Non polynomial spline solutions for special linear tenth-order boundary value problems

Σχετικά έγγραφα
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

α & β spatial orbitals in

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

1 Complete Set of Grassmann States

Multi-dimensional Central Limit Theorem

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

A Class of Orthohomological Triangles

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

V. Finite Element Method. 5.1 Introduction to Finite Element Method

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Section 7.6 Double and Half Angle Formulas

Homework 3 Solutions

Constant Elasticity of Substitution in Applied General Equilibrium

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

2 Composition. Invertible Mappings

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Example Sheet 3 Solutions

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

EE512: Error Control Coding

Finite Field Problems: Solutions

A Two Sample Test for Mean Vectors with Unequal Covariance Matrices

Matrices and Determinants

Estimators when the Correlation Coefficient. is Negative

Section 8.3 Trigonometric Equations

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

C.S. 430 Assignment 6, Sample Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 34 Bootstrap confidence intervals

w o = R 1 p. (1) R = p =. = 1

LECTURE 4 : ARMA PROCESSES

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

New bounds for spherical two-distance sets and equiangular lines

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A domain decomposition method for the Oseen-viscoelastic flow equations

arxiv: v1 [math.na] 16 Apr 2017

A Note on Intuitionistic Fuzzy. Equivalence Relation

Every set of first-order formulas is equivalent to an independent set

Solution Series 9. i=1 x i and i=1 x i.

Supporting information for: Functional Mixed Effects Model for Small Area Estimation

Second Order Partial Differential Equations

Reminders: linear functions

PARTIAL NOTES for 6.1 Trigonometric Identities

CRASH COURSE IN PRECALCULUS

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Statistical Inference I Locally most powerful tests

Fractional Colorings and Zykov Products of graphs

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

If we restrict the domain of y = sin x to [ π 2, π 2

Pseudo Almost Periodic Solutions for HCNNs with Time-Varying Leakage Delays

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Concrete Mathematics Exercises from 30 September 2016

ST5224: Advanced Statistical Theory II

Trigonometric Formula Sheet

The Simply Typed Lambda Calculus

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

arxiv: v1 [math.ca] 6 Dec 2012

Uniform Convergence of Fourier Series Michael Taylor

Journal of Theoretics Vol.4-5

2 Lagrangian and Green functions in d dimensions

derivation of the Laplacian from rectangular to spherical coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Areas and Lengths in Polar Coordinates

F19MC2 Solutions 9 Complex Analysis

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Congruence Classes of Invertible Matrices of Order 3 over F 2

Numerical Analysis FMN011

Lecture 2. Soundness and completeness of propositional logic

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

MathCity.org Merging man and maths

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

On a four-dimensional hyperbolic manifold with finite volume

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Commutative Monoids in Intuitionistic Fuzzy Sets

Transcript:

ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan 3 School of Mathematcs Iran Unversty of Scence and Technology Narmak Tehran 6844 Iran 2 Department of Mathematcs Ilam Unversty P. O. Box 6935-56 Ilam Iran 3 Department of Mathematcs Islamc Azad Unversty of Bonab Iran Receved May 2009 Accepted January 200 Abstract. Non-polynomal splne s used for soluton of the tenth-order lnear boundary value problems. We obtaned the classes of numercal methods for a specfc choce of the parameters nvolved n non-polynomal splne. The end condtons consstent wth the boundary value problems are derved. Truncaton errors are gven. A new approach convergence analyss of the presented methods s dscussed. Two examples are consdered for the numercal llustraton. However t s observed that our approach produce better numercal solutons n the sense that max e s mnmum. Keywords: tenth-order boundary-value problem convergence analyss end condtons Introducton We consder n ths work the numercal approxmaton for the tenth-order boundary value problems of the form: y 0 x fxyx = gx x [a b] wth boundary condtons: { ya = A0 y 2 a = A y 4 a = A 2 y 6 a = A 3 y 8 a = A 4 yb = B 0 y 2 b = B y 4 b = B 2 y 6 b = B 3 y 8 b = B 4 2 Hgher order dfferental equatons arse n many felds. When nstablty sets n an ordnary convecton t s modeled by tenth-order boundary value problem [2]. Scott and Watts [9] descrbed several computer codes that were developed usng the superposton and orthonormalzaton technque and nvarant mbeddng. Twzell et al. [3] developed numercal methods for 8th-0th-and 2th-order egenvalue problems arsng n thermal nstablty. Sddq and Twzell [2] presented the soluton of 0th-order boundary value problem usng 0th degree splne. Sddq and Akram [0] developed the soluton of 0th-order boundary value problems usng non-polynomal splne. Sddq and Akram [] presented the soluton of 0th-order boundary value problem by usng eleventh degree splne. Rashdna et al. [8] developed numercal methods for 8th-order boundary value problem usng non-polynomal splne. Djdejel and Twzell [4] derved numercal method for specal nonlnear boundary-value problems of order 2m. Abdellah Lamn et al. [6] developed and analyzed numercal method for approxmatng solutons of some general lnear boundary value problems. Ramadan et al. [7] have been appled nonpolynomal splne functon for approxmatng solutons of 2µth order two pont BVPs. Followng [0] the splne functons proposed n ths paper have the form T = span{ x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 coskx snkx} where k s the frequency of the trgonometrc part of the splne functons Correspondng author. E-mal address: rezajallan@ust.ac.r rezajallan72@gmal.com. Publshed by World Academc Press World Academc Unon

