/ Function Image Compression FIC FIC FIC Summary As the need to use various devices increases, we need to produce the compressed image at different resolutions. The development of an image compression format that compression and resolution conversion can be performed simultaneously is desired. In this research, we suggest a lossless image compression format called Function Image Compression (FIC). Since FIC has function representation of an image data, resolution conversion can be easily performed because resampling is easy once it performs function representation. We show the results of zooming images, calculation costs for resolution conversion, and image compression ratios for the evaluation of FIC system. Key words: Lossless compression, Resolution conversion, Function representation, Shifted linear interpolation 1. PC / 1),2) Study on a Lossless Image Compression Format Suitable for Resolution Conversion by Masaki KITAGO and Ichiro HAGIWARA (Member) (Tokyo Institute of Technology Graduate School of Science and Engineering). JPEG TIFF PNG 3),4) JPEG 2
(a) Original image (b) JPEG + Bicubic (c) FIC 1 Fig. 1 Resolution conversion Function Image Compression FIC FIC FIC 1 (a) (b) (c) 150 150 [pixel] 3 450 450[pixel] (b) JPEG (c) FIC (b) JPEG (c) FIC 2 3 FIC 4 FIC 2. 1),2) B-spline 5),6) 7),8) 9),10) 11),12) 13),14) 15) LZ LZW LZ LHA ZIP 16) Range Coder 17) Block-Sorting 18) Prediction by Partial Matching PPM 19) 21) JPEG-LS 22),23) 3
35 1 2006 2 FIC Fig. 2 ThestructureofFICsystem JPEG2000 24),25) Lossless JPEG2000 24),25) Pixel Live 26) JPEG2000 Pixel Live 1200% 2/3 3. FIC FIC FIC 2 FIC 7),8) PPM 19) 21) 3.1 FIC 3.2 PPM 3.1 FIC f(x) T f[n] =f(nt ) f L (x) f L (x) = f[n] ϕ( x n), (1) T n Z 3 ϕ(x) 3 Fig. 3 Shifted linear interpolation { 1 x, x 1 ϕ(x) = 0, x > 1. (2) f S (x) f S (x) = ( x ) c[n] ϕ T n τ, (3) n Z τ {c[n] n Z} c[n] = τ 1 c[n 1] + f[n]. (4) 1 τ 1 τ 3 3 τ =0.4 τ 0.21 7) FIC 3 (4) c[n] {d[n] n Z} d[n] = c[n]+0.5, (5) Floor Function d[n] FIC {D[n] n Z} D[n] =d[n] d[n 1]. (6) FIC τ 0.21 RGB 4
4 FIC Fig. 4 Distribution of FIC coefficients (Before processing) 3.2 (6) FIC D[n] PPM 19) 21) FIC D[n] Lena 256 256 [pixel] FIC 4 FIC FIC 0 0 100 100 D[n] d[n] 0 255 Lena FIC 1. 1 2 2. D[n] > 255 d[n] < 0 d[n] > 255 D[n] 2 1 128 3. D[n] = 128 2 0 1 128 4. 2. D[n] < 0 D[n] 256 1 128 2 0 5. D[n] 1 1. 1 128 2 5 FIC Fig. 5 Distribution of FIC coefficients (After processing) (a) 2 0 2 D[n] (b) 2 0 d[n] > 255 256 D[n] 2. 1. d[n] > 255 256 D[n] 2 FIC 1 2 Lena 256 256[pixel] 2 197,376 1 197,376 2 244 1 5 FIC FIC 0, 255 0, 255 2 128 FIC 1 2 1 5 1 6 Lena 256 256 [pixel] 6 N 1 entropy = p i log 2, (7) p i=1 i N p i 1 5.64 Lena 7.30 6 4.95 5
35 1 2006 3 1 2 PPM FIC 6 Lena 256 256 Fig. 6 Color distribution of Lena (256 256) PPM FIC RGB FIC FIC R1, G1, B1,R2,G2,B2,... RGB 4. FIC Pentium4 3.2GHz, 2GB RAM, Windows XP 4.1 FIC 7 (a) Lena 32 32 [pixel] 8 256 256 [pixel] (b) (c) (d) (e) (f) FIC (b) (c) (d) (a) Original image (b) Nearest neighbor (c) Biline (d) Bicubic (e) Shifted linear (f) FIC 7 Fig. 7 Zooming images 6
