Problems in curvilinear coordinates

Σχετικά έγγραφα
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

ANTENNAS and WAVE PROPAGATION. Solution Manual

Fundamental Equations of Fluid Mechanics

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Curvilinear Systems of Coordinates

Laplace s Equation in Spherical Polar Coördinates

Example 1: THE ELECTRIC DIPOLE

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

r = x 2 + y 2 and h = z y = r sin sin ϕ

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Tutorial Note - Week 09 - Solution

3.7 Governing Equations and Boundary Conditions for P-Flow

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

CURVILINEAR COORDINATES

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

The Laplacian in Spherical Polar Coordinates

Solutions Ph 236a Week 2

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Matrix Hartree-Fock Equations for a Closed Shell System

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

4.2 Differential Equations in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 7a. Elements of Elasticity, Thermal Stresses

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Areas and Lengths in Polar Coordinates

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Analytical Expression for Hessian

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Geodesic Equations for the Wormhole Metric

Spherical Coordinates

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Uniform Convergence of Fourier Series Michael Taylor

Trigonometry 1.TRIGONOMETRIC RATIOS

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

D Alembert s Solution to the Wave Equation

Matrices and Determinants

Section 8.3 Trigonometric Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

28.3. Orthogonal Curvilinear Coordinates. Introduction. Prerequisites. Learning Outcomes

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Solutions to Exercise Sheet 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 7.6 Double and Half Angle Formulas

Parametrized Surfaces

Course Reader for CHEN 7100/7106. Transport Phenomena I

Approximation of distance between locations on earth given by latitude and longitude


b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.5 - Boundary Conditions for Potential Flow

1 3D Helmholtz Equation

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Differential equations

Example Sheet 3 Solutions

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Numerical Analysis FMN011

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Friction Stir Welding Process

Strain and stress tensors in spherical coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

1 Full derivation of the Schwarzschild solution

Finite Field Problems: Solutions

Lifting Entry (continued)

Srednicki Chapter 55

A 1 A 2 A 3 B 1 B 2 B 3

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ECE 468: Digital Image Processing. Lecture 8

Homework 3 Solutions

Second Order Partial Differential Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Empirical best prediction under area-level Poisson mixed models

( y) Partial Differential Equations

1 String with massive end-points

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Solutions - Chapter 4

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Derivation of Optical-Bloch Equations

Reminders: linear functions

EE512: Error Control Coding

F19MC2 Solutions 9 Complex Analysis

Trigonometric Formula Sheet

Transcript:

Poblems in cuvilinea coodinates Lectue Notes by D K M Udayanandan Cylindical coodinates. Show that ˆ φ ˆφ, ˆφ φ ˆ and that all othe fist deivatives of the cicula cylindical unit vectos with espect to the cicula cylindical coodinates vanish. Answe We ve ˆ ˆx cos φ + ŷ sin φ ˆφ ˆx sin φ + ŷ cos φ ˆ 0, ˆ φ ẑ ẑ ˆx sin φ + ŷ cos φ ˆφ, ˆ z 0 ˆφ φ ˆφ 0, ˆx cos φ ŷ sin φ ˆx cos φ + ŷ sin φ ˆ

ˆφ z 0 ẑ 0, ẑ φ 0, ẑ z 0 2. Show that ˆ ˆ + zẑ. Woking entiely in cicula cylindical coodinates, show that. 3 and 0. Answe Fom figue OP So we ve ˆ + zẑ. V. ˆ + zẑ V V φ 0, V z z V + φ V φ + z V z. + 2 φ 0 + z z 2 + z z

2 + 3 ˆ ˆφ ẑ φ 0 z z 0 0 3. In ight cicula cylindical coodinates a paticula vecto function is given by V, φ ˆV, φ + ˆφV φ, φ. Show that V has only a z component. Answe ˆ ˆφ ẑ V φ z V, φ V φ, φ 0 ˆ0 + ˆφ0 + ẑ ẑ Thus V has only z component. V φ, φ V, φ φ, V, φ V, φ φ 4. A igid body is otating about a fixed axis with a constant angula velocity ω. Take ω to lie along the z axis. Expess in cicula cylindical coodinates and using cicula cylindical co-odinates. a Calculate V ω b Calculate V Answe We ve ω ωẑ a and ˆ + zẑ ω ˆ ˆφ ẑ 0 0 ω 0 z ω ˆφ 3

