STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

Σχετικά έγγραφα
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Section 8.3 Trigonometric Equations

EE512: Error Control Coding

Fractional Colorings and Zykov Products of graphs

Every set of first-order formulas is equivalent to an independent set

4.6 Autoregressive Moving Average Model ARMA(1,1)

Matrices and Determinants

Solutions to Exercise Sheet 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Uniform Convergence of Fourier Series Michael Taylor

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

Math221: HW# 1 solutions

Approximation of distance between locations on earth given by latitude and longitude

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

derivation of the Laplacian from rectangular to spherical coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Reminders: linear functions

Forced Pendulum Numerical approach

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Srednicki Chapter 55

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Second Order Partial Differential Equations

6.3 Forecasting ARMA processes

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Second Order RLC Filters

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Inverse trigonometric functions & General Solution of Trigonometric Equations

Concrete Mathematics Exercises from 30 September 2016

w o = R 1 p. (1) R = p =. = 1

Numerical Analysis FMN011

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Other Test Constructions: Likelihood Ratio & Bayes Tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

5. Choice under Uncertainty

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings

Solution Series 9. i=1 x i and i=1 x i.

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

New bounds for spherical two-distance sets and equiangular lines

Iterated trilinear fourier integrals with arbitrary symbols

If we restrict the domain of y = sin x to [ π 2, π 2

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Section 9.2 Polar Equations and Graphs

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lecture 2. Soundness and completeness of propositional logic

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

C.S. 430 Assignment 6, Sample Solutions

Lecture 34 Bootstrap confidence intervals

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

12. Radon-Nikodym Theorem

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

PARTIAL NOTES for 6.1 Trigonometric Identities

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Differential equations

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Homework 3 Solutions

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Higher Derivative Gravity Theories

Markov chains model reduction

Acoustic Limit for the Boltzmann equation in Optimal Scaling

Space-Time Symmetries

Calculating the propagation delay of coaxial cable

Homomorphism in Intuitionistic Fuzzy Automata

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

F19MC2 Solutions 9 Complex Analysis

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Partial Trace and Partial Transpose

Local Approximation with Kernels

( y) Partial Differential Equations

Heisenberg Uniqueness pairs

Areas and Lengths in Polar Coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Homework 8 Model Solution Section

Transcript:

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri, University of Provence, France.

The kinetic setting. F t + 1 ε v F x x + 1 ε v F z z G F = 1 Q(F, F), v z ε2 F(, x, z, v) = F (x, z, v), (x, z) ( µπ, µπ) ( π, π), v R 3, F(t, x, π, v) = M (v) w z F(t, x, π, w)dw, t >, v z, for x [ µπ, µπ], where w z F, M = 1 2π e v 2 2, M+ (v) = 1 2π(1 2πελ) 2 e v 2 2(1 2πελ), ε = l d, Q(f, g)(z, v, t) = 1 2 G = 1 dg, ε 2T R 3 dv λ = 1 ε T T + 2πT, µ = h d, S 2 dωb(ω, v v ) { f g +f g f g g f }.

The Rayleigh number Ra = 16G(2πλ) is independent of ε and π chosen in [Ra c, (1 + δ)ra c ], for δ small. We construct a stationary solution F s = M + εf s + O(ε 2 ), with M = 1 (2π) v 2 e 3/2 ( 2, fs = M ρ s + u s v + T s v 2 3 2 ), where ρ s, u s, T s are expressed in terms of the fluid solution h s = h l + δ h con + O(δ 2 ) to the Oberbeck-Boussinesq system. Moreover, we prove the kinetic non linear stability of F s under suitable initial perturbations.

All solutions (stationary or evolutionary) to the Boltzmann equation will be weak L 1 - solutions to the Boltzmann equation. This will be made possible by controlling the solutions in appropriate norms, in particular in the L 2 M norm in the v-variable of the L norm in the space variables.

We study the Boltzmann equation for the perturbation Φ = M 1 (F F s ) with the initial datum 5 Φ (x, z, v) = ε n Φ (n) (, x, z, v) + ε 5 p 5, n=1 where dvdxdzmp 5 = and F s + MΦ. The time dependent solution is written 5 Φ(t, x, z, v) = ε n Φ (n) (t, x, z, v) + εr(t, x, z, v), (x, z) Ω µ. n=1 The first term of the expansion in ε is Φ (1) = ρ 1 + u 1 v + θ 1 v 2 3, 2 where the initial data for ρ 1, u 1, θ 1 (t, x, z) are chosen small enough so that the solution (u s (x, z) + u 1 (t, x, z), θ s (x, z) + θ 1 (t, x, z)) of the initial boundary value problem for the O-B equations exists globally in time and converges to (u s, θ s ) when t.