1 [s] Table 1 CPU-time [s] Lena (256 256) Nearest Bilinear Bicubic Shifted FIC 1024 1024 0.147 0.169 0.275 0.234 0.215 2048 2048 0.566 0.644 1.031 0.801 0.788 Lena (512 512) 1024 1024 0.197 0.244 0.375 0.322 0.256 2048 2048 0.656 0.766 1.200 1.031 0.894 (a) Lena (b) Peppers (c) Fruits (d) Airplane (e) Barbara (f) Goldhill Fig. 8 8 Original images for the evaluation of compression ratio (e) (f) FIC (e) (f) FIC (d) (f) FIC FIC FIC 4.2 FIC 1 Lena 256 256 [pixel] Lena 512 512 [pixel] 1024 1024[pixel] 2048 2048[pixel] FIC FIC FIC FIC 4.3 FIC 8 (a) Lena (b) Peppers (c) Fruits (d) Airplane (e) Barbara (f) Goldhill (a) (d) 512 512 [pixel] (e) (f) 720 576 [pixel] 2 8 LZW TIFF ZIP 7
35 1 2006 2 [%] Table 2 Lossless compression ratio [%] Lena Peppers Fruits Airplane Barbara Goldhill (512 512) (512 512) (512 512) (512 512) (720 576) (720 576) TIFF(LZW) 84.4 46.0 87.9 18.6 47.5 69.0 TIFF(ZIP) 71.7 35.3 77.6 17.3 36.5 60.4 PNG 67.7 38.0 71.0 20.8 36.1 65.4 JPEG-LS 56.6 48.6 63.7 45.1 80.7 58.6 JPEG2000 56.6 55.2 47.9 47.3 85.3 54.1 FIC 67.4 34.6 67.8 34.6 66.7 62.0 TIFF PNG JPEG JPEG-LS JPEG2000 FIC = 100 [%]. (8) LZW TIFF ZIP TIFF PNG Peppers Airplane Barbara Lena Fruits JPEG-LS JPEG2000 Lena Fruits Airplane Goldhill Barbara FIC Peppers 5. Function Image Compression FIC FIC FIC FIC 6. FIC 0 255 FIC 3.2 D[n] d[n] D[n] 1) P. Thévenaz, T. Blu, and M. Unser: Image Interpolation and Resampling, Handbook of Medical Imaging, Processing and Analysis, I.N. Bankman, Ed., Academic Press, San Diego, CA, USA, pp.393 420 (2000). 2) P. Thévenaz, T. Blu, andm. Unser: InterpolationRevisited, IEEE Transaction on Medical Imaging, Vol.19, No.7, pp.739 758 Jul. (2000). 3) R.C. Gonzalez and R.E. Woods: Digital Image Pro- 8
cessing Second Edition. Prentice Hall, New Jersey, USA (2002). 4) G.K. Wallace: The JPEG Still Picture Compression Standard, Communications of the ACM, Vol.34, No.4, pp.30 44 Apr. (1991). 5) M. Unser: Splines: A Perfect Fit for Signal and Image Processing, IEEE Signal Processing Magazine, Vol.16, No.6, pp.22 38 Nov. (1999). 6) M. Unser: Splines: A Perfect Fit for Medical Imaging, In Proceedings of the SPIE International Symposium on Medical Imaging: Image Processing (MI 02), Vol.4684, Part I, pp.225 236, San Diego, CA, USA Feb. (2002). 7) T. Blu, P. Thévenaz, and M. Unser: How a Simple Shift Can Significantly Improve the Performance of Linear Interpolation, In Proceedings of the 2002 IEEE International Conference on Image Processing (ICIP 02), pp.iii. 377 III. 380, Rochester, NY, USA (Sep. 2002). 8) T. Blu, and M. Unser: The Telecommunications Advancement Foundation, Vol.18, No.7, pp.358 365 Jan. (2003). 9) S. Battiato, G. Gallo, and F. Stanco: A New Edge- Adaptive Zooming Algorithm for Digital Images, In Proceedings of 4th IASTED International Conference Signal Processing and Communications (SPC 2000), pp.144 149, Marbella, Spain Sep. (2000). 