b V ˆ ˆφ ẑ φ z 0 ω 0 ˆ0 + ˆφ0 + ẑzω zω ẑ zωẑ 5. A paticle is moving though space. Find the cicula cylindical components of its velocity and acceleation. We ve V a φ 2 V φ φ a φ φ + z φ V z ż a z z t ˆtt + ẑzt ˆx cos φt + ŷ sin φt t + żzt d dt ˆx cos φt +ŷ sin φt +t ˆx sin φt φ+tŷ cos φt φ+ẑż ˆx cos φ + ŷ sin φ + t φ ˆx sin φ + ŷ cos φ + żẑ d 2 dt d cos φˆx + sin φŷ + 2 dt ˆ + φ ˆφ + żẑ V, V φ φ, V z ż φ sin φˆx + φ cos φŷ + żẑ cos φˆx+ sin φŷ+ sin φˆx φ+ cos φŷ φ+ φ sin φˆx+ φ cos φŷ + φ sin φˆx + φ cos φŷ + φ 2 cos φˆx φ 2 sin φŷ + zẑ cos φˆx + sin φŷ + φ sin φˆx + cos φŷ + φ sin φˆx + cos φŷ + φ sin φˆx + cos φŷ + φ 2 cos φˆx + sin φŷ + zẑ 4

φ 2 cos φˆx + sin φŷ + 2 φ + φ sin φˆx + cos φŷ + zẑ φ 2 ˆ + φ + 2 φ ˆφ + zẑ a φ 2, a φ φ + 2 φ, a z z 6. Solve Laplace s equation 2 ψ 0 in cylindical coodinates fo ψ ψ. Answe We ve 2 ψ We ve Laplace equation 2 ψ 0 ψ + 2 ψ 2 φ + 2 ψ 2 z 2 ie, ψ ψ ψ 0 ψ 0 ψ constant k ψ k ψ k k log + log c ifψ 0, log c log 0 ψ klog log 0 ψ k log 0 7. A conducting wie along the z axis caies a cuent I. The esulting magnetic vecto potential is given by A ẑ µi 2π ln 5

Show that the magnetic induction B is given by B ˆφ µi 2π Answe B A ˆ ˆφ ẑ φ z µi 0 0 ln 2π ˆ0 + ˆφ 0 µi 2π ln + ẑ0 µi 2π ˆφ µi 2π ˆφ 8. A foce is descibed by y F ˆx x 2 + y + ŷ x 2 x 2 + y 2 a Expess F in cicula cylindical coodinates opeating entiely in cicula cylindical coodinates fo b. b Calculate the cul of F Answe We ve ˆx ˆ cos φ ˆφ sin φ Then ŷ ˆ sin φ + ˆφ cos φ ẑ ẑ y F ˆx x 2 + y + ŷ x 2 x 2 + y 2 ˆ cos φ + ˆφ sin φ sin φ + ˆ sin φ + ˆφ cos φ cos φ 2 ˆ sin φ cos φ + ˆφ sin 2 φ + ˆ sin φ cos φ + ˆφ cos 2 φ 2 6

b F ˆφ ˆφ F ˆ ˆφ ẑ fac φ z 0 0 ˆ0 + ˆφ0 + ẑ0 0 9. A calculation of the magneto-hydonamic pinch effect involves the evaluation of B. B. If the magnetic induction B is taken to be B ˆφB φ Show that Answe B. B ˆ B2 φ ˆ + ˆφ φ + ẑ z B ˆφB φ B. B φ φ B. B Bφ ˆφBφ φ B2 φ B2 φ B2 φ φ ˆφ sin φˆx + cos φŷ φ cos φˆx + sin φŷ B2 φ ˆ ˆ B2 φ 7

