Note: Please use the actual date you accessed this material in your citation.

Σχετικά έγγραφα
Note: Please use the actual date you accessed this material in your citation.

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

6.642 Continuum Electromechanics

6.642 Continuum Electromechanics

Note: Please use the actual date you accessed this material in your citation.

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Homework 8 Model Solution Section

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Rectangular Polar Parametric

Electromagnetic Waves I

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Capacitors - Capacitance, Charge and Potential Difference

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Areas and Lengths in Polar Coordinates

ECE 222b Applied Electromagnetics Notes Set 4c

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Example 1: THE ELECTRIC DIPOLE

STEAM TABLES. Mollier Diagram

Spherical Coordinates

[1] P Q. Fig. 3.1

Math221: HW# 1 solutions

the total number of electrons passing through the lamp.

Exercises in Electromagnetic Field

Matrices and Determinants

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Second Order RLC Filters

Magnetically Coupled Circuits

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE101: Resonance in RLC circuits

Oscillatory integrals

Lifting Entry (continued)

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Example Sheet 3 Solutions

m i N 1 F i = j i F ij + F x

Answers to practice exercises

w o = R 1 p. (1) R = p =. = 1

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

3.5 - Boundary Conditions for Potential Flow

Graded Refractive-Index

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3


Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Parametrized Surfaces

Lecture 21: Scattering and FGR

Solutions to Exercise Sheet 5

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

Design Method of Ball Mill by Discrete Element Method

Solutions_3. 1 Exercise Exercise January 26, 2017

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2-1. Power Transistors. Transistors for Audio Amplifier. Transistors for Humidifier. Darlington Transistors. Low VCE (sat) High hfe Transistors

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Uniform Convergence of Fourier Series Michael Taylor

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

A 1 A 2 A 3 B 1 B 2 B 3

Reminders: linear functions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Section 7.6 Double and Half Angle Formulas

Section 8.3 Trigonometric Equations

Sheet H d-2 3D Pythagoras - Answers

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Rectangular Polar Parametric

Trigonometry 1.TRIGONOMETRIC RATIOS

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Higher Derivative Gravity Theories

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Derivation of Optical-Bloch Equations

1 String with massive end-points


Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Advanced Subsidiary Unit 1: Understanding and Written Response

Lecture 26: Circular domains

Microscopie photothermique et endommagement laser

Features. Terminal Contact Enclosure style style form Open type Dust cover Ears on cover Antirotation-tab Ears on top

Strain gauge and rosettes

Προγραμματική Περίοδος

Answer sheet: Third Midterm for Math 2339

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Transcript:

MIT OpenCourseWre http://ocw.mit.edu 6.013/ESD.013J Electromgnetics nd Applictions, Fll 005 Plese use the following cittion formt: Mrkus Zhn, Erich Ippen, nd Dvid Stelin, 6.013/ESD.013J Electromgnetics nd Applictions, Fll 005. (Msschusetts Institute of Technology: MIT OpenCourseWre). http://ocw.mit.edu (ccessed MM DD, YYYY). License: Cretive Commons Attriution- Noncommercil-Shre Alike. Note: Plese use the ctul e you ccessed this mteril in your cittion. For more informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms

6.013, Electromgnetics nd Applictions Prof. Mrkus Zhn Septemer 7 nd 9, 005 Lectures 6 nd 7: Polriztion, Conduction, nd Mgnetiztion I. Experimentl Oservtion: Dielectric Medi A. Fixed Voltge - Switch Closed (v = V o ) As n insulting mteril enters free-spce cpcitor t constnt voltge more chrge flows onto the electrodes; i.e., s x increses, i increses. B. Fixed Chrge - Switch open (i=0) As n insulting mteril enters free spce cpcitor t constnt chrge, the voltge decreses; i.e., s x increses, v decreses. II. Dipole Model of Polriztion A. Polriztion Vector P = N p = Nqd (p = q d dipole moment) N dipoles/volume (P is dipole density) d + q q Prof. Mrkus Zhn Pge 1 of 40

Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge of 40

Q = inside V qnd i d = ρ dv p S V pired chrge or equivlently polriztion chrge density P S V V Q inside V = P i d = i P dv = ρ dv (Divergence Theorem) P= qnd = Np i P = ρ P B. Guss Lw i (ε E) = ρ = ρ + ρ = ρ i P o totl u P u Unpired chrge density; lso clled free chrge density i (ε E + P ) = ρ o u D = ε o E + P Displcement Flux Density i D = ρ u C. Boundry Conditions Prof. Mrkus Zhn Pge 3 of 40

i D = ρ u D i d = ρ u dv n i D D = σ su i P = ρ S V P P i d = ρ P dv n i P P = σ S V sp i (ε o E) = ρ u + ρ P ε o E i d = (ρ u + ρ S V P ) dv n i ε o E E = σ su + σ sp D. Polriztion Current Density Q = qn dv = qndi d = P i d [Amount of Chrge pssing through surfce re element d] di p = Q = P i d t t [Current pssing through surfce re element d] = Jp i d polriztion current density P Jp = t Ampere s lw: x H = Ju + Jp + ε o E t = Ju + P + ε E o t t = Ju + (ε oe + P) t D = Ju + ; D = ε 0 E + P t Prof. Mrkus Zhn Pge 4 of 40

III. Equipotentil Sphere in Uniform Electric Field lim Φ ( r, θ ) = E o r cos θ Φ= E o z = E o r cos θ r Φ (r = R, θ) = 0 Φ (r, θ) = E o r R 3 cos θ r This solution is composed of the superposition of uniform electric field plus the field due to point electric dipole t the center of the sphere: Φ = p cos θ with p = 4 πε E R 4πε r dipole o o o 3 This dipole is due to the surfce chrge distriution on the sphere. σ (r = R, θ) = ε E (r = R, s o r o θ) = ε Φ = ε o E o 1 + R 3 r r R r = r= R = 3ε o E o cos θ 3 cos θ Prof. Mrkus Zhn Pge 5 of 40

IV. Artificil Dielectric E = v, σ d s = ε E = ε v d q = σ s A = ε A v d q C = = v ε A d Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. For sphericl rry of non-intercting spheres (s >> R) 3 3 P=4 π ε R E _ o o i z P z =N p z =4 π εo R Eo N N= 1 s 3 R R P= ε 4 π 3 E= ψ ε 3 o e o E ψ e =4 π s s ψ e (electric susceptiility) D = ε o E + P = ε o 1 + ψ e E = ε E ε r (reltive dielectric constnt) R 3 ε = ε ε = ε 1 +ψ = ε 1 + π r o o e o 4 s Prof. Mrkus Zhn Pge 6 of 40

V. Demonstrtion: Artificil Dielectric Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Prof. Mrkus Zhn Pge 7 of 40

Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. v E= σ s = ε E= d ε v d ε A q ε A q= σ s A= v C= = d v d i = ω C v o V = R s (ε ε ) R 3 o A A C = =4 π ε o d s d R=1.87 cm, s=8 cm, A= (0.4) m, d=0.15m ω =π(50 Hz), R s =100 k Ω, V=566 volts pek C=1.5 pf Prof. Mrkus Zhn Pge 8 of 40

