOOOO 1 OOOOOO 2 = OOOOOO < ll cccccc δδ = cccccc δδ = cccccc kk 1 kk 2. rr + εε 1 εε 2 13
14 II = II 1 + II II 1 II 2 cccccc δδ Constructive interference cccccc δδ = 1 δδ = 0, ±2ππ, ±4ππ, 2 II mmmmmm = II 1 + II II 1 II 2 = II 1 + II 2 Destructive interference cccccc δδ = 1 δδ = ±ππ, ±3ππ, ±5ππ, II mmmmmm = II 1 + II 2 2 II 1 II 2 = II 1 II
15 Interference of two plane waves yy yy kk 1 θθ θθ kk 1 kk 2 xx kk 2 δδ = kk 1 kk 2. rr + εε 1 εε 2 = 2 kk ssssss θθ y + εε 1 εε 2 II = II 1 + II II 1 II 2 cccccc 2 kk ssssss θθ y + εε 1 εε 2 15
16 II = II 1 + II II 1 II 2 cccccc 2 kk ssssss θθ y + εε 1 εε 2 Constructive interference δδ = 2 kk ssssss θθ y + εε 1 εε 2 = 0, ±2ππ, ±4ππ, II mmmmmm = II 1 + II II 1 II 2 = II 1 + II 2 2 Destructive interference δδ = 2 kk ssssss θθ y + εε 1 εε 2 = ±ππ, ±3ππ, ± 5ππ, II mmiiii = II 1 + II 2 2 II 1 II 2 = II 1 II
17 Separations between two constructive (destructive) interference fringes δδ = 2 ππ = 2 kk ssssss θθ y yy = 2 2 ππ λλ ssssss θθ y Λ y Λ = λλ 2 ssssss θθ 17
18 Visibility: contrast between bright and dark fringes VVVVVVVVVVVVVVVVty II mmmmmm II mmmmmm II mmmmmm + II mmmmmm = 2 II 1 II 2 II 1 + II 2 18
19 Mathematica 19
20 Sub-Micron Surface-Relief Grating 1) Holographic Exposure 2) Photoresist Development He-Cd 442 nm Loyd s mirror He-Ne λ = nm developer tank photoresist detector 3) Ion Beam Etching 4) Surface Relief Grating 20
21 B. Interference of two spherical waves 21
22 rr 1 rr 2 δδ αα 1 αα 2 = k rr 1 k rr 2 + εε 1 εε 2 = k rr 1 rr 2 + εε 1 εε 2 22
23 II = II 1 + II II 1 II 2 cccccc kk rr 1 rr 2 + εε 1 εε 2 Constructive interference δδ = kk rr 1 rr 2 + εε 1 εε 2 = 0, ±2ππ, ±4ππ, hyperbola II mmmmmm = II 1 + II II 1 II 2 = II 1 + II 2 2 Destructive interference δδ = kk rr 1 rr 2 + εε 1 εε 2 = ±ππ, ±3ππ, ± 5ππ, hyperbola II mmiiii = II 1 + II 2 2 II 1 II 2 = II 1 II
24 How to create coherent waves? Take a single light source and apply one the following approaches: a) Wavefront Division Interferometer b) Amplitude Division Interferometer LL 1 LL 2 24 OOOOOO < ccccccccccccccccc lllllllllll
25 Wavefront Division Interferometer 25
26 Young s interferometer 26
27 Mathematica 27
28 Phase difference in Young s interferometer yy aa 2 rr 2 θθ RR ss RR ss 2 + yy 2 aa 2 rr rr 1 = ss 2 + yy + aa 2 rr 2 = ss 2 + yy aa 2 aa RR 11 rr 1 rr 2 aa yy RR = aa ssssss θθ II = II 1 + II II 1 II 2 cccccc kk aa yy RR + εε 1 εε 2 28
29 Geometrical visualization of far-field approximation aa RR 11 rr 1 rr 2 aa yy RR = aa ssssss θθ rr 2 yy aa θθ θθ rr 1 rr 2 aa ssssss θθ RR rr 1 ss 29
30 Constructive interference: bright fringes δδ = kk aa yy bb RR + εε 1 εε 2 = 0, ±2ππ, ±4ππ, = mm ee ππ mm ee = 0, ±2, ±4, yy bb = mm ee λλ RR 2 aa + εε 2 εε 1 λλ RR 2 ππ aa = mm ee λλ RR 2 aa + yy 0 yy 0 εε 2 εε 1 λλ RR 2 ππ aa 30
31 II = II 1 + II II 1 II 2 cccccc kk aa yy RR + εε 1 εε 2 Constructive interference δδ = kk aa yy bb RR + εε 1 εε 2 yy bb = mm ee λλ RR 2 aa + yy 0 = 0, ±2ππ, ±4ππ, = mm ee ππ mm ee = 0, ±2, ±4, Destructive interference δδ = kk aa yy dd RR + εε 1 εε 2 yy dd = mm oo λλ RR 2 aa + yy 0 = ±ππ, ±3ππ, ± 5ππ, mm oo = ±1, ±3, 31
32 Separation between two constructive (destructive) interference fringes δδ = 2 ππ = kk aa y RR Λ y Λ = λλ RR aa 32
33 i) Same phase at input screen εε 2 = εε 1 yy 0 εε 2 εε 1 λλ RR 2 ππ aa = 0 yy rr 2 yy 0 rr 1 II = II 1 + II II 1 II 2 cccccc kk aa yy RR = II 1 II II1 II 2 cccccc 2 kk aa yy 2 33 RR
34 ii) Phase delay in one input port εε 2 εε 1 = 2 ππ λλ oo nn gg nn dd gg yy 0 εε 2 εε nn 1 gg dd gg εε 2 εε 1 = nn gg rr 2 nn 1 nn gg nn dd gg ll λλ RR 2 ππ aa RR dd gg aa yy yy 0 nn rr 1 II = II 1 + II II 1 II 2 cccccc kk aa yy yy 0 RR 2 = II 1 II II1 II 2 cccccc 2 kk aa yy yy 0 2 RR34