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 4 whch can be real or pure magnary and whch wll be used to rase the accuracy of the method. Thus n each subnterval x x x we defne: Defnton. span{ x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 cos k x sn k x}. where k 0 we have the eleventh degree of splne []. [! kx3 lm snkx kx kx5 k o k 3! 5! [ 0! lm k o kx7 7! kx2 coskx kx4 kx6 kx8 k0 2! 4! 6! 8! ] kx9 = x 9! ] = x 0 span{ x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0 x } when k 0. In Secton 2 the new non-polynomal splne methods are developed for solvng Eq. along wth boundary condton Eq. 2. Development of the boundary formulas are consdered n Secton 3. Secton 4 s devoted to convergence analyss. In Secton 5 some numercal experments are consdered and numercal results are compared wth the method developed n [2]. 2 Development of the class of methods To develop the splne approxmaton for the tenth-order boundary-value problem Eqs. and 2 frst of all the nterval [a b] s dvded nto n equal subntervals usng the grd x = a h = 0 n where h = b a n. We consder the followng splne S on each subnterval [x x ] = 0 n S x = a cos kx x b sn kx x c x x 9 d x x 8 e x x 7 j x x 6 o x x 5 p x x 4 q x x 3 r x x 2 u x x w 3 where a b c d e j o p q r u and w are real coeffcents to be determned and k s free parameter. The splne s defned n terms of ts 2nd 4th 6th 8th and 0th dervatves and we denote these values at knots as = 0 n : S x = y S x = y S 2 x = m S 2 x = m S 4 x = M S 4 x = M S 6 x = z S 6 x = z S 8 x = v S 8 x = v S 0 x = l S 0 x = l. Algebrac manpulaton yelds the followng expressons whereby θ = kh and = 0 n : a = l k 0 b = cscθ cosθl l k 0 c = l l k 2 v k 2 v 362880hk 2 d = l k 2 v 40320k 2 j = l k 4 z 720k 4 r = l k 8 m 2k 8 w = l k 0 y k 0 p = l k 6 M 24k 6 e = 6 2θ2 l 6 θ 2 l h 2 k 4 v v 6k 4 z z 30240hk 4 o = 43200hk 6 [360 20θ2 8θ 4 l 360 60θ 2 7θ 4 l 360k 6 M M h 4 k 6 v v 60h 2 k 6 2z z ] q = 90720hk 8 [6 945 35θ2 2θ 4 2θ 6 l 520 2520θ 2 294θ 4 3θ 6 l WJMS emal for subscrpton: nfo@wjms.org.uk