v 0 = ω CR s V =(π) (50) (1.5 x 10-1 ) (10 5 ) 566 = 0.135 volts VI. Plsm Conduction Model (Clssicl) dv + p m = q E m ν v + + + + + + n + dv p m = q E m ν v p = n kt, p = n kt + + k=1.38 x 10-3 joules/ o K Boltzmnn Constnt n A. London Model of Superconductivity [ T 0, ν ± 0 ] dv + m = q E dv + +, m = q E J = q n v, J = q n v + + + + dj + d dv + ( + ) q n = (q n v+ ) = q n + + + + = q n q E + + + = m + m + ω ε p+ + E q E dj = d (q n v ) = q n dv = q n ( ) = q n E m m ω p ε ω = p + q+ n + q n, ω p = m + ε ( ω p = plsm frequency) m ε For electrons: q - =1.6 x 10-19 Couloms, m - =9.1 x 10-31 kg 1 n - =10 0 /m 3, ε = ε o 8.854 x10 frds/m ω = p q n m ε 11 5.6 x10 rd/s Prof. Mrkus Zhn Pge 9 of 40

ω f = p 10 9x10 Hz p π B. Drift-Diffusion Conduction [Neglect inerti] 0 dv + (n+ k T ) q + k T m + = q + E m + ν + v + v + = E n + n+ m + ν + m + ν + n + 0 dv = q E n k T m m ν v ( ) v = q E k T n m ν m ν n n q+ n + q k T J + = q n v + + + = E + n+ m + ν + m + ν + q n v = q n J = m ν E + q k T n m ν ρ + =q + n +, ρ = q n J = ρ µ E ρ + + + D + + J = ρ µ E D ρ µ + = q +, D + = kt m + ν + m + ν + µ = q m ν, D = kt m ν chrge molulities Moleculr Diffusion Coefficients D + D = kt = = therml voltge (5 mv@ T 300 o K) µ + µ q Einstein s Reltion Prof. Mrkus Zhn Pge 10 of 40

C. Drift-Diffusion Conduction Equilirium ( J+ = J = 0) J = 0 = ρ µ E D ρ = ρ µ Φ D ρ + + + + + + + + + J = 0 = ρ µ E D ρ = ρ µ Φ D ρ Φ = D + ρ + = kt (ln ρ + ) ρ + µ + q Φ = D ρ = kt (ln ρ µ q ρ ) ρ + = ρ o e q Φ /kt Boltzmnn Distriutions + Φ ρ = ρ e q /kt o ρ ( Φ =0 ) = ρ ( Φ =0 ) = ρ [Potentil is zero when system is chrge neutrl] + o ρ (ρ + + ρ ) ρ o q /kt + q Φ /kt ρ o q Φ Φ= = = e Φ e = sinh ε ε ε ε kt (Poisson - Boltzmnn Eqution) Smll Potentil Approximtion: q Φ << 1 kt q Φ sinh kt q Φ kt ρ0q Φ Φ =0 ε kt Φ ε kt Φ =0 ; L d = Deye Length ρ o q L d Prof. Mrkus Zhn Pge 11 of 40

D. Cse Studies 1. Plnr Sheet d Φ Φ =0 Φ = A 1 e x/l d + A e x/l d dx L d B.C. Φ (x ± ) = 0 Φ (x = 0) = V o Φ ( x ) = d V e x/l o x > 0 V e +x/l d x < 0 o Prof. Mrkus Zhn Pge 1 of 40

V o e x/l d x > 0 dφ E x = = dx L d V o e x/l d x < 0 L d ε V o e x/l d x > 0 L d x ρ = ε de = dx ε V o e +x/l d x < 0 L d σs (x=0) = ε E x (x = 0 + ) E x (x = 0 ) = ε V o L d. Point Chrge (Deye Shielding) Φ =0 Φ L d d r Φ ( r Φ) =0 dr r /Ld 1 Φ r Φ = A1e + A e r r r r Φ ( r ) = Q e r/l d 4 π ε r = 1 (r Φ) r r L d 0 +r /L d E. Ohmic Conduction J = ρ µ E ρ + + + D + + J = ρ µ E ρ D If chrge density grdients smll, then ρ ± negligile ρ + = ρ = ρ o J = J+ + J = (ρ + µ + ρ µ ) E= ρ o (µ + + µ ) E = σe J = σ E (Ohm s Lw) σ = ohmic conductivity Prof. Mrkus Zhn Pge 13 of 40