Spheical pola coodinates. A igid body is otating about a fixed axis with a constant velocity ω. Take ω to be along the z axis. Using spheical pola coodinates a Calculate V ω b Calculate We ve sin θ cos φˆx + sin θ sin φŷ + cos θẑ Then b V ω ω ωẑ ˆx ŷ ẑ 0 0 0 sin θ cos φ sin θ sin φ cos θ ˆx ω sin θ sin φ + ŷω sin θ cos φ ω sin θ sin φˆx + cos φŷ ω sin θ ˆφ V ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 0 0 sin θ ω sin θ ˆ2 2 ω sin θ cos θ + ˆθ 2ω sin 2 θ + sin θ 2 sin θ ˆφ0 2 sin θ2ω cos θˆ 2ω sin θˆθ 2 sin θ 2. With A,any vecto 2ωcos θˆ sin θˆθ 2ωẑ A. A aveify this esult in Catesian coodinates. bveify this esult using spheical pola coodinates. Answe a A A x î + A y ĵ + A zˆk A. A x x + A y y + A z z 8

b A. A x x + A y y + A z xî + yĵ + zˆk z A x î + A y ĵ + A zˆk A A ˆA + ˆθA θ + ˆφA φ ˆ + ˆθ θ + ˆφ sin θ φ A. A + A θ θ + A φ sin θ φ A A. + A θ θ + A φ sin θ A + A θ θ + A φ sin θ φ φ. ˆ sin θ cos φˆx + sin θ sin φŷ + cos θẑ A sin θ cos φˆx+sin θ sin φŷ+cos θẑ+a θ cos θ cos φˆx+cos θ sin φŷ sin θẑ+ A φ sin θ sin φˆx + sin θ cos φŷ sin θ A ˆ + A θ ˆθ + Aφ ˆφ A 3. Fom the above poblem show that i x y y x i φ This is the quantum mechanical opeato coesponding to the z component of obital angula momentum. Answe We ve then x sin θ cos φ + cos θ cos φ y sin θ sin φ + cos θ sin φ z cos θ sin θ θ i x y y x θ sin φ sin θ θ + cos θ sin θ φ φ 9

i sin θ cos φ sin θ sin φ + cos θ sin φ i sin 2 θ sin φ cos φ + sin θ cos θ sin φ cos φ i φ θ + cos θ sin θ sin θ sin φ sin θ cos φ φ θ + cos2 φ φ sin2 θ sin φ cos φ 4. Show that the following thee foms spheical co-odinates of 2 ψ ae equivalent. a d 2 dψ 2 d d b d 2 d 2 ψ c d2 ψ d 2 Answe + 2 dψ d a d 2 dψ 2 dψ 2 d d 2 d + d2 ψ 2 d 2 d2 ψ d 2 + 2 dψ d b d 2 d d ψ ψ d 2 d d d dψ d d + ψ d2 ψ d + dψ 2 d + dψ d d2 ψ d + 2dψ 2 d d2 ψ d + 2 dψ 2 d 5. Find the spheical coodinate components of the velocity and accele- 0

ation of a moving paticle. Answe We ve xt ˆt t ˆx sin θt cos φt + ŷ sin θt sin φt + ẑ cos θt t d dt ṙ sin θ cos φˆx + cos θ cos φ θŷ + sin θ cos φ φŷ + ṙ cos θẑ sin θ θẑ ṙsin θ cos φˆx + sin θ sin φhaty + cos θż + θcos θ cos φˆx + cos θ sin φŷ sin θẑ + φ sin θ sin φˆx + cos φŷ ṙˆ + θˆθ + sin θ φ ˆφ V ṙ, V θ θ, V φ sin θ φ d 2 dt dˆ ˆ+ṙ 2 dt dˆθ +ṙ θˆθ+ θˆθ+ θ dt +ṙ sin θ φ ˆφ+ cos θ θ φ ˆφ+ sin θ φ ˆφ+ d ˆφ sin θ φ dt ˆ + ṙ d dt sin θ cos φˆx + sin θ sin φŷ + cos θẑ + ṙ θˆθ + θˆθ+ θ d dt cos θ cos φˆx + cos θ sin φŷ sin θẑ + ṙ sin θ φ ˆφ + cos θ θ φ ˆφ+ sin θ φ ˆφ + sin θ d sinφˆx + cos φŷ dt ˆ+ṙ cos θ cos φˆx θ sin θ sin φˆx φ + cos θ sin φŷ θ + sin θ cos φ φŷ sin θẑ θ + ṙ θˆθ+ θˆθ+ θ sin θ cos φˆx θ cos θ sin φ φˆx sin θ sin φ θŷ + cos θ cos φ φŷ cos θ θẑ + ṙ sin θ φ ˆφ + cos θ θ φ ˆφ + sin θ φ ˆφ + sin θ φ cos φ φˆx sin φ φŷ ˆ + ṙ θˆθ + ṙ φ sin θ sin φˆx + sin θ cos φŷ + ṙ θˆθ + θˆθ θ 2ˆ+ θ φ cos θ sin φˆx + cos θ cos φŷ + ṙ sin θ φ ˆφ + cos θ φ ˆφ+ sin θ φ ˆφ sin θ cos φ φ 2ˆx sin θ sin φ φ 2 ŷ ˆ θ 2ˆ + 2ṙ θˆθ + θˆθ + θ φ sin θ ˆφ + θ φ cos θ ˆφ + ṙ φ sin θ ˆφ+ θ φ cos θ ˆφ + sin θ φ ˆφ

