Low Frequency Plasma Conductivity in the Average-Atom Approximation

Σχετικά έγγραφα
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Derivation of Optical-Bloch Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C


Lecture 21: Scattering and FGR

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

6.4 Superposition of Linear Plane Progressive Waves

Srednicki Chapter 55

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Second Order RLC Filters

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Solutions - Chapter 4

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

What happens when two or more waves overlap in a certain region of space at the same time?

Oscillatory Gap Damping

Matrices and Determinants

Tridiagonal matrices. Gérard MEURANT. October, 2008

[1] P Q. Fig. 3.1

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

D Alembert s Solution to the Wave Equation

Areas and Lengths in Polar Coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

F19MC2 Solutions 9 Complex Analysis

Homework 8 Model Solution Section

Spherical Coordinates

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Uniform Convergence of Fourier Series Michael Taylor

Geodesic Equations for the Wormhole Metric

Note: Please use the actual date you accessed this material in your citation.

If we restrict the domain of y = sin x to [ π 2, π 2

Dynamics of cold molecules in external electromagnetic fields. Roman Krems University of British Columbia

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Three coupled amplitudes for the πη, K K and πη channels without data

4.4 Superposition of Linear Plane Progressive Waves

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Math221: HW# 1 solutions

Homework 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

Variational Wavefunction for the Helium Atom

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Trigonometric Formula Sheet

Forced Pendulum Numerical approach

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

Space-Time Symmetries

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

For a wave characterized by the electric field

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Example Sheet 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Sampling Basics (1B) Young Won Lim 9/21/13

CT Correlation (2B) Young Won Lim 8/15/14

On the Galois Group of Linear Difference-Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Numerical Analysis FMN011

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

2 Composition. Invertible Mappings

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Constitutive Relations in Chiral Media

Kinetic Space Plasma Turbulence

Lifting Entry (continued)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CRASH COURSE IN PRECALCULUS

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

On the Einstein-Euler Equations

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Parametrized Surfaces

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Thermoelectrics: A theoretical approach to the search for better materials

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

10.7 Performance of Second-Order System (Unit Step Response)

Local Approximation with Kernels

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Statistical Inference I Locally most powerful tests

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Solutions to Exercise Sheet 5

Durbin-Levinson recursive method

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Reminders: linear functions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

the total number of electrons passing through the lamp.

Transcript:

Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration of a low-frequency divergence in σ(ω) 3. Finite relaxation time and resolution of problem Collaborators: C. Guet, G. Bertsch, Jim Albritton, Joe Nilsen, K.T. Cheng Seminar LLNL August 2008 1

Average-Atom Model of a Plasma Reminder Plasma composed of neutral spheres with Wigner-Seitz radius R = (3Ω 0 /4π) 1/3 floating in a jellium sea. p 2 2m r + V! u a (r) = ɛu a (r) V (r) = d 3 r ρ(r ) r r + V exc(ρ) 4πr 2 ρ(r) = X nl 2(2l + 1) 1 + exp[(ɛ nl µ)/kt ] P nl(r) 2 = r<r ρ(r) d 3 r R 0 4πr 2 ρ(r) dr Seminar LLNL August 2008 2

Example Al: density 0.27 gm/cc, T = 5 ev, R = 6.44 a.u., µ = 0.3823 a.u. Reminder Bound States Continuum States State Energy n(l) l n(l) n 0 (l) n(l) 1s -55.189 2.0000 0 0.1090 0.1975-0.0885 2s -3.980 2.0000 1 0.2149 0.3513-0.1364 2p -2.610 6.0000 2 0.6031 0.3192 0.2839 3s -0.259 0.6759 3 0.2892 0.2232 0.0660 3p -0.054 0.8300 4 0.1514 0.1313 0.0201 5 0.0735 0.0674 0.0061 6 0.0326 0.0308 0.0018 7 0.0132 0.0127 0.0005 8 0.0049 0.0048 0.0001 9 0.0017 0.0016 0.0001 10 0.0005 0.0005 0.0000 Nbound 11.5059 Nfree 1.4941 1.3404 0.1537 Seminar LLNL August 2008 3