F. p n Junction Diode Trnsition region P Chrge density ρ Electric field ε Potentil V V 0 An open-circuited pn diode kt NA N Φ = Φ n Φ p = ln q Figure y MIT OpenCourseWre. n i D Φ (X =0 ) = Φ p + qn x A p ε = Φ n qn x D n ε qn D x n qn A x p Φ = Φ n Φ p = + ε ε = qn D x n (x + x ε n p ) Prof. Mrkus Zhn Pge 14 of 40

Prof. Mrkus Zhn Pge 15 of 40

VII. Reltionship Between Resistnce nd Cpcitnce In Uniform Medi Descried y ε nd σ. q u C= v = S L Di d Ei ds = ε E i d L S E i ds v R= = i L S Ei ds Ji d = σ L E i ds S E i d RC = σ L Ei ds S Ei d ε L L E i d E i ds = ε σ Check: Prllel Plte Electrodes: l R=, σ A ε A C = l RC = ε σ Prof. Mrkus Zhn Pge 16 of 40

Coxil ln πεl R= πσ l, C= ln RC = ε σ Concentric Sphericl 1 1 R 1 R 4 πε R=, C= RC = ε 4 πσ 1 1 σ R 1 R Prof. Mrkus Zhn Pge 17 of 40

VIII. Chrge Relxtion in Uniform Conductors i Ju + ρu = 0 t i E = ρ u ε J u = σ E σ i E + ρ u ρ u σ = 0 + ρ u = 0 t t ε ρ u ε τ = ε σ = dielectric relxtion time e ρ u ρ + u =0 ρ = ρ (r, t=0 ) e t τe u 0 t τ e IX. Demonstrtion 7.7.1 Relxtion of Chrge on Prticle in Ohmic Conductor Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Prof. Mrkus Zhn Pge 18 of 40

σ q i σ u J d= E i d= ε S S dq = dq q t e + =0 q=q ( t=0 ) e τ (τ e = ε σ ) τ e Prtilly Uniformly Chrged Sphere Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge 19 of 40

ρ 0 r < R 1 ρ u (t=0) = Q T = 4 π R 1 3 ρ 0 3 0 r > R 1 ( ) ρ e t τ e r < R (τ = ε σ) ρ u t = 0 1 e 0 r > R 1 Er ( r,t ) = ρ 0 re t e 3 ε τ Qe t e τ τ Qre t e = 0 < r < 4 π ε R 3 R < r < R 4 π ε r 1 Q r > R 4 π ε 0 r 1 R 1 σ su ( r = R ) = ε 0 Er ( r = R + ) ε Er ( r = R ) = Q τ (1 e t e ) 4 π R X. Self-Excited Wter Dynmos A. DC High Voltge Genertion (Self-Excited) Courtesy of Herert Woodson nd Jmes Melcher. Used with permission. Woodson, Herert H., nd Jmes R. Melcher. Electromechnicl Dynmics, Prt : Fields, Forces, nd Motion. Mlr, FL: Krieger Pulishing Compny, 1968. ISBN: 9780894644597. Prof. Mrkus Zhn Pge 0 of 40

From Electromgnetic Field Theory: A Prolem Solving Approch, y Mrkus Zhn, 1987. Used with permission. Courtesy of Herert Woodson nd Jmes Melcher. Used with permission. Woodson, Herert H., nd Jmes R. Melcher. Electromechnicl Dynmics, Prt : Fields, Forces, nd Motion. Mlr, FL: Krieger Pulishing Compny, 1968. ISBN: 9780894644597. Prof. Mrkus Zhn Pge 1 of 40

nc v = C dv v = V 1 e st i 1 1 i 1 nc v = C dv 1 v = V e st i i nc V = CsV nc V = CsV 1 nc i 1 V 1 Cs =0 nc i 1 Cs V Det = 0 nc i nc i =1 s = ± root lows up Cs C nc i t e C Any perturtion grows exponentilly with time B. AC High Voltge Self Excited Genertion From Electromgnetic Field Theory: A Prolem Solving Approch, y Mrkus Zhn, 1987. Used with permission. dv st nci v 1 = C ; v 1 = V 1 e nc v = C dv 3 v = V e st i nc v = C dv 1 v = V e st i 3 3 3 nc i Cs 0 V 1 0 nc Cs V i = 0 Cs 0 nc i V 3 det = 0 Prof. Mrkus Zhn Pge of 40

