Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Σχετικά έγγραφα
Free Energy and Phase equilibria

Free Energy Calculation

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

1 String with massive end-points

2. Chemical Thermodynamics and Energetics - I

Higher Derivative Gravity Theories

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

DuPont Suva 95 Refrigerant

the total number of electrons passing through the lamp.

Homework 8 Model Solution Section

Parametrized Surfaces

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

DuPont Suva 95 Refrigerant

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 2. Soundness and completeness of propositional logic

Test Data Management in Practice

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Exercises to Statistics of Material Fatigue No. 5

NonEquilibrium Thermodynamics of Flowing Systems: 2

Dr. D. Dinev, Department of Structural Mechanics, UACEG

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Statistical Inference I Locally most powerful tests

CE 530 Molecular Simulation

The Simply Typed Lambda Calculus

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

[1] P Q. Fig. 3.1

( y) Partial Differential Equations

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Notes on the Open Economy

Solutions to Exercise Sheet 5

Derivation of Optical-Bloch Equations

Space-Time Symmetries

4.6 Autoregressive Moving Average Model ARMA(1,1)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Srednicki Chapter 55

Variational Wavefunction for the Helium Atom

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Stochastic thermodynamics

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

ADVANCED STRUCTURAL MECHANICS

D Alembert s Solution to the Wave Equation

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

C.S. 430 Assignment 6, Sample Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «ΑΜΦΙΣΒΗΤΗΣΕΙΣ ΟΡΙΩΝ ΓΕΩΤΕΜΑΧΙΩΝ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ ΜΕΣΩ ΔΙΚΑΣΤΙΚΩΝ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΩΝ.»

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

2 Composition. Invertible Mappings

Durbin-Levinson recursive method

Answer sheet: Third Midterm for Math 2339

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

On the Galois Group of Linear Difference-Differential Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 34 Bootstrap confidence intervals

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Section 8.3 Trigonometric Equations

Πολιτιστικό Προφίλ Δήμου Κορυδαλλού

Differential equations

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Galatia SIL Keyboard Information

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ΣΤΙΓΜΙΑΙΑ ΚΑΤΑΣΚΕΥΗ ΣΤΕΡΕΟΥ ΜΕΙΓΜΑΤΟΣ ΥΛΙΚΟΥ ΜΕΣΑ ΑΠΟ ΕΛΕΓΧΟΜΕΝΗ ΦΥΣΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Multi-dimensional Central Limit Theorem

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

of the methanol-dimethylamine complex

Partial Differential Equations in Biology The boundary element method. March 26, 2013

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Every set of first-order formulas is equivalent to an independent set

Θερμοδυναμική. - Νόμοι -Εφαρμογές. Χριστίνα Στουραϊτη

Finite Field Problems: Solutions

Assalamu `alaikum wr. wb.

Transcript:

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling Chris Jarzynski Ins&tute for Physical Science and Technology Department of Chemistry & Biochemistry Department of Physics University of Maryland, College Park

Macroscopic and microscopic machines steam engine ATP synthase RCSB Protein Data Bank

air (T) rubber band length = L water (T,P) μ- pipeoe RNA λ laser trap U S+E =U sys +U env U S+E = u sys +U env + u int neglect interac&on energy can t neglect interac&on energy!! heat, work, entropy 1 st & 2 nd Laws of Thermodynamics!?? Goal: microscopic defini&ons that preserve the structure of thermodynamic laws

Macroscopic thermodynamics air (T) rubber band length = L variables: (L,T) uilibrium state state func&ons: U internal energy S entropy Ψ tension thermodynamic poten&al: F = U ST Helmholtz free energy First Law: ΔU = Q + W W = Ψ dl Second Law: Q TΔS W ΔF Clausius inuality all about uilibrium states and thermodynamic processes

Sta&s&cal mechanics x = (q,p) = microstate of system U sys (x;λ) = Hamiltonian (energy func&on) state func&ons U = S = p uilibrium states (λ,t) sta&s&cal ensembles ( x;λ,t ) = 1 Z exp βu sys ( x;λ) β = 1 p U sys p ln p F = k B T ln Z fluctua&ng observable F =U ST k B T

Sta&s&cal mechanics x = (q,p) = microstate of system U sys (x;λ) = Hamiltonian (energy func&on) thermodynamic processes λ : A B, 0 t τ λ(t) = protocol - how we act on the system x(t) = trajectory - how the system responds τ U sys ( x τ ;B) U sys ( x 0 ; A) = dt!x U sys τ + dt! λ U sys = Q +W 0 0 x λ Average over realiza&ons: A B ΔU = Q + W W ΔF F =U ST First Law Second Law

x = microstate of system y = microstate of environment λ = work parameter Nanoscale sta&s&cal mechanics water (T,P) μ- pipeoe RNA λ laser trap Fluctua7on Theorems ρ R (-w) e βw = e βδf forward process: A -> B reverse process: B -> A ρ F (+w) ρ R ( w) = exp β w Δf ρ F (w) & others Δf w

x = microstate of system y = microstate of environment λ = work parameter Nanoscale sta&s&cal mechanics water (T,P) μ- pipeoe RNA λ laser trap Fluctua7on Theorems e βw = e βδf ρ F (+w) ρ R ( w) = exp β w Δf Δf or Δg? & others

Thermodynamics Sta&s&cal Mechanics uilibrium states thermodynamic processes ensembles trajectories p e βu sys F = U - ST Q + W = ΔU W ΔF F = U - ST <Q> + <W> = ΔU <W> ΔF + fluctua7on theorems U S+E ( x, y;λ) = u sys ( x;λ) +U env ( y) + u int ( x, y) can t be neglected!

