/ Function Image Compression FIC FIC

Σχετικά έγγραφα
ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

ER-Tree (Extended R*-Tree)

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Buried Markov Model Pairwise

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Detection and Recognition of Traffic Signal Using Machine Learning

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Development of a basic motion analysis system using a sensor KINECT

A Study on Segmentation of Artificial Grayscale Image for Vector Conversion

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems


Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Durbin-Levinson recursive method

Evolutive Image Coding

ΕΓΓΡΑΦΟ ΕΡΓΑΣΙΑΣ ΤΩΝ ΥΠΗΡΕΣΙΩΝ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. Εκθεση χώρας - Κύπρος {COM(2015) 85 final}

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Elements of Information Theory

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

Additional Results for the Pareto/NBD Model

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Japanese Fuzzy String Matching in Cooking Recipes

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Περιεχόµενα. 1. Γενικό πλαίσιο. 2. Η ΚΑΠ σήµερα. 3. Γιατί χρειαζόµαστε τη µεταρρύθµιση; 4. Νέοι στόχοι, µελλοντικά εργαλεία και πολιτικές επιλογές

Quick algorithm f or computing core attribute

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

; +302 ; +313; +320,.

Εικονικά Περιβάλλοντα Μάθησης για Παιδιά με Αυτισμό: Επισκόπηση Πεδίου και Προτάσεις Σχεδιασμού

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Motion analysis and simulation of a stratospheric airship

Simplex Crossover for Real-coded Genetic Algolithms

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Mapping Textures on 3D Geometric Model Using Reflectance Image

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

HCI - Human Computer Interaction Σχεδιασμός Διεπαφής. ΓΤΠ 61 Βαµβακάρης Μιχάλης 09/12/07

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Ψηφιακή Επεξεργασία Φωνής

High order interpolation function for surface contact problem

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Reading Order Detection for Text Layout Excluded by Image

Area Location and Recognition of Video Text Based on Depth Learning Method

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

"Προστασία και Ανόρθωση Υδατικών και Δασικών Πόρων Νομού Ροδόπης"

ECE 468: Digital Image Processing. Lecture 8

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

Assalamu `alaikum wr. wb.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Local Approximation with Kernels

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

C F E E E F FF E F B F F A EA C AEC

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Η οικολογία της σχολικής τάξης ΙΙ

Research on Economics and Management

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

EE512: Error Control Coding

Applying Markov Decision Processes to Role-playing Game

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Auto Daylight Synchro (Αυτόματος Συγχρονισμός Φωτός ημέρας) Clear Photo LCD

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Expansion formulae of sampled zeros and a method to relocate the zeros

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

Approximation of distance between locations on earth given by latitude and longitude

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ


HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Indexing Methods for Encrypted Vector Databases

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Transcript:

/ Function Image Compression FIC FIC FIC Summary As the need to use various devices increases, we need to produce the compressed image at different resolutions. The development of an image compression format that compression and resolution conversion can be performed simultaneously is desired. In this research, we suggest a lossless image compression format called Function Image Compression (FIC). Since FIC has function representation of an image data, resolution conversion can be easily performed because resampling is easy once it performs function representation. We show the results of zooming images, calculation costs for resolution conversion, and image compression ratios for the evaluation of FIC system. Key words: Lossless compression, Resolution conversion, Function representation, Shifted linear interpolation 1. PC / 1),2) Study on a Lossless Image Compression Format Suitable for Resolution Conversion by Masaki KITAGO and Ichiro HAGIWARA (Member) (Tokyo Institute of Technology Graduate School of Science and Engineering). JPEG TIFF PNG 3),4) JPEG 2

(a) Original image (b) JPEG + Bicubic (c) FIC 1 Fig. 1 Resolution conversion Function Image Compression FIC FIC FIC 1 (a) (b) (c) 150 150 [pixel] 3 450 450[pixel] (b) JPEG (c) FIC (b) JPEG (c) FIC 2 3 FIC 4 FIC 2. 1),2) B-spline 5),6) 7),8) 9),10) 11),12) 13),14) 15) LZ LZW LZ LHA ZIP 16) Range Coder 17) Block-Sorting 18) Prediction by Partial Matching PPM 19) 21) JPEG-LS 22),23) 3

35 1 2006 2 FIC Fig. 2 ThestructureofFICsystem JPEG2000 24),25) Lossless JPEG2000 24),25) Pixel Live 26) JPEG2000 Pixel Live 1200% 2/3 3. FIC FIC FIC 2 FIC 7),8) PPM 19) 21) 3.1 FIC 3.2 PPM 3.1 FIC f(x) T f[n] =f(nt ) f L (x) f L (x) = f[n] ϕ( x n), (1) T n Z 3 ϕ(x) 3 Fig. 3 Shifted linear interpolation { 1 x, x 1 ϕ(x) = 0, x > 1. (2) f S (x) f S (x) = ( x ) c[n] ϕ T n τ, (3) n Z τ {c[n] n Z} c[n] = τ 1 c[n 1] + f[n]. (4) 1 τ 1 τ 3 3 τ =0.4 τ 0.21 7) FIC 3 (4) c[n] {d[n] n Z} d[n] = c[n]+0.5, (5) Floor Function d[n] FIC {D[n] n Z} D[n] =d[n] d[n 1]. (6) FIC τ 0.21 RGB 4