35 iii) Inclination of incident wave yy εε 2 εε 1 = 2 ππ λλ aa ssssss θθ ii yy 0 εε 2 εε 1 θθ ii rr 2 aa θθ ii RR yy 0 εε 2 εε 1 = RR ssssss θθ ii λλ RR 2 ππ aa θθ ii rr 1 II = II 1 + II II 1 II 2 cccccc kk aa yy yy 0 RR 2 = II 1 II II1 II 2 cccccc 2 kk aa yy yy 0 2 RR35
36 Extended light source yy dd,1 = λλ RR 2 aa yy 0 = RR ssssss θθ ii yy aa θθ ii yy dd,1 = yy 0 ssssss θθ ii < λλ 2 aa θθ ii ssssss θθ ii = λλ 2 aa Interference pattern will be observed. ssssss θθ ii > λλ 2 aa Interference pattern will be washed out. 36
37 Spatial coherence for extended light sources θθ ii aa aa λλ 2 ssssss θθ ii spatially coherent λλ 2 ssssss θθ ii = 0.55 μμμμ 2 ssssss μμμμ 37
38 Michelson Stellar Interferometer aa VVVVVVVVVVVVVVVVVVVV aa = II mmmmmm II mmmmmm II mmmmmm + II mmmmmm IIIIIIIIIIIIIIIIII II mmmmmm VVVVVVVVVVVVVViitttt aaa = 0 Angular width of star: II mmmmmm aaa aa 2 ssssss θθ ii = λλ aa 38
39 Other examples of wavefront division interferometers Fresnel double prism Fresnel double mirror Loyd s mirror 39
40 Amplitude Division Interferometer LL 1 LL
41 Pathlength for wave (a) (aa) (bb) d nn 1 nn ff θθ A D θθ ff θθ C (aa) nn 2 AAAA = ssssss θθ 2 ππ λλ oo OOOOOO aa = 2 ππ λλ oo AAAA B nn 1 AAAA = 4 ππ λλ oo AAAA 2 dd = tttttt θθ ff nn ff dd ssssss2 θθ ff cccccc θθ ff 41
42 Pathlength for wave (b) (aa) (bb) d nn 1 nn ff θθ A D θθ ff θθ C (bb) nn 2 AAAA = BBCC B AAAA = 2 ππ λλ oo OOOOOO bb = 2 ππ λλ oo nn ff AAAA + BBBB = 4 ππ λλ oo dd cccccc θθ ff nn ff dd 1 cccccc θθ ff 42
43 Pathlength difference (aa) (bb) nn 1 θθ d nn ff θθ ff nn 2 2 ππ λλ oo OOOOOO bb OOOOOO aa = 4 ππ λλ oo nn ff dd cccccc θθ ff 43
44 Total phase difference (aa) (bb) nn 1 θθ d nn ff θθ ff nn 2 δδ = 4 ππ λλ oo nn ff dd cccccc θθ ff + φφ rr,bb φφ rr,aa pathlength reflection 44
45 Examples 45
46 1. Soap-water film (aa) (bb) nn 1 θθ nn 1 d nn ff θθ ff nn ff nn 2 nn 2 δδ = OOOOOO bb OOOOOO aa + φφ rr,bb φφ rr,aa = 4 ππ λλ oo nn ff dd cccccc θθ ff + 0 π = mm eeeeeeee π mm oooooo π constructive interference destructive interference 46
47 nn ff dd cccccc θθ ff = mm oooooo λλ oo 4 mm eeeeeeee λλ oo 4 constructive interference destructive interference 47 dd 47
48 2. Anti-reflection coating (aa) (bb) nn 1 θθ nn 1 d nn ff θθ ff nn ff nn 2 nn 2 δδ = OOOOOO bb OOOOOO aa + φφ rr,bb φφ rr,aa = 4 ππ λλ oo nn ff dd cccccc θθ ff + π π = mm eeeeeeee π mm oooooo π constructive interference destructive interference 48
49 nn ff dd cccccc θθ ff = mm eeeeeeee λλ oo 4 mm oooooo λλ oo 4 constructive interference destructive interference 49
50 3. Air gap on wedges cccccc θθ ff 1 nn gggg nn aaaaaa xx nn gggg nn ff dd = mm oooooo λλ oo 4 constructive interference xx mm eeeeeeee λλ oo 4 destructive interference dd HH LL xx 50
51 4. Newton s rings nn ff dd = dd xx2 2 RR mm oooooo λλ oo 4 mm eeeeeeee λλ oo 4 constructive interference destructive interference xx xx xx 51
52 5. Surface flatness 52
53 6. Michelson interferometer LL 1 LL
54 Laser Interferometer Gravitational-Wave Observatory (LIGO) 54
55 55
56 Requirement: L m
57 Michelson interferometer 57
58 Mirror 1 δδ = 4 ππ λλ oo OOOOOO 2 OOOOLL 1 cccccc θθ ff OOOOOO 1 Mirror 1 OOOOOO 2 Mirror 2 II = II 1 + II II 1 II 2 cccccc δδ 58
59 cccccc θθ ff 1 nn, ll δδ = 4 ππ λλ oo OOOOOO 2 OOOOOO 1 = 4 ππ λλ oo nn ll = 2 ππ mm nn ll = λλ oo 2 mm 59
60 7. Mach Zehnder interferometer 60
61 Application: integrated optical modulator 61
62 7. Sagnac interferometer 62
63 Application: Fiber optic gyroscope 63
64 What happen if: 100 mmmm 100 mmmm 90 mmmm 10 mmmm??? mirror mirror two identical 10 mmmm mirrors 90 mmmm??? 100 mmmm 64
