Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

Σχετικά έγγραφα
Supporting information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Electronic Supplementary Information

Electronic Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Experimental section

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supplementary Materials

Supplementary material

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information. Experimental section

SUPPORTING INFORMATION

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

SUPPLEMENTARY MATERIAL

ELECTRONIC SUPPLEMENTARY MATERIAL. Figure 1S.- Chemical structure of: a) alizarin; b) purpurin; c) pseudopurpurin; d) xanthopurpurin; e) quinizarin.

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Extended dissolution studies of cellulose in imidazolium based ionic liquids

SUPPORTING INFORMATION

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Electronic Supplementary Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information: Design principles for α-tocopherol analogues

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Fast healing of polyurethane thermosets using. reversible triazolinedione chemistry and shapememory

Supporting Information

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Table of Contents 1 Supplementary Data MCD

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Selective mono reduction of bisphosphine

Supporting Information

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supplementary Information

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

SUPPORTING INFORMATION

Electronic Supplementary information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting information

TÜV MANAGEMENT SERVICE ISO

Supporting Information

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

H-NMR (300 MHz, DMSO-d6): δ 5.23 (s, 1H), (m, 2H), (m, 2H), 3.04 (s, 9H).

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Available online at shd.org.rs/jscs/

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

phase: synthesis of biaryls, terphenyls and polyaryls

Available online at

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supporting Information

Electronic Supplementary Information

Butadiene as a Ligand in Open Sandwich Compounds

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

WANG Cheng-yun * XU Rong YANG Zuo-jun WU Tou-ming XIE Tang-tang ZHU Nai-qing GC-MS. China Pulp & Paper Vol. 32 No

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

SUPPORTING INFORMATION

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 204 Supporting information for publication Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers Bhaskar Garg, Tanuja Bisht and Yong-Chien Ling* Contents: Characterization data S2-S3 H and 3 C NMR spectrum of TBC S4-S5 H and 3 C NMR spectrum of THC S6-S7 H and 3 C NMR spectrum of TIBC S8-S9 H and 3 C NMR spectrum of DBP S0-S H and 3 C NMR spectrum of DP S2-S3 H and 3 C NMR spectrum of DIBP S4-S5 S