Stability : the remainder We construct the rest term R, solution of R t where + 1 ε µ v R x x + 1 ε v R (MR) z GM 1 = 1 z v z ε 2 LR + 1 J(R, R) ε + 1 H(R) + A, ε R(, x, z, v) = R (x, z, v) = ε 4 p 5 (x, z, v), R(t, x, π, v) = M M w z (R(t, x, π, w) + ψ ε (t, x, π, w)) w z Md ψ ε (t, x, π, v), x [ π, π], t >, v z >, H(R) = 1 5 ε J(R, Φ (j) ε j + Φ s ). 1

The main result. Theorem There exists a solution R such that lim t Main lines of the proof. [ π,π] 2 R 3 R 2 (t, x, z, v)m(v)dxdzdv =. + [ π,π] 2 R 3 R 2 (t, x, z, v)m(v)dxdzdvdt < cε 7, R 2 (t, x, z, v)m(v)dxdzdv < c ε 2 ( R 2 (, x, z, v)m(v)dxdzdv + + ) A(s) ds.

References. L. Arkeryd, R. Esposito, R. Marra, A. Nouri, Stability of the Laminar Solution of the Boltzmann Equation for the Benard Problem, 28. L. Arkeryd, A. Nouri, Asymptotic techniques for kinetic problems of Boltzmann type, 27. R.E.Caflish, The fluid dynamic limit of the nonlinear Boltzmann equation, 198. R. Esposito, R. Marra, J. L. Lebowitz, Solutions to the Boltzmann Equation in the Boussinesq Regime, 1998. R. Esposito, M. Pulvirenti, From Particles to Fluids, 24. N. B. Maslova, Nonlinear evolution equations : kinetic approach, 1993. N. Masmoudi, Handbook of differential equations : evolutionary equations, 26. Y. Sone, Kinetic Theory and Fluid Dynamics, 22.

Three main problems. Avoid exponential growth of R(t,.,.) when t. Indeed, by and (R, LR) C((1 P)R, ν(1 P)R), (R, J(φ H, PR)) C ν 1/2 PR ν 1/2 (1 P)R. it holds that 1 d 2 dt R 2 2,2 C R 2 2,2 + (B, R). Ω µ Take care of the diffuse reflexion boundary conditions. Control the hydrodynamic moments.

Fix (x, z) and define 5 L J R = LR + J( ε n Φ (n) + Φ s, PR). n=1 Spectral gap property of L J Lemma There is ε > such that, for < ε < ε, there is c independent of ε and (x, z), for which the following inequalities hold : (L J R, R) c(ν(i P J )R, (I P J )R), (L JR, R) c(ν(i P)R, (I P)R).

The following norms are used, ( t π π R 2t,2 = R 2 (s, x, z, v)m(v)dsdxdzdv π π R 3 ( π π R,2 = sup R 2 (t, x, z, v)m(v)dxdzdv t> π π R 3 ( ) 1 R, = sup sup R 2 2 (t, x, z, v)m(v)dv, t> π<x,z<π ( t R 2t,2, = ( t + ( R,2, = sup ( + R 3 π π π v z> π v z< π t> π π sup t> π v z> v z< ) 1 2, ) 1 2, ) 1 v z M(v) R(s, x, π, v) 2 2 dvdxds v z M(v) R(s, x, π, v) 2 dvdxds ) 1 v z M(v) R(t, x, π, v) 2 2 dxdv v z M(v) R(t, x, π, v) 2 dxdv ) 1 2 ) 1 2.,

Lemma Let ϕ( τ, x, z, v) be solution to ϕ τ + v ϕ x x + v ϕ (Mϕ) z εgm 1 = 1 z v z ε L Jϕ + g, (1) periodic in x of period 2π, with zero initial and ingoing boundary values at z = π, π, and g x-periodic of period 2π. Set ϕ = ϕ < ϕ >= ϕ (2π) 2 ϕdxdz. Then, if ε ε, δ δ, for ε, δ small enough, there exists η small such that, ( ϕ,2 c ε 1 2 ν 1 2 (I P)g 2,2 +ε 1 2 Pg 2,2 ν 1 2 (I P)ϕ 2,2 +ηε 1 2 < Pϕ > 2,2 ), ( c ε ν 1 2 (I P)g 2,2 + Pg 2,2 +ηε < Pϕ > 2 ), ( 1 Kinetic stability for Rayleigh-Benard 1 convection.

Proof of the Lemma. Denote by ˆϕ( τ, ξ, v), ξ = (ξ x, ξ z ) Z 2 the Fourier transform of ϕ with respect to space. Then for ξ (, ), ˆϕ τ = 1 ε L (M ˆϕ) Jϕ iξ v ˆϕ + εgm 1 + ĝ v z r( 1) ξz. v z Here r = F x ϕ( τ, ξ x, ±π, v) for v z. Then, ( 1 ( d τ (P ˆϕ) 2 ( τ, ξ, v)mdv C ε 2 d τ ζ s (v) L Jϕ)( τ, ξ, ) ) + (I P) ˆϕ( τ, ξ, ) 2 + d τ ν 1 ĝ 2 ( τ, ξ, v)mdv + d τ v z r 2 δ 1 ξ 2 ).