65 1 ρρ 1 ρρ2 ρρ 3 ρρ 1 = rr ρρ 4 ρρ 2 = tt ee iiδδ rr ee iiδδ ttt ρρ 3 = tt ee iiδδ rr ee iiδδ rr ee iiδδ rrree iiδδ ttt nn 1 ρρ 4 = tt ee iiδδ rr ee iiδδ rr ee iiδδ rrree iiδδ 2 ttt nn 2 nn 1 ττ 1 = tt ee iiδδ tt ττ 2 = tt ee iiδδ rr ee iiδδ rrree iiδδ tt ττ 1 ττ 2 ττ 3 ττ 3 = tt ee iiδδ rr ee iiδδ rrree iiδδ 2 tt ττ 4 ττ 4 = tt ee iiδδ rr ee iiδδ rrree iiδδ 3 tt 65
66 ρρ ττ ii = rr + tt ee iiδδ rr ee iiδδ ttt 1 + rr ee iiδδ rrree iiδδ ii=1 + rr ee iiδδ rrree iiδδ 2 + rr ee iiδδ rrree iiδδ 3 + = rr + tt eeiiδδ rr ee iiδδ ttt 1 rr ee iiδδ rrree iiδδ ττ ττ ii = tt ee iiδδ tt 1 + rr ee iiδδ rrree iiδδ ii=1 + rr ee iiδδ rrree iiδδ 2 + rr ee iiδδ rrree iiδδ 3 + tt ee iiδδ tt = 1 rr ee iiδδ rrree iiδδ 66
67 ττ = tt ee iiδδ tt 1 rr ee iiδδ rrree iiδδ rr rr ee iiδδ rr = tt ee iiδδ tt 1 rr 2 ee 2iiδδ rr ee 2iiδδ ττ 2 = TT RR 2 2RR cccccc 2δδ rr + 2δδ cccccc 2δδ rr + 2δδ = 1 2ssssss 2 δδ rr + δδ = TT 2 1 RR 2 + 4RR ssssss 2 δδ rr + δδ FF 4RR 1 RR 2 = 2 TT 1 RR 1 + FF ssssss 2 δδ rr + δδ 67
68 4RR FF 1 RR 2 R F 1.00E E E E E E E E E E E E E E+09 ττ 2 = 2 TT 1 RR 1 + FF ssssss 2 δδ rr + δδ ττ 2 TT 1 RR 2 δδ rr + δδ 68
69 Peaks δδ = mm ππ δδ rr ππ δδ = 2 ππ λλ oo nn 2 dd cccccc θθ ff = 2 ππ νν cc nn 2 dd cccccc θθ ff 2 ππ vv mm cc nn 2 dd cccccc θθ ff = mm ππ δδ rr δδ = 2 ππ νν cc nn 2 dd cccccc θθ ff = ππ νν FFFFFF = cc 2 nn 2 dd cccccc θθ ff vv mm = mm δδ rr ππ νν FFFFFF 69
70 Full Width at Half Maximum (FWHM) γγ FF ssssss 2 mm ππ + γγ 2 = 1 ssssss2 γγ 2 = 1 FF γγ 2 FF 2 ππ νν cc nn 2 dd cccccc θθ ff = 2 FF νν FFFFFFFF = 2 νν FFFFFF ππ FF 70
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Διαβάστε περισσότεραΕΛΛΗΝΙΚΑ Χ Ρ ΗΜ ΑΤ ΙΣ Τ ΗΡ ΙΑ CISCO EXPO 2009 G. V a s s i l i o u - E. K o n t a k i s g.vassiliou@helex.gr - e.k on t ak is@helex.gr 29 Α π ρ ι λ ί ο υ 20 0 9 Financial Services H E L E X N O C A g e
Διαβάστε περισσότεραElectronic Analysis of CMOS Logic Gates
Electronic Analysis of CMOS Logic Gates Dae Hyun Kim EECS Washington State University References John P. Uyemura, Introduction to VLSI Circuits and Systems, 2002. Chapter 7 Goal Understand how to perform
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc) ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ΠΣΕ60 Ακαδημαϊκό Έτος: 207-208 η Γραπτή Εργασία Επιβλέπων
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Άσκηση 1 Ερώτημα (i) HH 0 : μμ 1 = μμ = μμ 3 = μμ 4 = μμ HH 1 : τουλάχιστον
Διαβάστε περισσότεραΠροσομoίωση Απόκρισης Συστήματος στο MATLAB
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Προσομoίωση Απόκρισης Συστήματος στο MATLAB Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Προσομoίωση Απόκρισης Συστήματος στο MATLAB του καθ. Ιωάννη
Διαβάστε περισσότεραRelativistic Kinematics. Chapter 1 of Modern Problems in Classical Electrodynamics by Charles Brau
Relativistic Kinematics Chapter of Modern Problems in Classical Electrodynamics by Charles Brau Spring 28 Relativistic Formalism of Electrodynamics Special relativity Lorentz transformations Electromagnetic
Διαβάστε περισσότεραSmart Shop uu ss ii nn g g RR FF ii dd Παύλος ΚΚ ατ σσ αρ όό ς Μ Μ MM Ε Ε ΞΞ ΥΥ ΠΠ ΝΝ ΟΟ ΜΜ ΑΑ ΓΓ ΑΑ ΖΖ Ι Ι ΡΡ ΟΟ ΥΥ ΧΧ ΙΙ ΣΣ ΜΜ ΟΟ ΥΥ E E TT HH N N ΧΧ ΡΡ ΗΗ ΣΣ ΗΗ TT OO Y Y RR FF II DD Απευθύνεται σσ
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #9: Σύστημα ης τάξης: Χρονική Απόκριση και Χαρακτηριστικά Μεγέθη (Φυσικοί Συντελεστές) Δημήτριος
Διαβάστε περισσότεραEE434 ASIC & Digital Systems Arithmetic Circuits
EE434 ASIC & Digital Systems Arithmetic Circuits Spring 25 Dae Hyun Kim daehyun@eecs.wsu.edu Arithmetic Circuits What we will learn Adders Basic High-speed 2 Adder -bit adder SSSSSS = AA BB CCCC CCCC =
Διαβάστε περισσότεραPETROSKILLS COPYRIGHT
Contents Dew Point... 2 SI Conversions... 2 Output... 2 Input... 2 Solution Condensate-Oil Ratio... 3 SI Conversions... 3 Output... 3 Input... 3 Gas Density... 4 SI Conversions... 5 Output... 5 Input...