Tributyl citrate (TBC) H NMR (600 MHz, DMS-d 6, 298K): δ = 4.58 (bs, H, -H), 4.02 (t, 2H), 3.96 (t, 4H), 2.84(d, 2H, J = 5.2 Hz, -CH 2 ), 2.70 (d, 2H, J = 5.3 Hz, -CH 2 ),.48-.54 (m, 6H),.26-.37 (m, 6H), and 0.85(t, 9H); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 72.50, 69.27 (C=), 72.9 (C), 64.53, 63.78 (--CH 2 ), 43.05, 34.74, 30.4, 8.62 (-CH 2 ), and 3.5 (-CH 3 ). Triethyl citrate (TEC) H NMR (600 MHz, DMS-d 6, 298K): δ = 6.0 (bs, H, -H), 4.09 (t, 2H), 3.99 (t, 4H), 2.80 (d, 2H, J = 5.2 Hz, -CH 2 ), 2.66 (d, 2H, J = 5.2 Hz, -CH 2 ), and. (t, 9H); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 73.02, 69.75 (C=), 73.40 (C), 6.24, 60.49 (--CH 2 ), 43.38 (-CH 2 ), and 4.4 (-CH 3 ). Trimethyl citrate (TMC) H NMR (600 MHz, DMS-d 6, 298K): δ = 5.88 (bs, H, -H), 3.76 (s, 3H, -CH 3 ), 3.65 (s, 3H, -CH 3 ), 2.78 (d, 2H, J = 5.3 Hz, -CH 2 ), and 2.9 (d, 2H, J = 5.3 Hz, -CH 2 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 75.52, 70.05 (C=), 73.39 (C), 55.02, 53.50 (-CH 3 ), and 43.40 (-CH 3 ). Tri-n-octyl citrate (TC) H NMR (600 MHz, DMS-d 6, 298K): δ = 4.04 (t, 2H), 3.96 (t, 4H), 2.8 (d, 2H, J = 5.6 Hz, -CH 2 ), 2.70 (d, 2H, J = 5.6 Hz, -CH 2 ),.46-.5 (m, 2H),.29 (br, 24H), and 0.85 (t, 9H); 3 C NMR (50 MHz, DMSd 6, 298K): δ = 74.25, 72.44 (C=), 72.46 (C), 64.75, 60.79 (--CH 2 ), 42.67, 32.56, 3.3, 28.05, 27.94, 25.25, 25.07, 22.22 (-CH 2 ), and 3.77 (-CH 3 ). Tri-n-hexyl citrate (THC) H NMR (600 MHz, DMS-d 6, 298K): δ = 4.0 (t, 2H), 3.95 (t, 4H), 2.83 (d, 2H, J = 5.5 Hz, -CH 2 ), 2.69 (d, 2H, J = 5.6 Hz, -CH 2 ),.50-.55 (m, 6H),.24 (br, 8H), and 0.84 (t, 9H); 3 C NMR (50 MHz, DMSd 6, 298K): δ = 72.44, 69.4 (C=), 72.86 (C), 64.76, 64.03 (--CH 2 ), 43.0, 32.56, 30.96, 28.06, 25.08, 22.05 (-CH 2 ), and 3.77 (-CH 3 ). Triisobutyl citrate (TIBC) H NMR (600 MHz, DMS-d 6, 298K): δ = 5. (bs, H, -H), 3.8 (d, 2H, J = 6.4 Hz, --CH 2 ), 3.7 (d, 4H, J = 6.4 Hz, --CH 2 ), 2.87 (d, 2H, J = 5.2 Hz, -CH 2 ), 2.76 (d, 2H, J = 5. Hz, -CH 2 ),.79-.87 (m, 2H, - CH-),.56-.6 (m, H, -CH-), 0.84 (d, 2H, J = 6.6 Hz, -CH 3 ), and 0.79 (d, 6H, J = 6.6 Hz, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 72.74, 69.6 (C=), 73.20 (C), 7.3, 70.3 (--CH 2 ), 43.05 (- CH 2 ), 30.74, 27.53 (-CH-), 9.22 and 9.00 (-CH 3 ). Triisopropyl citrate (TIPC) H NMR (600 MHz, DMS-d 6, 298K): δ = 4.88-4.9 (m, H, --CH-), 4.8-4.85 (m, 2H, --CH-), 2.85 (d, 2H, J = 5.5 Hz, -CH 2 ), 2.79 (d, 2H, J = 5.5 Hz, -CH 2 ),.8 (d, 6H, J = 6.4 Hz, -CH 3 ), and.4 (d, 2H, J = 6.4 Hz, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 74.64, 72.33 (C=), 72.9 (C), 68.43, 67.40 (--CH-), 42.87 (-CH 2 ), 2.62 and 2.57 (-CH 3 ). Tri-n-active amyl citrate (TAAC) H NMR (600 MHz, DMS-d 6, 298K): δ = 4.32 (bs, H, -H), 3.8 (br, 2H, --CH 2 ), 3.7 (br, 4H, --CH 2 ), 2.86 (d, 2H, J = 5.3 Hz, -CH 2 ), 2.74 (d, 2H, J = 5.3 Hz, -CH 2 ),.58-.65 (m, 2H, -CH-),.35-.39 (m, 6H, -CH 2 -),.00-.02 (m, H, -CH-), 0.83 (t, 9H, -CH 3 ), and 0.78 (d, 9H, J = 4.9 Hz, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 72.5, 69.48 (C=), 72.95 (C), 68.5, 66.04 (--CH 2 ), 42.95, (-CH 2 ), 37.3, 33.69 (-CH-), 25.59 (-CH 2 ), 6.09 and 0.99 (-CH 3 ). Dibutyl phthalate (DBP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.6 (dd, 2H, J = 8.7, 3.2 Hz), 7.5 (dd, 2H, J = 8.7, 3.2 Hz), 4.8 (t, 4H, --CH 2 ),.55-.58 (m, 4H, -CH 2 ),.28-.32 (m, 4H, -CH 2 ), 0.82 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 66.97 (C=), 3.94 (C), 3.27, 28.63 (CH, Aromatic), 64.96 (--CH 2 ), 30.3, 8.74 (-CH 2 ), 3.37 (-CH 3 ). Diethyl phthalate (DEP) S2