Reminder 10-1 ρ c (r) 10-2 ρ 0 R WS 10-3 15 0 2 4 6 8 10 5 4πr 2 ρ b (r) 4πr 2 ρ c (r) eff (r) R WS 0 0 2 4 6 8 r (a.u.) Seminar LLNL August 2008 4

Reminder Linear Response and the Kubo-Greenwood Formula Consider an applied electric field: E(t) = F ẑ sin ωt A(t) = F ω ẑ cos ωt The time dependent Schrödinger equation becomes [ T 0 + V (n, r) ef ] ω v z cos ωt ψ i (r, t) = i t ψ i(r, t) The current density is J z (t) = 2e Ω f i ψ i (t) v z ψ i (t) i Seminar LLNL August 2008 5

Kubo-Greenwood Reminder Linearize ψ i (r, t) in F Evaluate the response current: J = J in sin(ωt) + J out cos(ωt ) Determine σ(ω): J in (t) = σ(ω) E z (t) Result: σ(ω) = 2πe2 m 2 ωω (f i f j ) j ɛ p i 2 δ(ɛ j ɛ i ω), ij which is an average-atom version of the Kubo 1 -Greenwood 2 formula. 1 R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957) 2 D. A. Greenwood, Proc. Phys. Soc. London 715, 585 (1958) Seminar LLNL August 2008 6

QM perturbation theory Infrared Catastrophe in Scattering H 1 = V (r) e mc (ɛ p) e iωt e T 21 = 2πi δ(e 2 E 1 ω) p 2 ɛ p p 1 mc X p 2 ɛ p n n V p 1 X p 2 V n n ɛ p p 1 + E n n E 1 E n n E 1 ω e = 2πi δ(e 2 E 1 ω) 1 mc ω ɛ q p 2 V p 1 + Seminar LLNL August 2008 7

QM perturbation theory Infrared Catastrophe in Scattering H 1 = V (r) e mc (ɛ p) e iωt e T 21 = 2πi δ(e 2 E 1 ω) p 2 ɛ p p 1 mc X p 2 ɛ p n n V p 1 X p 2 V n n ɛ p p 1 + E n n E 1 E n n E 1 ω e = 2πi δ(e 2 E 1 ω) 1 mc ω ɛ q p 2 V p 1 + Seminar LLNL August 2008 8

Low-Frequency Theorem (QED) QM perturbation theory p 2 ɛ p p 1 1 (ɛ q) V (q) ω Relation between scattering amplitude and potential (Born approximation) f el (θ) = m 2π V (q) p 2 ɛ p p 1 2π mω (ɛ q) f el(θ) Seminar LLNL August 2008 9

QM perturbation theory Example of Dipole Matrix Elements 0.0 Dipole Matrix Element < f p i > -0.5-1.0-1.5 Al metallic density T=10eV l f =1 - l i =2 l f =3 - l i =2-2.0 0 0.5 1 1.5 2 ω(a.u.) Seminar LLNL August 2008 10

Low-Frequency Kubo-Greenwood Simplification f 1 f 2 ω f E σ(ω) 2πe2 m 2 Ω d 3 p 1 (2π) 3 d 3 p 2 (2π) 3 f «p 2 ɛ p p 1 2 δ(e 2 E 1 ω) E D p 2 ɛ p p 1 2E ave 1 (2π) 2 3 m 2 ω 2 q2 σ el (θ) = 2 (2π) 2 3 m 2 ω 2 p2 (1 cos θ) σ el (θ) Seminar LLNL August 2008 11

Low-Frequency Kubo-Greenwood Simplification σ(ω) 2πe2 Ω 2 (2π) 2 3 m 4 ω 2 d 3 p 1 (2π) 3 d 3 p 2 (2π) 3 f «E where σ tr (p) = p 2 1 (1 cos θ) σ el(θ)δ(e 2 E 1 ω) e 2 σ(ω) = 2 3 ω 2 Ω d 3 p (2π) 3 (1 cos θ) σ el (θ) dω = 4π p 2 f «v 3 σ tr (p) E X sin 2 (δ l+1 (p) δ l (p)) l=0 Seminar LLNL August 2008 12