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 6: Έργο και κινητική ενέργεια. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 6: Έργο και κινητική ενέργεια Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση και ορισμός της έννοιας του έργου Κατανόηση της κινητικής ενέργειας
Διαβάστε περισσότεραΑπόκριση σε Αρμονική Διέγερση
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 3: Μηχανικές δυνάμεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 3: Μηχανικές δυνάμεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Περιγραφή και παρουσίαση μηχανικών δυνάμεων Βαρύτητα Τριβή (στατική και ολίσθησης) Τάση
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 11: Ταλαντώσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 11: Ταλαντώσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή και ερμηνεία των ταλαντώσεων Διαφορική εξίσωση κι η λύση της στην περίπτωση του απλού
Διαβάστε περισσότεραΜαθηματικοί Διαγωνισμοί για Μαθητές Λυκείου Α ΤΕΥΧΟΣ ΑΛΓΕΒΡΑ
Μαθηματικοί Διαγωνισμοί για Μαθητές Λυκείου Α ΤΕΥΧΟΣ ΑΛΓΕΒΡΑ Δάτης Καλάλη Αγαπητέ αναγνώστη, Πρόλογος Η ιδέα για τη συγγραφή αυτού του βιβλίου προέκυψε από τη διαπίστωση ότι πολλοί μαθητές λαμβάνουν μέρος
Διαβάστε περισσότεραΔυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε. 1 ης τάξης Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση Συστημάτων
Διαβάστε περισσότεραΑπό τις (1) και (2) έχουμε:
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΚΑΝΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ 3 ΣΤΟ ΜΑΘΗΜΑ «ΔΙΗΛΕΚΤΡΙΚΕΣ, ΟΠΤΙΚΕΣ, ΜΑΓΝΗΤΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ» ΤΟΥ ΠΑΤΡΙΚ ΑΣΕΝΟΒ (OR STEVE HARRIS FOR MY FRIENDS FROM THE SHMMY FORUM) Θέμα ον : Έχουμε ιοντικό
Διαβάστε περισσότεραΠίνακες Ορίζουσες. Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες.
1 Πίνακες Ορίζουσες Πίνακας: ορθογώνια διάταξη αριθμών που αποτελείται από γραμμές και στήλες. Παράδειγμα (χορήγηση Βαλασικλοβιρης (αντιυπερτασικό) σε νήπια) Ηλικία (μήνες) Μέσο Cmax (μg/ml) Μέσο βάρος
Διαβάστε περισσότεραÓå Ýíá ó ïëåßï óôçí ÁèÞíá
8 Eíüôçôá 1 Óå Ýíá ó ïëåßï óôçí ÁèÞíá speak about everyday activities school life ôá åëëçíéêü êé åìåßò... Παιδιά, αύριο θα είστε έτοιμοι αργότερα, γύρω στις δέκα. Στις έντεκα μας περιμένει η πρώτη τάξη
Διαβάστε περισσότεραα α α α α α α α α α α α α α α α α α α α α α α α α α α α β χ δ ε φ γ η ι ϕ κ λ µ ν ο π θ ρ σ τ υ ϖ ω ξ ψ ζ αα ββ χχ δδ εε φφ γγ ηη ιι ϕϕ κκ λλ µµ νν οο
Διαβάστε περισσότεραAccess Control Encryption Enforcing Information Flow with Cryptography
Access Control Encryption Enforcing Information Flow with Cryptography Ivan Damgård, Helene Haagh, and Claudio Orlandi http://eprint.iacr.org/2016/106 Outline Access Control Encryption Motivation Definition
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ ΘΕΜΑ Α Α1. Έστω μια συνάρτηση ff που έχει πεδίο ορισμού το ΔΔ. 1. Πότε η ffλέγεται συνεχής στο xx 0 ΔΔ ; 2. Πότε η ff λέγεται συνεχής; (Μονάδες
Διαβάστε περισσότεραΕπίλυση Δυναμικών Εξισώσεων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Επίλυση Δυναμικών Εξισώσεων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Επίλυση Δυναμικών Εξισώσεων του καθ. Ιωάννη Αντωνιάδη και υπόκειται σε
Διαβάστε περισσότεραΛύσεις. ΘΕΜΑ Α A1. Απόδειξη σελ. 144 Α2. Α. ii. B. iv A3. Ορισμός σελ. 162 Α4. i. Λ ii. Σ iii. Λ iv. Σ v. Σ ΘΕΜΑ Β Β1. Διακρίνουμε τις περιπτώσεις:
ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΡΕΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α A. Απόδειξη σελ. 44 Α. Α. ii. B. iv A3. Ορισμός σελ. 6 Α4. i. Λ ii. Σ iii.