Thermodynamics Sta&s&cal Mechanics Develop a sta&s&cal mechanical framework that: - [correctly describes the uilibrium state of a nanoscale system] - provides precise microscopic defini&on of relevant state func&ons (internal energy, entropy, free energy, etc.), heat & work - includes statements of first & second laws, fluctua&on theorems - scales up to macroscopic thermodynamics, when the system is large U S+E ( x, y;λ) = u sys ( x;λ) +U env ( y) + u int ( x, y) can t be neglected!

Macroscopic thermodynamics revisited air (T,P) rubber band length = L variables: (L,T,P) state func&ons: U S Ψ V internal energy entropy tension volume thermodynamic poten&als: F = U ST Helmholtz free energy H = U + PV enthalpy G = H ST Gibbs free energy First Law: ΔU = Q + W - PΔV W = Ψ dl ΔH = Q + W non-pdv work Second Law: Q TΔS W ΔG Clausius inuality

Nanoscale sta&s&cal mechanics - setup x = microstate of system y = microstate of environment λ = work parameter U S+E water (T,P) μ- pipeoe RNA λ laser trap ( x, y;λ) = u sys ( x;λ) +U env ( y) + u int ( x, y) fluctua&ng observable sys env (T,P) p ( x, y;λ ) = 1 exp( βu S+E ) Z S+E Define state func&ons u, s, v, h, g that describe the thermodynamic state of the system of interest.

p p Equilibrium state of the system of interest ( x, y;λ ) = 1 exp( βu S+E ) Z S+E ( x;λ ) = dy p ( x, y;λ ) = 1 exp( βu sys ) dy Z S+E exp β U env + u int U S+E = u sys +U env + u int e β ( u sys+φ ) φ 0 as u int 0 = 1 β ln dy exp β ( U env + u int ) dy exp( βu env ) φ x

Equilibrium state of the system of interest φ x p ( x;λ ) exp β ( u sys +φ) =? exp βu sys = 1 β ln dy exp β ( U env + u int ) dy exp( βu env ) = solva7on free energy for system in frozen microstate x = reversible work ruired to insert system into environment J.G. Kirkwood, J Chem Phys 3, 300 (1935) U. Seifert, Phys Rev LeO 116, 020601 (2016)

Solva&on free energy and volume Macroscopic system: pebble H 2 O H 2 O ϕ = solva&on free energy = reversible work of inser&on = P V peb V peb = φ / P thermodynamic defini&on of V peb Use this rela&on to define the volume of our microscopic system: v sys ( x) φ ( x) / P

Fluctua&ng observables and state func&ons p ( x;λ ) exp# $ β u sys +φ % & = exp β u sys + P v sys exp βh sys v sys ( x) φ ( x) / P fluctua&ng observables Now define state func&ons (of λ,t,p): u v h s dx p u sys ( x;λ) dx p v sys x dx p h sys x;λ dx p ln p g 1 β ln dx exp # $ β u + P v sys sys h = u + Pv g = h st % &

First Law of Thermodynamics, ΔU = Q PΔV + W u sys ( x;λ) x( t) λ h sys λ : A B ( x;λ) u sys ( x;λ) + Pv sys ( x) Δu sys = # dt!x u sys x +! λ u & sys % ( = dt!x h sys $ λ ' x P dv sys + dt! λ q heat (Q) dt!x h sys w dt! λ u sys x λ PdV work (-P ΔV) u sys λ non-pdv work (W)

First Law of Thermodynamics, ΔU = Q PΔV + W u sys ( x;λ) x( t) λ h sys λ : A B ( x;λ) = u sys ( x;λ) + Pv sys ( x) Δu sys = # dt!x u sys x +! λ u sys % $ λ & ( ' P dv sys + dt! λ = dt!x h sys x = q PΔv sys + w u sys λ q dt!x h sys x w dt! λ u sys λ = dt! λ h sys λ

First Law of Thermodynamics, ΔU = Q PΔV + W u sys ( x;λ) x( t) h sys λ : A B ( x;λ) = u sys ( x;λ) + Pv sys ( x) λ Δu sys = q PΔv sys + w for one realiza&on of the process Averaging over an ensemble of realiza&ons from one uilibrium state to another gives: Δu = q PΔv + w Δh = q + w q dt!x h sys x w dt! λ u sys λ = dt! λ h sys λ