θ 2 sin 2 θ φ 2 ˆ + θ + 2ṙ θ sin θ cos θ φ 2 ˆθ+ sin θ φ + 2ṙ sin θ φ + 2 cos θ θ φ ˆφ 6. A magnetic vecto potential is given by A µ 0 m 4π 3 Show that this leads to the magnetic induction B of a point magnetic dipole with dipole moment m. Answe sin θ cos φˆx + sin θ sin φŷ + cos θẑ m ˆx ŷ ẑ 0 0 m sin θ cos φ sin θ sin φ cos θ ˆx m sin θ sin φ + ŷm sin θ cos φ m sin θ sin φˆx + m sin θ cos φŷ A µ 0 m 4π µ 0 m sin θ sin φˆx + m sin θ cos φŷ 4π3 µ 0 m sin θ ˆφ 4π 2 B A ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 0 0 sin θ µ 0 m sin θ 4π 2 µ0 m ˆ 2 sin θ 4π 2 sin θ cos θ µ0 m sin 2 θ + ˆθ 4π 2 µ0 m 2 sin θ 2π sin θ cos θˆ + µ 0m 4π sin2 θˆθ 2

µ 0m 2π cos θˆ + µ 0m sin θˆθ 3 4π3 µ 0 4π 2m cos θˆ + µ 0 m sin θˆθ 3 4π3 7. The magnetic vecto potential fo a unifomly chaged otating spheical shell is A ˆφ µ 0a 4 σω sin θ 3, > a 2 a adius of spheical shell, σ suface chage density and ω angula velocity Find the magnetic induction B A Answe µ0 a 4 σω ˆ 2 sin θ A ˆ ˆθ sin θ ˆφ 2 θ φ sin θ 0 0 sin θ µ 0a 4 σω sin θ 3 2 µ0 a 4 σω 2 sin θ cos θ + ˆθ sin 2 θ 3 3 2 2µ0 a 4 σω sin θ cos θˆ + µ 0a 4 σω sin 2 θˆθ 3 3 2 sin θ 2µ 0a 4 σω 3 3 cos θˆ + µ 0a 4 σω 3 3 sin θˆθ 8. At lage distances fom its souce, electic dipole adiation has fields, sin θe E ik ωt a E ˆθ, Show that Maxwell s equations, B sin θe ik ωt ab ˆφ ae satisfied if we take E B t and B E ɛ 0 µ 0 t a E a B ω k c ɛ 0, µ 0 /2 3

Answe E 2 sin θ ˆ ˆθ sin θ ˆφ θ φ 0 a E sin θe ik ωt 0 ˆ0 + ˆθ0 + sin θ 2 sin θ ˆφa E sin θe ik ωt ik 2 sin θ a E sin 2 θe ik ωt ik ˆφ sin θe ik ωt a E ik ˆφ sin θeik ωt ia E k ˆφ sin θeik ωt ia B ω ˆφ Thus, B t ia sin θeik ωt Bω ˆφ E B t 2 sin θ B 2 sin θ ˆ ˆθ sin θ ˆφ θ sin θe 0 0 sin θa ik ωt B ˆ a B e ik ωt 2 sin θ cos θ + ˆθ a B sin 2 θe ik ωt ik 2 sin θ φ a B e ik ωt 2 sin θ cos θˆ a B sin 2 θe ik ωt ikˆθ a Be ik ωt 2 cos θ ˆ a B sin θe ik ωt ik ˆθ 2 Since is lage, highe powe can be neglected. B a B sin θe ik ωt ik ˆθ 4