(nc i ) 3 + Cs ) 3 nc ( = 0 s = i ( 1 C ) 1 3 s = nc C (exponentilly decying solution) 1 i 13 1 ± 3j ( 1) = 1, s = nc i 1 ± 3 j,3 (lows up exponentilly ecuse s rel >0 ; ut lso C oscilltes t frequency s img 0) XI. Conservtion of Chrge Boundry Condition ρu i Ju + = 0 t J d d u i + ρ u dv S V = 0 d n i J J + σ su = 0 Prof. Mrkus Zhn Pge 3 of 40

XII. Mxwell Cpcitor A. Generl Equtions E = _ E t i 0 < x < ( ) x _ E t i < x < 0 ( ) x x x ( ) ( ) ( ) E d = v t =E t + E t J + dσ su n i J = 0 σ ( ) E ( ) v t E ( t ) = t σ E ( t ) σ E ( t ) σ E ( t ) + d ε E t ε E ( ) = 0 ( ) t ( ) ( ) + d ( ) ε E ( t ) ε v t E ( t) = 0 v t E t ε de σ + E t v t dv ε + σ + ( )= σ ( ) + ε Prof. Mrkus Zhn Pge 4 of 40

B. Step Voltge: v ( t ) = V u( t) Then dv =V δ ( t ) (n impulse) At t=0 dv = ε ε + ε de = ε Vδ ( t ) Integrte from t=0 - to t=0 + ε de ε + = ε + ε E = t= 0 + t 0 t= 0 + 0 + ε ε = Vδ ( t ) = t= 0 t= 0 V E ( t = 0 ) = 0 ε = ε ε V ε + E ( t = 0 + ) V E ( t = 0 + ) = ε + ε For t > 0, dv =0 ε de ε + σ + σ + E ( t ) = σ V σ ( ) V t τ E t = + A e σ + σ ε + ε ; τ = σ + σ ( ) = E t = 0 σ V ε + A = V ε A = V σ σ + σ ε + ε ε + ε σ + σ σ ( ) = V E t 1 σ + σ V E ( t ) = E ( t) ( e t τ ) + ε V ε + ε e t τ Prof. Mrkus Zhn Pge 5 of 40

σ ( ) ε E ( ) ε E ( t ) = ε E ( ) su t = t t ε V ε V =E ( t ) ε + ε V (σ ε σ = 1 e (σ + σ E ( ) t ε ) t τ ) ) ( C. Sinusoidl Stedy Stte: v ( t) = Re V e jω t E t = Re E e ( ) jωt ( ) e jωt E E t = Re Conservtion of Chrge Interfcil Boundry Condition σ E t σ E t + d ε E t ( ) ( ) ε E t = 0 ( ) ( ) E σ + j ω ε E σ + j ω ε = 0 E + E = V V E E = E V E = σ + j ω ε σ + ω ε = 0 j σ + ω ε + σ + j ω ε = V E σ + ω = j j ε = 0 ( ) E E V = = j ω ε + σ j ω ε + σ (σ + j ω ε ) + (σ + j ω ε ) σ su = ε E ε E = (εσ εσ ) V (σ + j ω ε ) + (σ + j ω ε ) Prof. Mrkus Zhn Pge 6 of 40