42 J. Rashdna: Non polynomal splne solutons for specal lnear 520k 8 m m 2520h 2 k 8 2M M h 6 k 8 32v 3v h 4 k 8 336z 294z ] u = 604800hk 0 [284725 575θ2 05θ 4 0θ 6 θ 8 l 60480000800θ 2 760θ 4 240θ 6 27θ 8 l 00800h 2 k 0 2m m h 4 k 0 3440M 760M h 8 k 0 28v 27v 604800k 0 y y h 6 k 0 280z 270z ]. Contnuty condton of the frst thrd ffth seventh and nnth dervatves that s S λ x = S λ x where λ = 3 5 7 and 9 yelds the followng equatons respectvely: θ θ 6 7θ3 360 3θ5 520 27θ7 604800 csc θ l l θ9 m 4m m 6h 8 2 θ θ [ 3 θ3 45 2θ5 945 θ7 4725 cot θ l θ 9 7M 6M 7M 360h 6 27v 256v 27v 604800h 2 y 2y y h 0 3z ] 64z 3z 520h 4 = 0 4 [ 520 θ θ 6 7θ3 360 3θ5 2492 csc θ l 2 θ θ 3 θ3 45 2θ5 48384 cot θ l θ θ ] 6 7θ3 360 3θ5 520 csc θ l θ [2520 7 6m 2m m h 8 M 4M M h 6 55v 605v 284v 8h 2 427z ] 6z 7z 7h 4 = 0 5 360 θ θ 6 7θ3 360 csc θ l l 720 θ θ 3 θ3 45 cot θ l θ 5 360M 2M M h 6 7v 6v 7v h 2 60z 4z z h 4 = 0 6 6 θ θ 6 csc θ l l 2 θ θ 3 cot θ l θ 5 v 4v v h 2 6z 2z z h 4 =0 7 2 θ csc θ l l θ 2 cot θ l θv 4v v h 2 = 0. 8 In order to get useful consstency splne relaton n terms of 0th dervatve of splne we have to elmnate m M z v from Eqs. 4 8 therefor s replaced by ± 4 ± 3 ± 2 ± n each of the Eqs. 4 8 we have the followng useful consstency relaton n terms of tenth dervatve of splne l and y. h 0 αl 5 βl 4 γl 3 δl 2 ηl τl ηl δl 2 γl 3 βl 4 αl 5 = y 5 0y 4 45y 3 20y 2 20y 252y 20y 20y 2 45y 3 0y 4 y 5. 9 where = 5 6 n 5 and α = θ sn θ 362880 5040θ 2 20θ 4 6θ 6 θ sn θ θ 9 β = 25 cos θ 59 cos θ cos θ θ sn θ 8440 2520θ 2 60θ 4 γ = 4609 004 cos θ 953 236 cos θ θ sn θ 362880 5040θ 2 δ = 2773 9 cos θ 7 cos θ θ sn θ 340 35θ 2 8 8 cos θ 5θ 4 η = 85399 88234 cos θ 0722 cos θ θ sn θ 8440 360θ 2 cos θ 3θ 6 3 44 cos θ 20θ 4 7986 cos θ 60θ 4 8 2 cos θ θ 8 7 4 cos θ 6θ 6 0 sn θ θ 9 29 6 cos θ θ 8 6 8 cos θ 64 56 cos θ 3θ 6 θ 8 2934 cos θ 3θ 6 982 cos θ θ 8 45 sn θ θ 9 20 sn θ θ 9 20 sn θ θ 9 WJMS emal for contrbuton: submt@wjms.org.uk

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 43 τ = 447 78095 cos θ 75 cos θ 4395 cos θ 3450 cos θ 240 cos θ 252 sn θ θ sn θ 90720 80θ 2 30θ 4 3θ 6 θ 8 θ 9. Usng the splne Eq. 9 and also by usng the gven dfferental Eq. we have h 0 [αg 5 f 5 y 5 βg 4 f 4 y 4 γg 3 f 3 y 3 δg 2 f 2 y 2 ηg f y τg f y ηg f y δg 2 f 2 y 2 γg 3 f 3 y 3 βg 4 f 4 y 4 αg 5 f 5 y 5 ] = y 5 0y 4 45y 3 20y 2 20y 252y 20y 20y 2 45y 3 0y 4 y 5 = 5 6 n 5 In specal case f k 0 that s θ 0 then α β γ δ η τ 3996800 2036 3996800 52637 3996800 2203488 3996800 97384 3996800 5724248 3996800 And the consstency relaton of non-polynomal s reduced to consstency relaton of the eleventh polynomal splne functons derved n []. The local truncaton error correspondng to the method Eq. 0 can be obtaned as: t = 2α 2β 2γ 2δ 2η τh 0 y 0 5 25α 6β 9γ 4δ η 2 2 625α256β8γ6δη h 4 y 4 43 2 4032 5625α4096β729γ64δη 360 73 390625α 65536β 656γ 256δ η h 8 y 8 725760 2060 37 9765625α 048576β 59049γ 024δ η h 20 y 20 456920 84400 74 24440625α 677726β 5344γ 4096δ η h 22 y 22 8624400 239500800 277 60355625α 268435456β 4782969γ 6384δ η h 24 y 24 6974263296 4358945600 = 5 6 n 5.. h 2 y 2 0 h 6 y 6 By usng the above truncaton error to elmnate the coeffcents of varous powers of h we can obtan classes of the methods. For any choce of α β δ η and τ whose 2α 2β 2γ 2δ 2η τ = we can obtaned the followng class of methods. Remark. Second-order method for α = 3996800 β = 2036 3996800 γ = 52637 3996800 δ = 2203488 3996800 η = 97384 5724248 and τ = 3996800 3996800 we obtan the second order method wth truncaton error t = 2 h2 y 2 x Oh 3. Remark 2. Fourth-order method for α = 0 β = 0 γ = 0 δ = 0 η = 5 2 and τ = 6 we obtan the fourth order method wth truncaton error t = 7 44 h4 y 4 x Oh 5. WJMS emal for subscrpton: nfo@wjms.org.uk