H NMR (600 MHz, DMS-d 6, 298K): δ = 7.6 (dd, 2H, J = 8.5, 2.9 Hz), 7.5 (dd, 2H, J = 8.5, 2.9 Hz), 4.27 (t, 4H, --CH 2 ),.23 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 67.09 (C=), 32.35 (C), 3.45, 28.75 (CH, Aromatic), 6.4 (--CH 2 ), 3.87 (-CH 3 ). Dimethyl phthalate (DMP) H NMR (600 MHz, DMS-d6, 298K): δ = 8. (dd, 2H, J = 8.6, 3. Hz), 7.7 (dd, 2H, J = 8.6, 3. Hz), 3.87 (s, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d6, 298K): δ = 68.32 (C=), 32.87 (C), 3.97, 28.3 (CH, Aromatic), 3.8 (-CH 3 ). Di-n-octyl phthalate (DP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.6 (dd, 2H, J = 8.8, 3. Hz), 7.5 (dd, 2H, J = 8.8, 3. Hz), 4.5 (t, 4H, --CH 2 ),.57-.6 (m, 4H, -CH 2 ),.7-.28 (m, 20H, -CH 2 ), 0.78 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 68.68 (C=), 3.84 (C), 3.00, 28.47 (CH, Aromatic), 65.0 (-- CH 2 ), 3.30, 28.77, 28.72, 28.04, 25.60, 22. (-CH 2 ), 3.6 (-CH 3 ). Di-n-hexyl phthalate (DHP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.6 (dd, 2H, J = 8.6, 3. Hz), 7.5 (dd, 2H, J = 8.6, 3. Hz), 4.3 (t, 4H, --CH 2 ),.50-.55 (m, 4H, -CH 2 ),.5-.8 (m, 2H, -CH 2 ), 0.79 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 68.69 (C=), 3.97 (C), 3.65, 28.32 (CH, Aromatic), 64.89 (--CH 2 ), 3.38, 28.89, 25.60, 22.03 (-CH 2 ), 3.70 (-CH 3 ). Diisobutyl phthalate (DIBP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.7 (dd, 2H, J = 8.9, 3.2 Hz), 7.6 (dd, 2H, J = 8.9, 3.2 Hz), 3.99 (d, J = 6.6 Hz, 4H, --CH 2 ),.90-.95 (m, 2H, -CH-), 0.88 (d, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 66.80 (C=), 3.87 (C), 3.22, 28.57 (CH, Aromatic), 7.02 (--CH 2 ), 27.20 (CH, Aliphatic), 8.82 (-CH 3 ). Di-n-active amyl phthalate (DAAP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.7 (dd, 2H, J = 8.8, 3.0 Hz), 7.6 (dd, 2H, J = 8.8, 3.0 Hz), 4.07-4.0 (m, 2H, --CH 2 ), 3.99-4.02 (m, 2H, --CH 2 ),.68-.73 (m, 2H, -CH),.37-.43 (m, 4H, -CH 2 ), 0.88 (d, 6H, -CH 3 ), 0.84 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 66.90 (C=), 3.96 (C), 3.27, 28.62 (CH, Aromatic), 69.59 (--CH 2 ), 37.2 (CH, Aliphatic), 25.55 (-CH 2 ), 6.04, 0.90 (-CH 3 ). Di(2-ethylhexyl) phthalate (DEHP) H NMR (600 MHz, DMS-d 6, 298K): δ = 7.7 (dd, 2H, J = 8.8, 3. Hz), 7.5 (dd, 2H, J = 8.8, 3. Hz), 4.2-4.23 (m, 4H, --CH 2 ),.6-.65 (m, 2H, -CH),.32-.34 (q, 4H, -CH 2 ),.23-.32 (m, 2H, -CH 2 ), 0.85 (t, 6H, -CH 3 ), 0.80 (t, 6H, -CH 3 ); 3 C NMR (50 MHz, DMS-d 6, 298K): δ = 67.8 (C=), 32.65 (C), 32.23, 28.32 (CH, Aromatic), 66.9 (--CH 2 ), 39.55 (CH, Aliphatic), 29.35, 28.62, 23.9, 23.05 (-CH 2 ), 4.22, 2.36 (-CH 3 ). S3

H Figure S. H NMR spectrum of tributyl citrate (TBC) S4

H Figure S2. 3 C NMR spectrum of tributyl citrate (TBC) S5

H Figure S3. H NMR spectrum of trihexyl citrate (THC) S6

H Figure S4. 3 C NMR spectrum of trihexyl citrate (THC) S7

H Figure S5. H NMR spectrum of triisobutyl citrate (TIBC) S8

H Figure S6. 3 C NMR spectrum of triisobutyl citrate (TIBC) S9

Figure S7. H NMR spectrum of dibutyl phthalate (DBP) S0

Figure S8. 3 C NMR spectrum of dibutyl phthalate (DBP) S

Figure S9. H NMR spectrum of dioctyl phthalate (DP) S2

Figure S0. 3 C NMR spectrum of dioctyl phthalate (DP) S3

Figure S. H NMR spectrum of diisobtyl phthalate (DIBP) S4

Figure S2. 3 C NMR spectrum of diisobtyl phthalate (DIBP) S5