D. Equivlent Circuit (Electrode Are A) I = σ + j ω ε E A= σ ( ) ( ) + j ω ε E A = R V R + R C j ω+1 R C j ω+1 R =, R = σ A σ A ε A ε A C =, C = Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge 7 of 40

XIII. Mgnetic Dipoles Courtesy of Krieger Pulishing. Used with permission. Courtesy of Krieger Pulishing. Used with permission. Prof. Mrkus Zhn Pge 8 of 40

Dimgnetism e I= π ω e ω e ω =, m= I π R i z = π π _ ω _ e R π R iz = i z i r i φ =m ωr e e ωr e i z e (r p) = m m e liner momentum Angulr Momentum L = m R i r v=m R ( ) L is quntized in units of h 34, h=6.6x10 π joule sec (Plnck s constnt) e L eh eh 4 m = = 9.3 x10 mp m m π m 4 π m e ( ) e = e Bohr mgneton m B (smllest unit of mgnetic moment) Imgine ll Bohr mgnetons in sphere of rdius R ligned. Net mgnetic moment is 4 A m = m B π R ρ 3 M 3 0 Totl mss of sphere 0 Avogdro s numer = 6.03 x 10 6 molecules per kilogrm mole moleculr weight For iron: ρ =7.86 x 10 3 kg/m 3, M 0 =56 Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Prof. Mrkus Zhn Pge 9 of 40

For current loop 4 3 A 0 4 A m=i π R =m 0 B πr ρ i = mb R ρ 3 M 0 3 M 0 6-4 4 (6.03 10 ) 3 i= 9.3 10.1 7.86 3 56 For R = 10 cm ( ) 10 = 1.05 x 10 5 Amperes Thus, n ordinry piece of iron cn hve the sme mgnetic moment s current loop of rdius 10 cm of 10 5 Amperes current. B. Mgnetic Dipole Field H = µ _ 0 m 3 cos θ i r + _ sin θ i θ (multiply top & ottom y µ ) 0 4π r µ 0 Electric Dipole Field E = p i r 4 π ε 0 r 3 cos θ + sin θ i θ Anlogy p µ 0 m P= Np M=Nm, N = # of mgnetic dipoles / volume Polriztion Mgnetiztion Prof. Mrkus Zhn Pge 30 of 40

XIV. Mxwell s EQS Equtions with Mgnetiztion A. Anlogy to Mxwell s EQS Equtions with Polriztion EQS MQS i ( ε 0 E ) = ρ u i µ 0 H = i µ 0 M ρ p = i P (Polriztion or pired i P ( ) ( ) chrge density) n i ε 0 ( Eα E ) = n i P P + σ σ sp ρ = i (µ M) (mgnetic chrge m 0 density) ( ) ( ) 0 σ sm = n i µ 0 M M = n i P P ( ) H = J α su n i µ 0 H H = n i µ M M E = t µ 0 (H + M) Prof. Mrkus Zhn Pge 31 of 40

B. MQS Equtions B = µ 0 (H + M) Mgnetic flux density B hs units of Tesls (1 Tesl = 10,000 Guss) i B = 0 n i B B = 0 B E = t H = J v= dλ, λ = B i d (totl flux) S XV. Mgnetic Field Intensity long Axis of Uniformly Mgnetized Cylinder From Electromgnetic Fields nd Energy y Hermnn A. Hus nd Jmes R. Melcher. Used with permission. σ sm = n i µ 0 ( M M ) σ sm (z = d ) = µ 0 M 0 σ sm (z = d ) = µ 0 M 0 xh= J =0 H = Ψ 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 3 of 40