44 J. Rashdna: Non polynomal splne solutons for specal lnear Remark 3. Sxth-order method for α = 0 β = 0 γ = 0 δ = 7 44 η = 2 9 order method wth truncaton error t = 7 2096 h6 y 6 x Oh 7. and τ = 24 we obtan the sxth Remark 4. Eght-order method for α = 0 β = 0 γ = 7 2096 δ = 9 224 η = 09 448 eght order method wth truncaton error 30 and τ = 3024 we obtan the t = 362880 h8 y 8 x Oh 9. Remark 5. Tenth-order method for α = 0 β = 362880 γ = 25 8440 δ = 93 22680 η = 447 obtan the tenth order method wth truncaton error t = 4790060 h20 y 20 x Oh 2. 8440 and τ = 569 36288 we Remark 6. Twelfth-order method for α = 4790060 β = 6 23950080 γ = 2203 5966720 δ = 477 28520 η = 25687 τ = 78069 399680 we obtan the twelfth order method wth truncaton error 69 t = 23775897600 h22 y 22 x Oh 23. 887040 and 3 Development of the boundary formulas Lner system Eq. 0 consst of n unknown so that to obtan unque soluton we need eght more equatons to be assocate wth Eq. 0 so that we can develop the boundary formulas of dfferent orders but for sake of brefness here we develop the eght order boundary formulas so that we defne the followng dentty 6 7 8 9 9 8 7 6 ā k y k bh 2 y 2 0 ch 4 y 4 0 dh 6 y 6 0 ēh 8 y 8 0 h 0 a k y k b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h 0 8 k= a k y k b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h 0 p k y 0 k t = 0 2 9 k= 0 a k y k b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h 0 a k y n k b h 2 y 2 n c h 4 y 4 n d h 6 y 6 n e h 8 y 8 n h 0 p k y0 k t 2 = 0 3 k= p k y0 k t 3 = 0 4 k= k= a k y n k b h 2 y 2 n c h 4 y 4 n d h 6 y 6 n e h 8 y 8 n h 0 a k y n k b h 2 y 2 n c h 4 y 4 n d h 6 y 6 n e h 8 y 8 n h 0 a k y n k b h 2 y 2 n c h 4 y 4 n d h 6 y 6 n e h 8 y 8 n h 0 9 k= 8 k= p k y0 k t 4 = 0 5 p k y0 n k t n 4 = 0 6 0 k= p k y0 n k t n 3 = 0 7 p k y0 n k t n 2 = 0 8 p k y0 n k t n = 0 9 WJMS emal for contrbuton: submt@wjms.org.uk