Διαβάστε περισσότεραTheoretical Question 2: Strong Resistive Electromagnets SOLUTION
25 April 2 Page of 6 (Document Released: 4:3, 4/24) Theoretical Question 2: Strong Resistive Electromagnets SOLUTION Part A. Magnetic Fields on the Axis of the Coil (a) At the point xx on the axis, the
Διαβάστε περισσότεραPETROSKILLS COPYRIGHT
Contents Solution Gas-Oil Ratio... 2... 2... 2... 2 Formation Volume Factor... 3... 3... 3... 3 Viscosity... 4... 4... 4... 4 Density... 5 Bubble Point Pressure... 5... 6... 6... 6 Compressibility... 6
Διαβάστε περισσότεραOn the axes in the diagram above, sketch a graph to show how the intensity varies with position for a monochromatic light source.
Q1.The diagram shows Young s double-slit experiment performed with a tungsten filament lamp as the light source. (a) On the axes in the diagram above, sketch a graph to show how the intensity varies with
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία του ηλεκτρικού δυναμικού στις 3 διαστάσεις μέσω:
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ 1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ Προβλήματα Αδιαστατοποίησης - Δυναμικής Πληθυσμών Άσκηση 3.3, σελίδα 32 από
Διαβάστε περισσότεραΠίνακες Γραμμικά Συστήματα
Πίνακες Γραμμικά Συστήματα 1. Είδη Πινάκων Οι πίνακες είναι ένα χρήσιμο μαθηματικό εργαλείο, με εφαρμογές και διασυνδέσεις σε πολλές επιστήμες. Η σημαντικότερη εφαρμογή των πινάκων είναι στην επίλυση συστημάτων
Διαβάστε περισσότεραΜελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και πεπερασμένη απόσταση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Μελέτη συστήματος συμβολομετρικής ραδιομετρίας με δυνατότητα εστίασης σε άπειρη και
Διαβάστε περισσότεραΤρίτο πακέτο ασκήσεων
ΕΚΠΑ Ακαδημαϊκό έτος 018-019 Τμήμα Οικονομικών Επιστημών Μάθημα: Μικροοικονομική Θεωρία Ι Τρίτο πακέτο ασκήσεων Προθεσμία παράδοσης Παρασκευή 18 Ιανουαρίου (στο μάθημα της κ. Κουραντή, του κ. Παπανδρέου
Διαβάστε περισσότεραΠάμε Ολυμπιάδα Φυσικής!
Πάμε Ολυμπιάδα Φυσικής! Α ΤΕΥΧΟΣ ΝΕΥΤΩΝΕΙΑ ΜΗΧΑΝΙΚΗ Δάτης Καλάλη Επιμέλεια: Στυλιανός Φωτιάδης 1 Πρόλογος Η Φυσική, μία από τις παλαιότερες επιστήμες που υπάρχουν σήμερα, η ιστορία της οποίας ξεκίνησε
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας Μετασχηματισμός Laplace και
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Επανάληψη θεωρίας διανυσμάτων Εξοικείωση με τη χρήση τους στην περιγραφή
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 2: Ηλεκτρικό πεδίο Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια του ηλεκτρικού πεδίου Ηλεκτρικό πεδίο φορτισμένης πηγής Ορισμός έντασης
Διαβάστε περισσότεραΣυστήματα Αυτομάτου Ελέγχου Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #7: Άλγεβρα Βαθμίδων (μπλόκ) Ολική Συνάρτηση Μεταφοράς Δημήτριος Δημογιαννόπουλος Τμήματος
Διαβάστε περισσότεραΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ
ΒΡΑΧΥΧΡΟΝΙΑ ΠΕΡΙΟΔΟΣ 1. Έστω ένας κλάδος όπου nn επιχειρήσεις έχουν την ίδια τεχνολογία. Η συνάρτηση κόστους της κάθε μιας επιχείρησης είναι CC() = 100 + 2. Η συνάρτηση ζήτησης του κλάδου είναι QQ DD =
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 10: Σύνθετη κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 10: Σύνθετη κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ανάλυση σύνθετων κινήσεων (υλικών σημείων και σωμάτων) σε μεταφορική και περιστροφική Ορισμός
Διαβάστε περισσότεραΛύση Παραδείγματος 1. Διάγραμμα ροής διεργασίας. Εκρόφηση χλωριούχου βινυλίου από νερό στους 25 C και 850 mmhg. Είσοδος υγρού.
Παράδειγμα 1 Μια εγκατάσταση καθαρισμού νερού απομακρύνει χλωριούχο βινύλιο (vinyl cloride) από μολυσμένα υπόγεια ύδατα σε θερμοκρασία 25 C και πίεση 850 mmhg χρησιμοποιώντας στήλη εκρόφησης κατ αντιρροή.