4 FIC Fig. 4 Distribution of FIC coefficients (Before processing) 3.2 (6) FIC D[n] PPM 19) 21) FIC D[n] Lena 256 256 [pixel] FIC 4 FIC FIC 0 0 100 100 D[n] d[n] 0 255 Lena FIC 1. 1 2 2. D[n] > 255 d[n] < 0 d[n] > 255 D[n] 2 1 128 3. D[n] = 128 2 0 1 128 4. 2. D[n] < 0 D[n] 256 1 128 2 0 5. D[n] 1 1. 1 128 2 5 FIC Fig. 5 Distribution of FIC coefficients (After processing) (a) 2 0 2 D[n] (b) 2 0 d[n] > 255 256 D[n] 2. 1. d[n] > 255 256 D[n] 2 FIC 1 2 Lena 256 256[pixel] 2 197,376 1 197,376 2 244 1 5 FIC FIC 0, 255 0, 255 2 128 FIC 1 2 1 5 1 6 Lena 256 256 [pixel] 6 N 1 entropy = p i log 2, (7) p i=1 i N p i 1 5.64 Lena 7.30 6 4.95 5

35 1 2006 3 1 2 PPM FIC 6 Lena 256 256 Fig. 6 Color distribution of Lena (256 256) PPM FIC RGB FIC FIC R1, G1, B1,R2,G2,B2,... RGB 4. FIC Pentium4 3.2GHz, 2GB RAM, Windows XP 4.1 FIC 7 (a) Lena 32 32 [pixel] 8 256 256 [pixel] (b) (c) (d) (e) (f) FIC (b) (c) (d) (a) Original image (b) Nearest neighbor (c) Biline (d) Bicubic (e) Shifted linear (f) FIC 7 Fig. 7 Zooming images 6

1 [s] Table 1 CPU-time [s] Lena (256 256) Nearest Bilinear Bicubic Shifted FIC 1024 1024 0.147 0.169 0.275 0.234 0.215 2048 2048 0.566 0.644 1.031 0.801 0.788 Lena (512 512) 1024 1024 0.197 0.244 0.375 0.322 0.256 2048 2048 0.656 0.766 1.200 1.031 0.894 (a) Lena (b) Peppers (c) Fruits (d) Airplane (e) Barbara (f) Goldhill Fig. 8 8 Original images for the evaluation of compression ratio (e) (f) FIC (e) (f) FIC (d) (f) FIC FIC FIC 4.2 FIC 1 Lena 256 256 [pixel] Lena 512 512 [pixel] 1024 1024[pixel] 2048 2048[pixel] FIC FIC FIC FIC 4.3 FIC 8 (a) Lena (b) Peppers (c) Fruits (d) Airplane (e) Barbara (f) Goldhill (a) (d) 512 512 [pixel] (e) (f) 720 576 [pixel] 2 8 LZW TIFF ZIP 7

35 1 2006 2 [%] Table 2 Lossless compression ratio [%] Lena Peppers Fruits Airplane Barbara Goldhill (512 512) (512 512) (512 512) (512 512) (720 576) (720 576) TIFF(LZW) 84.4 46.0 87.9 18.6 47.5 69.0 TIFF(ZIP) 71.7 35.3 77.6 17.3 36.5 60.4 PNG 67.7 38.0 71.0 20.8 36.1 65.4 JPEG-LS 56.6 48.6 63.7 45.1 80.7 58.6 JPEG2000 56.6 55.2 47.9 47.3 85.3 54.1 FIC 67.4 34.6 67.8 34.6 66.7 62.0 TIFF PNG JPEG JPEG-LS JPEG2000 FIC = 100 [%]. (8) LZW TIFF ZIP TIFF PNG Peppers Airplane Barbara Lena Fruits JPEG-LS JPEG2000 Lena Fruits Airplane Goldhill Barbara FIC Peppers 5. Function Image Compression FIC FIC FIC FIC 6. FIC 0 255 FIC 3.2 D[n] d[n] D[n] 1) P. Thévenaz, T. Blu, and M. Unser: Image Interpolation and Resampling, Handbook of Medical Imaging, Processing and Analysis, I.N. Bankman, Ed., Academic Press, San Diego, CA, USA, pp.393 420 (2000). 2) P. Thévenaz, T. Blu, andm. Unser: InterpolationRevisited, IEEE Transaction on Medical Imaging, Vol.19, No.7, pp.739 758 Jul. (2000). 3) R.C. Gonzalez and R.E. Woods: Digital Image Pro- 8