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 45 where all of the coeffcents are arbtrary parameters to be determned. In order to obtan the eght-order method we fnd that: ā 0 ā ā 2 ā 3 ā 4 ā 5 ā 6 = a 0 a a 2 a 3 a 4 a 5 a 6 = 42 32 65 0 44 0 b c d ē = b c d e = 4 23 6 27 80 809 440 456479339 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 = p p 2 p 3 p 4 p 5 p 6 p 7 p 8 = 627683696640 66627459429 7846046208000 24036599565 5888608000 4558858639 78392320 633075829983 33848483200 2086455 23432 4446629795567 569209246000 3822063023 392302304000 a 0 a a 2 a 3 a 4 a 5 a 6 a 7 = a 0 a a 2 a 3 a 4 a 5 a 6 a 7 = 48 65 242 209 20 45 0 b c d e = b c d e = 4 7 6 67 80 289 440 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 = p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 23727696725674 = 640237370572800 0992045978293 20007478304000 536786580755 40048356608000 2633374205823 800296732600 5298493076456 3208685286400 42389279063 400483566080 456778638369 0003708952000 6425434758073 5764050944000 7969787484929 640237370572800 a 0 a a 2 a 3 a 4 a 5 a 6 a 7 a 8 = a 0 a a 2 a 3 a 4 a 5 a 6 a 7 a = 27 0 209 252 20 20 45.0 b c d e = b c d e = 6 2 3 20 4 3360 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 = p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 438604979 = 9209046400 57330490343 2736057392000 46304455247443 8892857024000 9032644893 04639494400 809759345 355687428096 78305049967 508248972800 78807546263 8892857024000 2949376035323 8892857024000 5235784963 7374856920 52285793737 73748569200 a 0 a a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 = a 0 a a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 = 8 44 20 20 252 20 20 45 0 b c d e = b c d e = p 2 360 2060 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 p = p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 p 790975045599449 = 50909427709440000 2050557590640498 5090942770944000 487888277475378 200356635967488000 8294660243593949 4257578543092000 25749895693239 053204332544000 269977736472333 55293227458560000 7077627929763 8096733605888000 527258660069 4257578543092000 40689932897883 34060628447296000 2329832238569 5090942770944000 27486089409 50909427709440000 8 And also t = 0863439858789 32086852864000 h8 y0 8 t 2 = 7755574335853 640237370572800 h9 y0 9 t 3 = 206357485725523 2838385676206080000 h20 y0 20 23226432543 t 4 = 556546202080000 h2 y0 2 23226432543 t n 4 = 556546202080000 h2 yn 2 t n 3 = 206357485725523 2838385676206080000 h20 yn 20 WJMS emal for subscrpton: nfo@wjms.org.uk

46 J. Rashdna: Non polynomal splne solutons for specal lnear t n 2 = 7755574335853 640237370572800 h9 y 9 n t n = 0863439858789 32086852864000 h8 y 8 n. 4 Convergence analyss The approxmate soluton of boundary value problem Eqs. and 2 s determned by usng the system defned by Eq.0 and assocated wth the boundary Eqs. 2 9. The arsng lnear system n matrx form can be gven as: A Y = C T A Ỹ = C A E = T. 20 where vectors Y = y and Ỹ = ỹ are the exact and approxmate soluton of boundary value problem respectvely and also C = c T = t and E = ẽ = y ỹ are n -dmensonal column vectors. The matrx A s defned by where A B and F are n n matrces. A= B = ā ā 2 ā 3 ā 4 ā 5 ā 6 a a 2 a 3 a 4 a 5 a 6 a 7 A = A h 0 BF. a a 2 a 3 a 4 a 5 a 6 a 7 a 8 a a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 0 45 20 20 252 20 20 45 0 0 45 20 20 252 20 20 45 0................................. 0 45 20 20 252 20 20 45 0 0 45 20 20 252 20 20 45 0 a 9 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a a 8 a 7 a 6 a 5 a 4 a 3 a 2 a a 7 a 6 a 5 a 4 a 3 a 2 a a 6 a 5 a 4 a 3 a 2 a 2 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 p p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 0 p β γ δ η τ η δ γ β α α β γ δ η τ η δ γ β α................................. and F = dagf = 2 n. Moreover α β γ δ η τ η δ γ β α α β γ δ η τ η δ γ β p p 0 p 9 p 8 p 7 p 6 p 5 p 4 p 3 p 2 p p 0 p 9 p 8 p 7 p 6 p 5 p 4 p 3 p 2 p p 9 p 8 p 7 p 6 p 5 p 4 p 3 p 2 p p 8 p 7 p 6 p 5 p 4 p 3 p 2 p 22 WJMS emal for contrbuton: submt@wjms.org.uk