Second Law of Thermodynamics, W ΔG u sys ( x;λ) x( t) λ h sys λ : A B ( x;λ) = u sys ( x;λ) + Pv sys ( x) e βw = e βδg w Δg w dt! λ u sys λ ρ F (+w) ρ R ( w) = eβ w Δg g 1 β ln dx exp β u + P v sys sys = u + Pv st

Summary to this point p ( x;λ ) = 1 Z exp β u sys +φ Internal energy u sys ( x;λ) Volume Enthalpy Entropy Gibbs free energy v sys ( x) = φ / P h sys = u sys + Pv sys u = u sys v = v sys h = h sys s = ln p g = β 1 ln Z Heat, Work!q =!x x h sys,!w =! λ λ u sys h = u + Pv g = h st Δh = q + w w Δg & e βw = e βδg ρ F (+w) ρ R ( w) = eβ w Δg

Summary to this point p ( x;λ ) = 1 Z exp β u sys +φ Internal energy u sys ( x;λ) Volume Enthalpy Entropy Gibbs free energy v sys ( x) = φ / P h sys = u sys + Pv sys u = u sys v = v sys h = h sys s = ln p g = β 1 ln Z Heat, Work!q =!x x h sys,!w =! λ λ u sys Also: u,v,h,s,g -> U,V,H,S,G for a macroscopic system of interest. bare representa&on C.J., Phys Rev X 7, 011008 (2017)

v sys Internal energy Volume Enthalpy Entropy Gibbs free energy Alterna&ve framework ( x) = φ / P φ T T φ T, φ P φ P P u = u + φ φ T v = v sys h = h φ T s = s φ T T g = g φ P ~ Seifert PRL (2016) Heat, Work q = q Δφ T, w = w Also: u,v,h,s,g -> U,V,H,S,G for a macroscopic system of interest. par7al molar representa&on C.J., Phys Rev X 7, 011008 (2017)

Deriva&on of e βw = e βδg p U S+E ( x, y;λ ) = 1 exp( βu S+E ) Z S+E ( ζ;λ) = u sys ( x;λ) +U env ( y) + u int ( x, y) ζ=(x,y) includes the piston Assume: (1) Ini&al condi&ons are sampled from p (x,y;λ). (2) Evolu&on is governed by Hamiltonian dynamics, with externally imposed protocol λ(t).

Deriva&on of e βw = e βδg p U S+E ( x, y;λ ) = 1 exp( βu S+E ) Z S+E ( ζ;λ) = u sys ( x;λ) +U env ( y) + u int ( x, y) λ=a trajectory λ=b ζ 0 ζ τ = ζ τ (ζ 0 ) w = τ 0 dt! λ u sys λ = τ 0 dt! U λ S+E λ =U S+E ( ζ τ ;B) U S+E ( ζ 0 ; A)

Deriva&on of e βw = e βδg p ( x, y;λ ) = 1 exp( βu S+E ) Z S+E w =U S+E ζ τ ;B U S+E ( ζ 0 ; A) Z S+E ( λ) = dζ exp( βu S+E ) = dx exp β ( u sys +φ) dy exp βu env = exp βg λ Z env

e βw = dζ 0 = λ=a Z S+E 1 ( A) Deriva&on of e βw = e βδg p w =U S+E ζ τ ;B Z S+E trajectory exp βu S+E ζ 0 ; A A Z S+E ( x, y;λ ) = 1 exp( βu S+E ) Z S+E U S+E ( ζ 0 ; A) ( λ) = exp βg( λ) Z env exp( βw) dζ 0 exp βu S+E ( ζ τ ;B) = Z B S+E A Z S+E λ=b ζ 0 ζ τ = ζ τ (ζ 0 ) = e β Δg

Conjugate (forward & reverse) processes Forward process: A->B Reverse process: A<-B p λ F R t = λ τ t γ F x (0) F x ( τ ) F q γ R x ( τ ) R x (0) R P F [x F t x F 0 ) P R [x R t x R 0 ) = exp βq x t ( F ) compare w/ G.E. Crooks, J Stat Phys 90, 1481 (1998)

Summary C.J., Phys Rev X 7, 011008 (2017) state func&ons U, V, S thermodynamic poten&als H=U+PV, G=H-ST 1 st Law: ΔH = Q+W 2 nd Law: W ΔG?

Summary C.J., Phys Rev X 7, 011008 (2017) p ( x;λ ) = 1 Z exp β u sys +φ Internal energy u sys ( x;λ) Volume Enthalpy Entropy Gibbs free energy v sys ( x) = φ / P h sys = u sys + Pv sys u = u sys v = v sys h = h sys s = ln p g = β 1 ln Z Heat, Work!q =!x x h sys,!w =! λ λ u sys h = u + Pv g = h st Δh = q + w w Δg & e βw = e βδg ρ F (+w) ρ R ( w) = eβ w Δg