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ημερομηνία: Σάββατο 4 Μαΐου 09 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α. β Α. γ Α3. γ Α4. γ ΑΠΑΝΤΗΣΕΙΣ Α5. α. Σωστό β. Λάθος γ. Λάθος δ. Λάθος ε. Λάθος ΘΕΜΑ Β Β. β. Άπο τη
Διαβάστε περισσότεραTakeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
Διαβάστε περισσότεραMeta-Learning and Universality
Meta-Learning and Universality Conference paper at ICLR 2018 Chelsea Finn & Sergey Levine (US Berkeley) Youngseok Yoon Contents The Universality in Meta-Learning Model Construct (Pre-update) Single gradient
Διαβάστε περισσότεραΜοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών Συστημάτων Πολλών Βαθμών Ελευθερίας Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών Συστημάτων Πολλών
Διαβάστε περισσότεραAssociate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens. ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption
Associate. Prof. M. Krokida School of Chemical Engineering National Technical University of Athens ΑΠΟΡΡΟΦΗΣΗ ΑΕΡΙΩΝ Gas Absorption Παράγοντες που Επηρεάζουν Διεργασία Απορρόφησης Συνήθως δίνονται: Ρυθμός
Διαβάστε περισσότεραοδηγός εταιρικής ταυτότητας
πρόλογος στοιχεία λογοτύπου λογότυπο [ σχεδιασμός χρήση τοποθέτηση εταιρικά χρώματα χρήση σε μη εταιρικά χρώματα χρήση σε φωτογραφίες λάθος χρήση ] χρωματικός κώδικας [ παλέτα χρήση λάθος χρήση χρώμα και
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 12 : Κύματα. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 12 : Κύματα Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και κατανόηση της έννοιας των κυμάτων Μαθηματική περιγραφή και εξισώσεις κύματος Επεξήγηση
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 10: Ηλεκτρομαγνητική επαγωγή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 10: Ηλεκτρομαγνητική επαγωγή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της μαγνητικής ροής και ορισμός του μαθηματικού τύπου της
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΥΛΙΣΜΙΚΟ/ΛΟΓΙΣΜΙΚΟ ΕΙΚΟΝΙΚΑ ΔΙΚΤΥΑ
ΟΙΚΟΝΟΜΙΚΗ ΤΩΝ ΔΙΚΤΥΩΝ ΚΑΙ ΤΗΣ ΠΛΗΡΟΦΟΡΗΣΗΣ (ECΟ465) ΥΛΙΣΜΙΚΟ/ΛΟΓΙΣΜΙΚΟ ΕΙΚΟΝΙΚΑ ΔΙΚΤΥΑ 1 ΕΞΩΤΕΡΙΚΟΤΗΤΕΣ ΔΙΚΤΥΟΥ o Μια μεγάλη πλειοψηφία προϊόντων χαρακτηρίζεται από εξωτερικότητες δικτύου. ΟΡΙΣΜΟΣ. Ένα
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #7: Σύστημα Ασαφούς Λογικής Μαθηματικές Εκφράσεις Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
Διαβάστε περισσότεραLIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Ημερομηνία: Σάββατο 11 Μαΐου 019 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α1. Θεωρία. Σχολικό βιβλίο σελίδα 90 ΑΠΑΝΤΗΣΕΙΣ Α. α. (αα 1) β. (ββ 3) γ. (γγ ) δ. (δδ 5) Α3. α.
Διαβάστε περισσότεραΜΑΘΑΙΝΩ ΝΑ ΠΑΡΟΥΣΙΑΖΟΜΑΙ ΚΑΙ ΝΑ ΓΝΩΡΙΖΩ ΑΛΛΑ ΑΤΟΜΑ Άσκηση 1 (1 ος τρόπος) -Ismi o Kumetto! Ayşo ismak l-id?
ΤΟ ΑΛΦΑΒΗΤΟ 1. A,a arnep, asfar 2. B,b balla, bit 3. C,c catik, Catra 4. D,d dafet, dzanin 5. Δ,δ δeca, δaxr 6. E,e exen, ekef 7. F,f farxa, fal 8. G,ġ anġe 9. Ċ,ċ ċaput 10.I,i ijr, ikl 11. J,j jtite,
Διαβάστε περισσότεραWAVE REVIEW. 1. The two graphs show the variation with time of the individual displacements of two waves as they pass through the same point.
WAVE REVIEW 1. The two graphs show the variation with time of the individual displacements of two waves as they pass through the same point. displacement A 1 x 1 T time A 1 displacement A 2 x A 2 2 T time
Διαβάστε περισσότερα1. This question is about microwaves.
1. This question is about microwaves. (a) Radiation from a microwave transmitter passes through a single narrow slit. A receiver is placed several metres beyond the slit. The receiver can be moved between
Διαβάστε περισσότερα<< 3; -. ; ; ; C? 1 1 B C 4 4 C?. B B; ;? 9= 2 C? 1 1 C 4 4 C?. B
! "! #! $ % & ' (# # ) " * +, (! + $ % % # #! -.! # # # / 0 + 1 12 3. 4 5 2 677 8 9 -: ; < = 49 => ==: 4? @9 : 4? ; A 4 B 4 C? =
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 12: To φως. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 12: To φως Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στο φως και στη δυική φύση του (κυματική, σωματιδιακή) Ορισμός ηλεκτρομαγνητισμού, ιδιότητες
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 13: Ήχος. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 13: Ήχος Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός και ερμηνεία της έννοιας του ήχου Η μεταβολής της πίεσης στη διάδοση του ήχου Ταχύτητα του
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 4: Νόμοι του Νεύτωνα. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 4: Νόμοι του Νεύτωνα Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Επανάληψη των 3 ων Νόμων του Νεύτωνα Αποσαφήνιση και ανάλυση των 3 Νόμων του Νεύτωνα Μελέτη