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 47 c = ā 0 y 0 bh 2 y 2 0 ch 4 y 4 0 dh 6 y 6 0 ēh 8 y 8 0 h0 p g p 2 g 2 p 3 g 3 p 4 g 4 p 5 g 5 p 6 g 6 p 7 g 7 p 8 g 8 c 2 = a 0y 0 b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h0 p g p 2g 2 p 3g 3 p 4g 4 p 5g 5 p 6g 6 p 7g 7 p 8g 8 p 9g 9 c 3 = a 0 y 0 b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h0 p g p 2g 2 p 3g 3 p 4g 4 p 5g 5 p 6g 6 p 7g 7 p 8g 8 p 9g 9 p 0g 0 c 4 = a y 0 b h 2 y 2 0 c h 4 y 4 0 d h 6 y 6 0 e h 8 y 8 0 h0 p g p 2 g 2 p 3g 3 p 4g 4 p 5 g 5 p 6 g 6 p 7 g 7 p 8 g 8 p 9 g 9 p 0g 0 p g c 5 = αh 0 f 0 y 0 h 0 αg 0 βg γg 2 δg 3 ηg 4 τg 5 ηg 6 δg 7 γg 8 βg 9 αg 0 c = h 0 αg 5 βg 4 γg 3 δg 2 ηg τg ηg δg 2 γg 3 βg 4 αg 5 =6 7 n 6 c n 5 = αh 0 f n y n h 0 αg n βg n γg n 2 δg n 3 ηg n 4 τg n 5 ηg n 6 δg n 7 γg n 8 βg n 9 αg n 0 c n 4 = a 0y n b h 2 y n 2 c h 4 y n 4 d h 6 y n 6 e h 8 y n 8 h 0 p g n p 2g n 2 p 3g n 3 p 4g n 4 p 5g n 5 p 6g n 6 p 7g n 7 p 8g n 8 p 9g n 9 p 0g n 0 p g n c n 3 = a 0 y n b h 2 y 2 n c h 4 y 4 n d h 6 y 6 h 0 p g n p 2 g n 2 p 3 g n 3 n e h 8 y n 8 p 4 g n 4 p 5 g n 5 p 6 g n 6 p 7 g n 7 p 8 g n 8 p 9 g n 9 p 0g n 0 c n 2 = a 0y n b h 2 y n 2 c h 4 y n 4 d h 6 y n 6 e h 8 y n 8 h 0 p g n p 2g n 2 p 3g n 3 p 4g n 4 p 5g n 5 p 6g n 6 p 7g n 7 p 8g n 8 p 9g n 9 c n = a 0y n b h 2 y n 2 c h 4 y n 4 d h 6 y n 6 e h 8 y n 8 h 0 p g n p 2g n 2 p 3g n 3 p 4g n 4 p 5g n 5 p 6g n 6 p 7g n 7 p 8g n 8. To explan the exstence of A h 0 BF we have to show A h 0 BF s nonsngular. We can easly show that A = p 5 s a monotone eleven band matrx of order n where P = p j s a trdagonal matrx defned by 2 = j = 2 n p j = j = 23 0 otherwse The matrx P s a monotone matrx so that the eleven band matrx A s also monotone and A s exst. Therefor A can be defned as: Defnton 2. A = A h 0 BF = AI h 0 A BF we need to show that the matrx I h 0 A BF s nonsngular. Frst of all we need to recall the followng lemma []. Lemma. If M s a square matrx of order n and M < then I M exsts and I M < where represents the norm n matrx vector. M Now to show that the matrx I h 0 A BF s nonsngular we wll prove the followng lemma. WJMS emal for subscrpton: nfo@wjms.org.uk

48 J. Rashdna: Non polynomal splne solutons for specal lnear Lemma 2. The matrx A h 0 BF s nonsngular f where F f = max a x b fx. f < 9989522432000 29064772937b a 0 Proof. By usng Lemma f we provded a condton on fx so that h 0 A BF < then [I h 0 A BF ] exsts. Followng Henrc [5] we can obtan bounds for the elements of P. If P = p j the elements of p j s non negatve [5] and can be obtaned as p j = { jn n j n j n j 24 therefore the summaton of th row of P s n p j = j= j= jn n n j= n j n n2 8. 25 Accordng [5] nequalty can be wrtten as P b a2 8h 2 26 then we get A b a0. 27 32768h0 Now we can fnd a bound for B but n provrus secton the matrx B s varous for dfferent classes of the methods f we consder the eght-order method we can obtan Also by usng lemma we can get where B 29064772937 3027024000. 28 [I h 0 A BF ] < h 0 A BF h 0 A BF h 0 A B F b a0 32768 29064772937 f < 3027024000 then we have f < 9989522432000 29064772937b a 0. Now we prove that A s exsts. By usng Eq. 20 we can get E = A T E A T. 29 To obtan a bound on error vector E we wll prove the followng theorem. WJMS emal for contrbuton: submt@wjms.org.uk