cessing Second Edition. Prentice Hall, New Jersey, USA (2002). 4) G.K. Wallace: The JPEG Still Picture Compression Standard, Communications of the ACM, Vol.34, No.4, pp.30 44 Apr. (1991). 5) M. Unser: Splines: A Perfect Fit for Signal and Image Processing, IEEE Signal Processing Magazine, Vol.16, No.6, pp.22 38 Nov. (1999). 6) M. Unser: Splines: A Perfect Fit for Medical Imaging, In Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI 02), Vol.4684, Part I, pp.225 236, San Diego, CA, USA Feb. (2002). 7) T. Blu, P. Thévenaz, and M. Unser: How a Simple Shift Can Significantly Improve the Performance of Linear Interpolation, In Proceedings of the 2002 IEEE International Conference on Image Processing (ICIP 02), pp.iii. 377 III. 380, Rochester, NY, USA (Sep. 2002). 8) T. Blu, and M. Unser: The Telecommunications Advancement Foundation, Vol.18, No.7, pp.358 365 Jan. (2003). 9) S. Battiato, G. Gallo, and F. Stanco: A New Edge- Adaptive Zooming Algorithm for Digital Images, In Proceedings of 4th IASTED International Conference Signal Processing and Communications (SPC 2000), pp.144 149, Marbella, Spain Sep. (2000). 10) X. Li and M.T. Orchard: New Edge-Directed Interpolation, IEEE Transactions on Image Processing, Vol.10, No.10, pp.1521 1527 Oct. (2001). 11) B.S. Morse and D. Schwartzwald: Isophote-Based Interpolation, In Proceedings of the 1998 IEEE International Conference on Image Processing (ICIP 98), Vol.3, pp.227 231, Chicago, Illinois, USA, Oct. (1998). 12) B.S. Morse and D. Schwartzwald: Image Magnification Using Level-Set Reconstruction, In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 01), Vol.1, pp.333 340, Kauai, HI, USA Dec. (2001). 13) X. Yu, B.S. Morse, and T.W. Sederberg: Image Reconstruction Using Data-Dependent Triangulation, IEEE Computer Graphics and Applications, Vol.21, No.3, pp.62 68 May/Jun. (2001). 14) D. Su and P. Willis: Image Interpolation by Pixel Level Data-Dependent Triangulation, Computer Graphics Forum, Vol.23, No.2, pp.189 201 Jun. (2004). 15) J. Sun, N.N. Zheng, H. Tao, and H.Y. Shum: Image Hallucination with Primal Sketch Priors, In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 03), Vol.2, pp.729 736, Madison, WI, USA, Jun. (2003). 16) LHA ZIP (2003). 17) G.N.N. Martin: Range encoding: an algorithm for removing redundancy from a digitised message, Video & Data Recording Conference, Southampton, Jul. (1979). 18) M. Burrows and D.J. Wheeler: A Block-sorting Lossless Data Compression Algorithm, Digital SRC Research Report, No.124, Digital Systems Research Center, Palo Alto, CA, USA, May (1994). 19) J.G. Cleary and I.H. Witten: Data Compression Using Adaptive Coding and Partial String Matching, IEEE Transactions on Communications, Vol.32, No.4, pp.396 402, Apr. (1984). 20) D. Shkarin: PPM: one step to practicality, In Proceedings of the IEEE Data Compression Conference (DCC 02), pp.202 211, Snowbird, Utah, USA, Apr. (2002). 21) M. Drinic, D. Kirovski, and M. Potkonjak: PPM Model Cleaning, In Proceedings of the IEEE Data Compression Conference (DCC 03), pp.163 172, Snowbird, Utah, USA, Mar. (2003). 22) M.J. Weinberger, G. Seroussi, and G. Sapiro: LOCO-I: A Low Complexity, Context-Based, Lossless Image Compression Algorithm, In Proceedings of the IEEE Data Compression Conference (DCC 96), pp.140 149, Snowbird, Utah, USA, Mar. (1996). 23) M.J. Weinberger and G. Seroussi: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS, IEEE Transactions on Image Processing, Vol.9, pp.1309 1324, Aug. (2000). 24) M.W. Marcellin, M.J. Gormish, A. Bilgin, and M.P. Boliek: An Overview of JPEG-2000, Data Compression Conference 2000, pp.523 544 (2000). 25) A.N. Skodras, C.A. Christopoulos, and T. Ebrahimi: JPEG2000: The Upcoming Still Image Compression Standard, In Proceedings of the 11th Portuguese Conference on Pattern Recognition, pp.359 366, Porto, Portugal, May (2000). 26) DAM VFZ. BP (2001). 2005 4 7 2002 2004 2005 8 Universityof California, Irvine, Computer Graphics Lab Surface Reconstruction, GeometryCompression ACM 1970 1972 4 1996 3 1996 4 9