10) X. Li and M.T. Orchard: New Edge-Directed Interpolation, IEEE Transactions on Image Processing, Vol.10, No.10, pp.1521 1527 Oct. (2001). 11) B.S. Morse and D. Schwartzwald: Isophote-Based Interpolation, In Proceedings of the 1998 IEEE International Conference on Image Processing (ICIP 98), Vol.3, pp.227 231, Chicago, Illinois, USA, Oct. (1998). 12) B.S. Morse and D. Schwartzwald: Image Magnification Using Level-Set Reconstruction, In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 01), Vol.1, pp.333 340, Kauai, HI, USA Dec. (2001). 13) X. Yu, B.S. Morse, and T.W. Sederberg: Image Reconstruction Using Data-Dependent Triangulation, IEEE Computer Graphics and Applications, Vol.21, No.3, pp.62 68 May/Jun. (2001). 14) D. Su and P. Willis: Image Interpolation by Pixel Level Data-Dependent Triangulation, Computer Graphics Forum, Vol.23, No.2, pp.189 201 Jun. (2004). 15) J. Sun, N.N. Zheng, H. Tao, and H.Y. Shum: Image Hallucination with Primal Sketch Priors, In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 03), Vol.2, pp.729 736, Madison, WI, USA, Jun. (2003). 16) LHA ZIP (2003). 17) G.N.N. Martin: Range encoding: an algorithm for removing redundancy from a digitised message, Video & Data Recording Conference, Southampton, Jul. (1979). 18) M. Burrows and D.J. Wheeler: A Block-sorting Lossless Data Compression Algorithm, Digital SRC Research Report, No.124, Digital Systems Research Center, Palo Alto, CA, USA, May (1994). 19) J.G. Cleary and I.H. Witten: Data Compression Using Adaptive Coding and Partial String Matching, IEEE Transactions on Communications, Vol.32, No.4, pp.396 402, Apr. (1984). 20) D. Shkarin: PPM: one step to practicality, In Proceedings of the IEEE Data Compression Conference (DCC 02), pp.202 211, Snowbird, Utah, USA, Apr. (2002). 21) M. Drinic, D. Kirovski, and M. Potkonjak: PPM Model Cleaning, In Proceedings of the IEEE Data Compression Conference (DCC 03), pp.163 172, Snowbird, Utah, USA, Mar. (2003). 22) M.J. Weinberger, G. Seroussi, and G. Sapiro: LOCO-I: A Low Complexity, Context-Based, Lossless Image Compression Algorithm, In Proceedings of the IEEE Data Compression Conference (DCC 96), pp.140 149, Snowbird, Utah, USA, Mar. (1996). 23) M.J. Weinberger and G. Seroussi: The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS, IEEE Transactions on Image Processing, Vol.9, pp.1309 1324, Aug. (2000). 24) M.W. Marcellin, M.J. Gormish, A. Bilgin, and M.P. Boliek: An Overview of JPEG-2000, Data Compression Conference 2000, pp.523 544 (2000). 25) A.N. Skodras, C.A. Christopoulos, and T. Ebrahimi: JPEG2000: The Upcoming Still Image Compression Standard, In Proceedings of the 11th Portuguese Conference on Pattern Recognition, pp.359 366, Porto, Portugal, May (2000). 26) DAM VFZ. BP (2001). 2005 4 7 2002 2004 2005 8 Universityof California, Irvine, Computer Graphics Lab Surface Reconstruction, GeometryCompression ACM 1970 1972 4 1996 3 1996 4 9