But Replacing k by ωµ 0 ɛ 0 /2 B a Ek ω a B a Ek ω sin θe ik ωt ik ˆθ k ω µ 0ɛ 0 /2 B /2 sin θeik ωt ia E kµ 0 ɛ 0 ˆθ B sin θeik ωt ia E ωµ 0 ɛ 0 ˆθ Then E t ia sin θeik ωt Eω ˆθ E µ 0 ɛ 0 t ia sin θeik ωt Eωµ 0 ɛ 0 ˆθ B µ 0 ɛ 0 E t 9. ashow that A cot θ ˆφ is a solution of A ˆ 2 b Show that this spheical pola co-odinate solution agee with the solution given below. yz A ˆx x 2 + y 2 ŷ xz x 2 + y 2 cfinally show that A ˆθφ sin θ Answe is a solution. a A 2 sin θ ˆ ˆθ sin θ ˆφ fac θ φ 0 0 sin θ cot θ 5

b ˆ sin θ + ˆθ0 + sin θ 2 sin θ ˆφ0 2 sin θ sin θˆ ˆ 2 yz A ˆx x 2 + y 2 ŷ xz x 2 + y 2 ˆ sin θ cos φ+ˆθ cos θ cos φ ˆφ sin θ sin φ cos θ sin φ 2 sin 2 θ cos 2 φ + sin 2 θ sin 2 φ ˆ sin θ sin φ + ˆθ cos θ sin φ + ˆφ sin θ cos φ cos θ cos φ 2 sin 2 θ cos 2 φ + sin 2 θ sin 2 φ c ˆsin θ cos θ sin φ cos φ sin θ cos φ sin φ cos φ + ˆθcos 2 θ cos φ sin φ cos 2 θ sin φ cos φ sin θ sin θ ˆφsin 2 φ cos θ + cos 2 φ cos θ sin θ ˆφ ˆφ cos θ sin θ cot θ A ˆ ˆθ sin θ ˆφ 2 sin θ θ φ φ sin θ 0 0 ˆ sin θ ˆθ0 + sin θ 2 sin θ ˆφ0 ˆ 2 0. Show that L i i ˆθ sin θ φ ˆφ θ b Resolving ˆθ and ˆφ into Catesian components, detemine L x,l y,l z. Answe L p p i 6

L i Let i L i ˆ + ˆθ θ + ˆφ sin θ φ ˆ ˆθ sin θ ˆφ 2 sin θ 0 0 sin θ θ sin θ φ ˆθ + sin θ 2 sin θ φ ˆφ θ 2 2 sin θ φ ˆθ + 2 sin θ θ ˆφ sin θ L i i ˆθ + θ ˆφ sin θ φ ˆθ θ ˆφ b i L i sin θ φ ˆθ θ ˆφ ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ L x i sin θ φ + sin φ θ cos θ sin φ L y i sin θ φ + cos φ θ L z i φ 7 φ ˆx sin φ + ŷ cos φ θ φ cos φ ŷ i sin θ φ sin θ φ cos φ θ ŷ i φẑ φẑ

. With ê a unit vecto in the diection of inceasing q. Show that a.ê h 2 h 3 h h 2 h 3 q b Answe We ve. V h h 2 h 3 ê h h ê 2 ê 3 h h 3 q 3 h 2 q 2 V h 2 h 3 + V 2 h h 3 + V 3 h h 2 q q 2 q 3 Hee V, V 2 0, V 3 0 then V V ê + V 2 ê 2 + V 3 ê 3 V ê V.ê h h 2 h 3 q h 2 h 3 ê h ê 2 h 2 ê 3 h 3 ê h h 2 h 3 q q 2 q 3 h 0 0 h h h 2 ê 2 h 3 ê 3 h h 2 h 3 q 3 q 2 ê h h ê 2 ê 3 h h 3 q 3 h 2 q 2 2. With the quantum mechanical obital angula momentum opeato defined as L i.show that a L x + il y e iφ θ + i cot θ φ 8