i( µ H ) = µ Ψ = ρ = i( µ M) 0 0 m 0 ρ ( ) ρ m (r ' ) dv ' Ψ = m Ψ r = µ 0 V' 4 πµ 0 r r ' Ψ ( ) R σ (z = d ) πr'dr ' R σ (z = d ) πr 'dr ' sm sm z = + r'=0 4 πµ 0 r r ' r'=0 4 πµ 0 r r ' R R µ 0 Mo πr'dr ' µ 0 Mo πr 'dr' = 1 1 r'=0 r'=0 4 πµ 0 r ' d + z 4 πµ 0 r ' d + z + 1 M 0 d Ψ ( z )= r' + z 1 r'dr ' 1 r' + (z + ) 1 = r' + (z + ) R r' = 0 M 0 d d = R + z z = r' 0 R 1 d r' + z + d R + z + + 1 d z + Courtesy of Krieger Pulishing. Used with permission. 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 33 of 40

d d M z z + 0 d z > 1 1 R + z d R + z + d Ψ H z = = z d d M z 0 z + d + 1 1 < z < d d R + z R + z + d XVI. Toroidl Coil Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 34 of 40

Ni Ni Hi dl =H φ π r = Ni H = 1 1 1 φ πr πr C Φ B π w 4 λ = N Φ =N B π w 4 Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. V = i R = R H π R φ H 1 1 1 H N 1 dλ dv v = =i R + V v = V v + R C (V =Horizontl voltge to oscilloscope ) v 1 dλ If R >> dv v R C λ = R C V V = Verticl voltge to oscilloscope C ω v ( v ) 1 π w V v = N B R C 4 π w = N B 4 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 35 of 40

Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 36 of 40

XVII. Mgnetic Circuits Courtesy of Krieger Pulishing. Used with permission. In iron core: lim B = µ H µ H=0 B finite Hi dl = Hs = Ni H = Ni s Φ = µ 0 H Dd = µ 0 Dd N i s B i d = 0 S µ Dd λ µ 0 Dd λ = N Φ = 0 N i L= = N s i s 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 37 of 40

XVIII. Reluctnce Ni s (length) R = = = Φ µ 0 Dd (permeility)( cross sec tionl re ) [Reluctnce, nlogous to resistnce] A. Reluctnces In Series Courtesy of Krieger Pulishing. Used with permission. s R 1 = s 1, R = µ 1 D 1 µ D Ni Φ = R1 + R H i dl =H 1 s 1 + H s =Ni C 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 38 of 40

Φ = µ H D = µ H D 1 1 1 µ Ni µ 1 1 Ni H 1 = ; H = µ s + µ s µ s + µ s 1 1 1 1 1 1 B. Reluctnces In Prllel Ni H dl =H s =H s =Ni H =H = s i 1 1 C Φ = (µ H + µ ( 1 ) = Ni R + R H ) D = R R Ni (P + P ) 1 1 1 1 1 1 1 P 1 = ; P = R 1 R 1 P = R [Permences, nlogous to Conductnce] XIX. Trnsformers (Idel) Courtesy of Krieger Pulishing. Used with permission. 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 39 of 40

A. Voltge/Current Reltionships N i N i l Φ = 1 1 ; R = R µ A Another wy: i C H dl =Hl =N 1i 1 N i N i N i H= 1 1 l µ A Φ = µ HA = (N i N i ) = N i N i 1 1 l R 1 1 λ =N Φ = µ A (N i N N i ) =L i Mi 1 1 1 1 1 1 1 l λ =N Φ = µ A (N N i N i ) = Mi + L i 1 1 1 l µ A L 1 =N1 L 0, L =N L 0, M=N1 N L 0, L 0 = = 1 l R M= L L 1 1 dλ di di di di v = 1 1 = L M =NL N 1 1 N 1 1 0 1 dλ di 1 di di 1 di v = = +M L =N L +N N 0 1 v 1 = N 1 v N i 1 N lim H 0 N i = N i = 1 1 µ i N v i 1 1 =1 v i 1 Courtesy of Hermnn A. Hus nd Jmes R. Melcher. Used with permission. 6.013, Electromgnetic Fields, Forces, nd Motion Lecture 6 & 7 Prof. Mrkus Zhn Pge 40 of 40