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 49 Theorem. Let yx be the exact soluton of the boundary value problem and we assume ỹ = 2 n s the numercal soluton obtaned by usng eght order method α = 0 β = 0 γ = 7 2096 δ = 9 224 η = 09 448 τ = 30 3024 assocated wth boundary Eqs. 2 9 and by solvng the system Eq. 20. Then we have provded E Oh 8 f < 9989522432000 29064772937b a 0. Proof. Our man purpose s to drve a band on E usng Eq. 29 we have By usng Lemma we get E A T [I h 0 A BF ] A T. 30 E provded [h 0 A BF ] < also we can obtan A T [h 0 A BF ] 3 T 0863439858789h8 M 8 32 32086852864000 where M 8 = max a ξ b y 8 ξ. Usng Eqs. 27 28 and 32 n Eq. 3 we obtan the followng bound as: where E φb a0 h 8 M 8 ψ ωb a 0 f Oh8 33 φ = 328829975607093936000 ψ = 37524955772445248000000 ω = 9304769007407884568000. provded that f < 9989522432000. 34 29064772937b a 0 5 Numercal results Example. We consder the followng boundary-value problem [6 2] In [6 ] the boundary condtons are dfferent y 0 x xyx = 89 2x x 2 x 3 e x x y = y = 0 y 2 = y 2 = 2 e y4 = 4 e y4 = 20e y 6 = 8 e y6 = 42e y 8 = 40 e y8 = 72e The exact soluton for ths problem s yx = x 2 e x. Ths problem has been solved by [2]. We appled our methods descrbed n secton 2 3 to solve ths problem wth dfferent value of parameters α β γ δ η and τ and h = /9. The observed maxmum absolute errors are gven n Tab. and compared wth the method n [2]. It has been observed that our methods are more effcent. WJMS emal for subscrpton: nfo@wjms.org.uk

50 J. Rashdna: Non polynomal splne solutons for specal lnear Example 2. We Consder the followng boundary-value problem [ 2] In [] the boundary condtons are dfferent y 0 x yx = 02x snx 9 cosx x y = y = 0 y 2 = 4 sn 2 cos y 4 = 8 sn 2 cos y 6 = 2 sn 30 cos y 8 = 6 sn 56 cos y 2 = 4 sn 2 cos y 4 = 8 sn 2 cos y 6 = 2 sn 30 cos y 8 = 6 sn 56 cos. The exact soluton for ths problem s yx = x 2 cosx. Ths problem has been solved by [2]. We appled our presented methods descrbed n secton 2 3 to solve ths problem wth dfferent value of parameters α β γ δ η and τ and h = /9. The observed maxmum absolute errors are gven n Tab. 2. Table. Observed maxmum absolute errors n Example n = 8 Our second-order method Our fourth-order method Our sxth-order method Our eght-order method Our tenth-order method Our twelfth-order method Ref. [2] for x [x 5 x n 5 ].43 0 3.34 0 5.33 0 7 3.2 0 7.65 0 7 2.39 0 7 2.069 0 3 Table 2. Observed maxmum absolute errors n Example 2 n = 8 Our second-order method Our fourth-order method Our sxth-order method Our eght-order method Our tenth-order method Ref. [2] for x [x 5 x n 5 ].29 0 3.34 0 5 2.70 0 7 8.09 0 8 4.37 0 7 2.655 0 4 Example 3. We Consder the followng boundary-value problem y 0 x 5yx = 0 cosx 4 x snx 0 x y0 = y = 0 y 2 0 = 2 y 2 = 2 cos y 4 0 = 4 y 4 = 4 cos y 6 0 = 6 y 6 = 6 cos y 8 0 = 8 y 8 = 8 cos. The exact soluton for ths problem s yx = x snx. We appled our methods descrbed n secton 2 3 to solve ths problem wth dfferent value of parameters α β γ δ η and τ and h = 0. The observed maxmum absolute errors are gven n Tab. 3. λ Second-order method: α = 3996800 β = 2036 3996800 γ = 52637 3996800 δ = 2203488 3996800 η = 97384 3996800 τ = 5724248 3996800. λ 2 Fourth-order method: α = 0 β = 0 γ = 0 δ = 0 η = 5/2 τ = /6. λ 3 Sxth-order method: α = 0 β = 0 γ = 0 δ = 7/44 η = 2/9 τ = /24. λ 4 Eght-order method: α = 0 β = 0 γ = 7/2096 δ = 9/224 η = 09/448 τ = 30/3024. λ 5 Tenth-order method: λ 6 Twelfth-order method: α = 0 β = /362880 γ = 25/8440 δ = 93/22680 η = 447/8440 τ = 569/36288. α = /4790060 β = 6/23950080 γ = 2203/5966720 δ = 477/28520 η = 25687/887040 τ = 78069/399680. WJMS emal for contrbuton: submt@wjms.org.uk