Διαβάστε περισσότεραx, x γνησίως μονότονη. (σελ. 35 σχολικό βιβλίο)
ΘΕΜΑ Α: A.. Σχολικό Βιβλίο σελ. 99 A.. α) Ψ, β) Η συνάρτηση f ( ) = είναι - αλλά δεν είναι, > γνησίως μονότονη. (σελ. 5 σχολικό βιβλίο) A.. Σχολικό Βιβλίο σελ. 6 A.4 α)λάθος β)λάθος γ) Σωστό δ) Σωστό ε)
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 7: Κυκλική κίνηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 7: Κυκλική κίνηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην κυκλική κίνηση Παρουσίαση και επεξήγηση γωνιακών μεγεθών ακτίνια, ταχύτητα,
Διαβάστε περισσότερα«W i -F i & Τ ο π ι κ ή α υ τ ο δ ι ο ί κ η σ η Κ ο ι τ ά ζ ο ν τ α ς π ί σ ω α π ό τ η ν υ π ο δ ο µ ή Γρηγόρης Γκ ότ σσ ης ΥΥ ππ εε ύύ θθ υυ νν οο ς ΈΈ ργο υυ .γ γ ιι αα ττ ίί νν αα εε ππ εε νν δδ ύύ
Διαβάστε περισσότεραΔΙΑΙΣΘΗΤΙΚΗ ΑΣΑΦΗΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική εργασία: ΔΙΑΙΣΘΗΤΙΚΗ ΑΣΑΦΗΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ψαθάς Νικόλαος :4950 Επιβλέπων καθηγητής : Σεργιάδης
Διαβάστε περισσότεραΚεφάλαιο 12. Στοιχεία του Λογισμού των Μεταβολών
Κεφάλαιο 12. Στοιχεία του Λογισμού των Μεταβολών 1. Εισαγωγή Στα τελευταία χρόνια υπήρξε μια μεγάλη ποικιλία εφαρμογών των μεταβολικών μεθόδων σε πολλά πεδία της επιστήμης και της τεχνολογίας. Για το λόγο
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 5: Ορμή Ώθηση. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 5: Ορμή Ώθηση Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση της έννοιας της ορμής και της μεταβολής της Κατανόηση της έννοιας της ώθησης Σύνδεση
Διαβάστε περισσότεραΠροβλέψεις. Γιώργος Λυμπερόπουλος. Γ. Λυμπερόπουλος - Διοίκηση Παραγωγής
Προβλέψεις Γιώργος Λυμπερόπουλος 1 Προβλέψεις: Εισαγωγή Γιατί προβλέψεις; Έγκαιρος προγραμματισμός και λήψη αποφάσεων Προβλέψεις τίνος; Τμήμα πωλήσεων (μάρκετινγκ) Ζήτηση νέων και υφιστάμενων σειρών προϊόντων
Διαβάστε περισσότεραProblem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Διαβάστε περισσότεραΔιακριτή Μοντελοποίηση Μηχανικών Συστημάτων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων του καθ. Ιωάννη
Διαβάστε περισσότεραΜοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Μοντελοποίηση Μηχανικών - Ηλεκτρικών - Υδραυλικών Θερμικών Συστημάτων Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Μοντελοποίηση Μηχανικών - Ηλεκτρικών
Διαβάστε περισσότεραA Study of a Generalization of Ramanujan s Third Order and Sixth Order Mock Theta Functions
Applied Mathematics 01 (5): 157-165 DOI: 10.593/j.am.01005.0 A Study of a Generalization of Ramanujan s Third Order and Sixth Order Mock Theta Functions Sameena Saba Karamat Husain Muslim Girls P.G. College
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραAA ,,2211((11)):: AAppppll..MMaatthh..JJ..CChhiinneesseeUUnniivv..SSeerr..AA 11,, 22 ((11..,, ;; 22..,, )) :
AA 000066,,::4444--4488 AAppppll..MMaahh..JJ..CChhiinneesseeUUnniivv..SSeerr..AA,,..,, 00770000;;..,, 00770000 ::,, RRiiccccaaii,,.. :: ;; ;; ;; RRiiccccaaii ::OO7755..88 ::AA ::000000--44444400006600--00004444--0055
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 6: Πυκνωτές. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 6: Πυκνωτές Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Ορισμός χωρητικότητας πυκνωτή Ανάλυση γεωμετρίας και χαρακτηριστικών μεγεθών επίπεδου πυκνωτή
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 8: Μαγνητισμός. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 8: Μαγνητισμός Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εξοικείωση με τις έννοιες του μαγνητισμού και του μαγνητικού πεδίου Κινούμενο φορτίο σε μαγνητικό
Διαβάστε περισσότεραΈλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση
Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση Γιώργος Λυμπερόπουλος 1 Πρότυπο Εφημεριδοπώλη Υποθέσεις/Συμβολισμός Ορίζοντας μίας περιόδου Αβέβαιη ζήτηση περιόδου: DD (μονάδες). Υπόθεση: DD συνεχής τυχαία μεταβλητή
Διαβάστε περισσότεραAnswers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Θεωρητικό και Μαθηματικό Υπόβαθρο
Ε.Α.Υ. Υπολογιστική Όραση Θεωρητικό και Μαθηματικό Υπόβαθρο Γεώργιος Παπαϊωάννου 2015 ΠΡΑΞΕΙΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΣΤΟ ΧΩΡΟ ΤΗΣ ΕΙΚΟΝΑΣ Γείτονες ενός Εικονοστοιχείου Το σύνολο ΝΝ 4 (pp) των 4 οριζόντιων
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ
ΣΔΕ ΑΓΡΙΝΙΟΥ ΣΧΟΛ. ΕΤΟΣ 2003-2004 ΑΓΓΛΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΙΤΛΟΣ ΕΝΟΤΗΤΑΣ: «Το αγγλικό αλφάβητο» ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ Σε ένα μαθητικό δυναμικό όπως αυτό του ΣΔΕ Αγρινίου
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Διαβάστε περισσότεραΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής Α εξάμηνο. Αριστείδης Δοκουμετζίδης. Ύλη. Διανύσματα. Πίνακες Ορίζουσες - Συστήματα. Διαφορικές εξισώσεις