b Answe, We ve i L x il y e iφ θ i cot θ φ L i sin θ L i sin θ φ ˆθ θ ˆφ φ ˆθ θ ˆφ ˆx cos θ cos φ + ŷ cos θ sin φ ẑ sin θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ cos θ cos φ i sin θ φ + sin φ cos θ sin φ ˆx+i θ sin θ φ ˆx sin φ + ŷ cos φ θ φ cos φ ŷ i sin θ φ sin θ φ cos φ θ Then cos θ cos φ L x +il y i sin θ φ + sin φ cos θ sin φ +i 2 θ sin θ cos θ cos φ i + i sin θ cos θ sin φ sin θ ŷ i φẑ φ cos φ θ φ + i sin φ + cos φ θ i cot θcos φ + sin φ φ + cos φ + i sin φ θ ie iφ cot θ φ + eiφ θ e iφ θ + i cot θ φ cos θ cos φ L x il y i sin θ φ + sin φ cos θ sin φ i 2 θ sin θ φ cos φ θ i cos θ cos φ cos θ sin φ i sin φ + cos φ φ sin θ sin θ θ i cot θ φ e iφ θ e iφ φẑ 9

e iφ θ cot θ φ 3. A cetain foce field is given by 2p cos θ F ˆ + ˆθ p 3 sin θ, p 3 2 Examine F to see if a potential exist. Answe F ˆ ˆθ sin θ ˆφ 2 sin θ θ φ 2p cos θ p sin θ 0 3 3 sin θ 2 sin θ ˆφ 2 p sin θ + 2p 3 sin θ 3 2p sin θ 2p sin θ + 0 3 3 4. Fo the flow of an incompessible viscous fluid the Navie stokes equations lead to V V n 2 V Hee n is the viscosity and, the density of the fluid. Fo axial flow in a cylindical pipe we take the velocity V to be V ẑv Find the non linea tem V V Answe V V ẑ V ˆ ˆφ ẑ y z 0 0 V ˆφ 0 V V ˆφ 20

then V V V ˆ V ˆ ˆφ ẑ 0 0 V 0 V 0 V V ˆ V V 0 ˆ ˆφ ẑ φ z V V 0 0 5. In Minkowiski space we define x x, x 2 y, x 3 z, and x 0 ct. This is done so that the space time inteval ds 2 dx 2 0 dx 2 dx 2 2 dx 2 3c velocity of light. Show that the metic in Minkowiski space is g ij 0 0 0 0 0 0 0 0 0 0 0 0 Answe x x dx dx x 2 y dx 2 dy x 3 z dx 3 dz x 0 ct dx 0 c dt Space time inteval ds 2 ds 2 dx 2 0 dx 2 dx 2 2 dx 2 3 c 2 dt 2 dx 2 dy 2 dz 2 2

Then dx 2 0 dx 2 dx 2 2 dx 2 3 g ij 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c 2 dt 2 dx 2 dy 2 dz 2 6. Deive by diect application of equation Answe ψ ψ ψ ψ ê + ê 2 + ê 3 h dq h 2 dq 2 h 3 dq 3 ψ ψdσ lim dτ 0 dτ we ve ie, dσ ij ds i ds j h i h j dq i dq j dσ ê h 2 h 3 dq 2 dq 3 + ê 2 h h 3 dq dq 3 + ê 3 h h 2 dq dq 2 σ ê h 2 h 3 dq 2 dq 3 + q ê h 2 h 3 dq 2 dq 3 ê h 2 h 3 dq 2 dq 3 Fo simplifying all thee items dσ q ê h 2 h 3 dq 2 dq 3 + q 2 ê 2 h h 3 dq dq 3 + fo fist tem q 3 ê 3 h h 2 dq dq 2 ψ ψ ψ ψdσ ê h 2 h 3 dq dq 2 dq 3 +ê 2 h h 3 dq dq 2 dq 3 +ê 3 h h 2 dq dq 2 dq 3 2 q q 2 q 3 τ h h 2 h 3 dq dq 2 dq 3 3 substituting 2 and 3 in 22

ψ h ψ q ê + h 2 ψ q 2 ê 2 + h 3 ψ q 3 ê 3 23