By the Parseval inequality, ( Pϕ) 2 ( τ, x, z, v)mdvdxdzd τ ( 1 c ε 2 ν((i P)ϕ) 2 ( τ, x, z, v)mdvdxdzd τ + ν 1 g 2 ( τ, x, z, v)mdvdxdzd τ+ γ ϕ 2 2,2, +η ϕ 2 2,2 By Green s formula, γ ϕ 2 2 T,2, + ϕ 2 2 T,2 +1 ε ν 1 2 (I P)ϕ 2 2 T,2 c(ε ν 1 2 (I P)g 2 2 T,2 +η 1 Pϕ 2 2 T,2 + 1 η 1 Pg 2 2 T,2 ).

Write R as the sum R 1 + R 2, where R 1 and R 2 are solutions of two different problems. R 1 solves R 1 t + 1 ε v x R 1 x + 1 ε v z R 1 z G (MR 1 ) = 1 M v z ε 2 L JR 1 R 1 (, x, z, v) = R (x, z, v), + 1 ε H 1(R 1 ) + 1 ε g, R 1 (t, x, π, v) = 1 ε ψ(t, x, π, v), t >, v z. The non-hydrodynamic part of R 1 is estimated by Green s formula : for every η 1 >, γ R 1 2 + R 2 T,2, 1 ( T ) 2 2,2 +1 ε ν 1 2 (I PJ )R 1 2 2 T,2 ( c R 2 2,2 +ε ν 1 2 (I PJ )g 2 2 T,2 + η 1 2 P JR 1 2 2 T,2 + 1 2η 1 P J g 2 2 T,2 + 1 ε 2 ψ 2 2 T,2,

An a priori bound for P J R 1 is obtained in the following lemma based on dual techniques. Lemma Set h := P J R 1. Then h 2 2,2 c( R 2 2 + ν 1 2 (I PJ )g 2 2,2 + 1 ε 2 P Jg 2 2,2 + 1 ε 3 ψ 2 2,2, ).

The remaining part R 2 of R satisfies the equation ε R 2 t R 2 + v x x + v R 2 z z ε G (MR 2 ) = 1 M v z ε L JR 2 + H 1 (R 2 ), R 2 (, x, z, v) =, R 2 (t, x, π, v) = M (v) M(v) w z ( R 1 (t, x, π, w) + R 2 (t, x, π, w) + 1 ε ψ(t, ) x, π, w) w z Mdw, t >, v z.

By Green s formula, and noting that H 1 (R 2 ) only depends on (I P)R 2, we get ε R 2 (t) 2 2 + γ R 2 2 2t,2, +c ε ν 1 2 (I PJ )R 2 2 2t,2 γ+ R 2 2 2t,2,. Treatment of the diffuse reflexion boundary conditions : ε R 2 2 2,2 (t) + c ε ν 1 2 (I PJ )R 2 2 2t,2 1 εη f 2 2t,2, +Cεη P JR 2 2 2t,2, γ R 2 2 2t,2, 1 ε 2 f 2 2t,2, +C P JR 2 2 2t,2.

Hydrodynamic estimates for R 2. Lemma P J R 2 2 2,2 c 1 ε 2 f 2 2,2 +c 2 P J R 1 2 2,2.

Lemma Any solution R 2 satisfies the a priori estimates ( ν 1 2 (I PJ )R 2 2 2,2 c ε R 2 2 +ε ν 1 2 (I PJ )g 2 2,2 + 1 ε P Jg 2 2,2 + 1 ε 2 ψ ) 2 2,2,, 1 P J R 2 2 2,2 c( ε ( R 2 2 + ν 1 2 (I PJ )g 2 2,2 ) + 1 ε 3 P Jg 2 2,2 + 1 ) ε 4 ψ 2 2,2,, ν 1 2 R2 2, c( 1 ε 2 R 2 2,2 + γ R 1 2,2, + 1 ε 2 ψ 2 c( 1 ε 3 R 2 2 + 1 ε 3 ν 1 2 (I PJ )g 2 2,2 + 1 ε 5 P Jg 2 2,2 + 1 ε 6 ψ 2 2,2, + R 2,2 +ε 2 ν 1 2 g 2, + 1 ) ε 2 ψ 2,2,.

Theorem There exists a solution R to the rest term problem such that + [ π,π] 2 R 3 R(t, x, z, v) 2 M(v)dtdxdzdv < cε 7. Proof. R is obtained as the limit of an approximating sequence.