Low-Frequency KG Formula Comparison 1 = σ tr(p) Λ p Ω τ p = Λ p v = Ω vσ tr (p) σ(ω) = 2e2 3 d 3 p (2π) 3 f «v 2 1 E ω 2 τ p (Low-Freq K-G formula) σ static = 2e2 3 d 3 p (2π) 3 f «v 2 τ p E (iman formula) Rule: K-G formula reduces to iman formula under replacement 1/(ω 2 τ p ) τ p Seminar LLNL August 2008 13

Influence of Collisions where Effect: ψ(p, t) exp» i (p r Et) Γ p 2 t Γ p 2 = 1 τ p 1 ( E) 1 2 ( E) 2 + Γ 2 p /4 = 1 ω 2 + 1/τp 2 With this in mind, the Modified KG Formula becomes σ(ω) = 2e2 3 d 3 p (2π) 3 f «E v 2 τ p ω 2 τ 2 p + 1 (Modified KG Formula) Seminar LLNL August 2008 14

Comparison of Conductivity Formulas 0.03 Conductivity (a.u.) 0.02 0.01 K-G Formula K-G Low Freq Approx Modified K-G Aluminum Plasma T=5eV 0.27 gm/cc 0 0.01 0.1 1 10 Photon Energy (a.u.) Seminar LLNL August 2008 15

Conductivity Sum Rule 0 σ(ω)dω = πe2 d 3 p f «3 (2π) 3v2 E = e2 π dedω p 3 f «= e 2 π 3 (2π) 3 m E = e2 π d 3 p m (2π) f(e) = e2 π 3 2m dedω (2π) 3 pf(e) Seminar LLNL August 2008 16

σ (a.u.) σ (a.u.) 0.005 0.004 0.003 0.002 0.001 0.030 0.025 0.020 0.015 0.010 0.005 Summary of Modified KG Formula 3s-3p bound-bound 2p-3s 2s-3p 0 0.01 0.1 1 10 free-free 0.000 0.01 0.1 1 10 Photon Energy (a.u.) 0.005 0.004 0.003 0.002 0.001 0.030 0.025 0.020 0.015 0.010 0.005 0.000 bound-free n=3 ε n=2 ε 0 0.01 0.1 1 10 total 0.01 0.1 1 10 Photon Energy (a.u.) Seminar LLNL August 2008 17

Dispersion Relations By Cauchy s theorem, a function f(z) analytic in the upper half plane that falls off as 1/ z satisfies f(x 0 ) = 1 «iπ P.V. f(x) x x 0 Apply to Modified K-G formula for Re[σ(ω)] to find Im[σ(ω)] = 2e2 3 d 3 p (2π) 3 f «E v 2 ωτ 2 p ω 2 τ 2 p + 1 σ(ω) as an analytic function of ω is therefore σ(ω) = 2e2 3 d 3 p (2π) 3 f «E v 2 τ p 1 iωτ p Seminar LLNL August 2008 18

Dielectric Function, Index of Refraction Alternatively, ɛ r (ω) = 1 + 4πi σ(ω) ω Re[ɛ r (ω)] = 1 4π Im[σ(ω)] ω Im[ɛ r (ω)] = 4π Re[σ(ω)] ω Index of Refraction: n(ω) + iκ(ω) = q ɛ r (ω) Reflection Coefficient: R(ω) = 1 n(ω) iκ(ω) 1 + n(ω) + iκ(ω) 2 Seminar LLNL August 2008 19

Applications With Joe Nilsen Seminar LLNL August 2008 20

Conclusions Linear response theory applied to the average-atom model of a plasma leads to a version of the Kubo-Grenwood formula for conductivity. The resulting formula has a second-order pole at ω = 0. Including finite relaxation time in the time dependence of scattering wave function replaces pole by Drude type energy denominator. Evaluating the relaxation time using phase shifts from the AA model lead to the iman formula at ω = 0. Seminar LLNL August 2008 21