World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 5 Table 3. Observed maxmum absolute errors n Example 3 n = 0 Our second-order method Our fourth-order method Our sxth-order method Our eght-order method Our tenth-order method Our twelfth-order method.9 0 8 7.52 0 0.9 0 0 27 0 0 6.56 0 0 8.3 0 0 Table 4. Observed maxmum absolute errors n Examples and 2 Example n = Example 2 n = Example n = 22 Example 2 n = 22 λ.47 0 3.47 0 3.09 0 3 9.54 0 4 λ 2 6.28 0 5 6.2 0 5 6.8 0 6.23 0 5 λ 3 2.36 0 5 2.30 0 5 2.85 0 6 3.2 0 6 λ 4 2.35 0 5 2.3 0 5 7.56 0 6 7.43 0 6 λ 5 2.36 0 5 2.3 0 5 4.40 0 6 8.83 0 7 λ 6 2.39 0 5 2.3 0 5 7.36 0 6 8.29 0 6 6 Concluson The new methods of orders 2 4 6 8 0 and 2 based on non-polynomal splne are developed for the soluton of specal lnear tenth-order boundary-value problems. Tabs. and 2 shows that our methods produced better n comparson wth the method developed n [2]. References [] K. Atknson. An ntroducton to numercal analyss second edton. Johan Wley and Sons Inc 989. [2] S. Chandrasekhar. Hydrodynamc and Hydromagnetc Stablty. Clarendon press New York 98. Oxford 96. [3] M. Daele G. Berghe H. Meyer. A smooth approxmaton for the soluton of a fourth-order boundary value problem based on non-polynomal splnes. Journal of Computatonal and Appled Mathematcs 994 53: 383 394. [4] K. Djdejel E. Twzell. Numercal methods for specal nonlnear boundary value problems of order 2m. Journal of Computatonal and Appled Mathematcs 993 47: 35 45. [5] P. Henrc. Dscrete Varable Methods n Ordnary Dfferental Equatons. Wley New York 96. [6] A. Lamn H. Mraou et al. Splne soluton of some lnear boundary value problems. Appled Mathematcs E-Notes 2008 6: 7 78. [7] M. Ramadan I. Lashen W. Zahra. Hgh order accuracy nonpolynomal splne solutons for 2µth order two pont boundary value problems. Appled Mathematcs and Computaton 2008 204: 920 927. [8] J. Rashdna R. Jallan K. Farajeyan. Splne approxmate soluton of eghth-order boundary-value problems. Internatonal Journal of Computer Mathematcs 2009 86: 39 333. [9] M. Scott H. Watts. A Systematzed collecton of codes for solvng two-pont BVPs Numercal Methods for Dfferental Systems. Academc press 976. [0] S. Sddq G. Akram. Soluton of 0th-order boundary value problems usng non-polynomal splne technque. Appled Mathematcs and Computaton 2007 90: 64 65. [] S. Sddq G. Akram. Soluton of tenth-order boundary value problems usng eleventh degree splne. Appled Mathematcs and Computaton 2007 65: 5 27. [2] S. Sddq E. Twzell. Splne solutons of lner tenth-order boundary value problems. Internatonal Journal of Computer Internatonal Journal of Computer 998 68: 345 362. [3] E. Twzell A. Boutayeb K. Djdjel. Numercal methods for eghth tenth and twelfth-order egenvalue problems arsng n thermal nstablty. Advances n Computatonal Mathematcs 994 2: 407 436. WJMS emal for subscrpton: nfo@wjms.org.uk