1 ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Τμήμα Φαρμακευτικής Α εξάμηνο Αριστείδης Δοκουμετζίδης Ύλη Διανύσματα Πίνακες Ορίζουσες - Συστήματα Διαφορικές εξισώσεις ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Μία φυσική ποσότητα μπορεί να αναπαρίσταται
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #6: Συστήματα Ασαφούς Λογικής Ασαφοποιητές - Αποασαφοποιητές Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού
Διαβάστε περισσότεραΗ χρονική διάρκεια εκάστης εξεταστικής περιόδου (sitting) των γραπτών εξετάσεων ορίζεται σε ένα μήνα. (13 ΜΑΘΗΜΑΤΑ) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ
Διαδικασία διενέργειας εξετάσεων θεωρητικών γνώσεων για την απόκτηση πτυχίων χειριστών Πολιτικής Αεροπορίας εναερίων γραμμών και επαγγελματιών κατά PART-FCL1&2 (αεροπλάνα και ελικόπτερα). Οι γραπτές εξετάσεις
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραΣχεδιασμοό ς θερμικουό ηλιακουό συστηέ ματος με τη μεέθοδο της ωριαιέας δυναμικηά ς αναά λυσης
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Σχεδιασμοό ς θερμικουό ηλιακουό συστηέ ματος με τη μεέθοδο της ωριαιέας δυναμικηά ς αναά λυσης Ελισάβετ Χ. Σανδαλίδη
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ
ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ ΤΙ ΕΞΕΤΑΖΟΥΜΕ? ΤΟ ΦΩΣ ΙΑ Ι ΕΤΑΙ ΣΕ ΕΝΑ ΜΕΣΟ (ΓΥΑΛΙ, κα) ΑΠΑΙΤΕΙΤΑΙ ΜΕΛΕΤΗ ΤΗΣ ΙΑ ΟΣΗΣ ΣΤΟ ΜΕΣΟ ΕΦΑΡΜΟΓΗ ΣΥΝΟΡΙΑΚΩΝ ΣΥΝΘΗΚΩΝ ευθύγραµµη διάδοσητου φωτός Πυθαγόρας, ηµόκριτος, Εµπεδοκλής,
Διαβάστε περισσότεραΤο Κάλεσμα Του Ποταμού
نہر کی ص داي یں Nahar ki Sada`yn Αυτό το φυλλάδιο γράφτηκε στα Ουρντού (Πακιστανικά) από τον Σαίχ-ε-Ταρίκατ Αμίρ-ε-Άχλ-ε-Σούννατ, ιδρυτή της Δάβατ-ε-Ισλάμι, Αλλάμα Μολάνα Αμπου Μπιλάλ Μουχάμμαντ ال عال
Διαβάστε περισσότεραΓεννήτριες ΣΡ Διέγερση Σειράς
Γεννήτριες ΣΡ Διέγερση Σειράς Γεννήτριες ΣΡ Το τύλιγμα διέγερσης συνδέεται σε σειρά με το τύλιγμα οπλισμού Το ρεύμα ολισμού είναι πολύ μεγαλύτερο από το ρεύμα διέγερσης των γεννητριών παράλληλης διέγερσης
Διαβάστε περισσότεραPETROSKILLS COPYRIGHT
Contents Specific Gravity... 2 Formation Volume Factor... 3 Compressibility Equation... 4 Pseudo-Reduced Variables... 5 Pseudo-Critical Variables... 6 SI Conversions... 6 Output... 6 Input... 6 Viscosity...
Διαβάστε περισσότεραΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Ημερομηνία: Σάββατο 4 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες Α.1 α) ΣΩΣΤΟ ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ ΠΡΩΤΗ
Διαβάστε περισσότερα( ) Sine wave travelling to the right side
SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 7: Ηλεκτρικό ρεύμα Νόμος του Ohm. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 7: Ηλεκτρικό ρεύμα Νόμος του Ohm Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Κατανόηση της κίνησης του φορτίου μέσα σε αγωγούς με βάση τη διαφορά δυναμικού
Διαβάστε περισσότεραΦυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 9: Στροφορμή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της στροφορμής Διαφοροποίηση υλικού σημείου από στερεό σώμα Εναλλακτικοί
Διαβάστε περισσότεραΦυσική IΙ. Ενότητα 13: Γεωμετρική οπτική. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική IΙ Ενότητα 13: Γεωμετρική οπτική Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Η κυματική φύση του φωτός: διάθλαση, ανάκλαση, απορρόφηση Γωνίες πρόσπτωσης, ανάκλασης
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #13: Εξαγωγή Γνώσης από Δεδομένα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Διαβάστε περισσότεραг) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве
в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу
Διαβάστε περισσότεραΘΕΣΜΙΚΗ ΟΙΚΟΝΟΜΙΚΗ (ECΟ464) ΕΛΛΙΠΗ ΣΥΜΒΟΛΑΙΑ (INCOMPLETE CONTRACTS)
ΘΕΣΜΙΚΗ ΟΙΚΟΝΟΜΙΚΗ (ECΟ464) ΕΛΛΙΠΗ ΣΥΜΒΟΛΑΙΑ (INCOMPLETE CONTRACTS) 1 o Ελλιπή συμβόλαια (incomplete contracts) Όλα τα συμβόλαια είναι αναπόφευκτα ελλιπή! Ένα ελλιπές συμβόλαιο δεν μπορεί να περιγράψει
Διαβάστε περισσότεραΈλεγχος Αποθεμάτων υπό Σταθερή Ζήτηση
Έλεγχος Αποθεμάτων υπό Σταθερή Ζήτηση Γιώργος Λυμπερόπουλος 1 Οικονομική Ποσότητα Παραγγελίας (ΟΠΠ): βασικό μοντέλο 1 2 3 4 απόθεμα λ λ Σταθερός ρυθμός ζήτησης λ λ λ 2 ΟΠΠ: Βασικό πρότυπο Υποθέσεις Σταθερός
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΝ ΠΑΡΑΓΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ` ΜΕΘΟΔΟΙ ΣΥΝΑΡΤΗΣΙΑΚΗΣ ΑΝΑΛΥΣΗΣ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΔΙΑΦΟΡΙΚΝ ΕΞΙΣΣΕΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΓΟΥΣ ΔΙΠΛΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Μ.Δ.Ε. ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΙΣ ΕΠΙΣΤΗΜΕΣ ΜΗΧΑΝΙΚΝ ΟΛΓΑ
Διαβάστε περισσότερα