Three Essays on Canadian Housing Markets and Electricity Market

Σχετικά έγγραφα
Alterazioni del sistema cardiovascolare nel volo spaziale

QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks

ON THE MEASUREMENT OF

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Consommation marchande et contraintes non monétaires au Canada ( )

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Couplage dans les applications interactives de grande taille

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Approximation of distance between locations on earth given by latitude and longitude

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Multi-GPU numerical simulation of electromagnetic waves

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Supplementary Appendix

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

w o = R 1 p. (1) R = p =. = 1

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

rs r r â t át r st tíst Ó P ã t r r r â

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

Bayesian modeling of inseparable space-time variation in disease risk

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

EE512: Error Control Coding

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ACI sécurité informatique KAA (Key Authentification Ambient)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

the total number of electrons passing through the lamp.

Assessment of otoacoustic emission probe fit at the workfloor

P r s r r t. tr t. r P

10.7 Performance of Second-Order System (Unit Step Response)

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

5.4 The Poisson Distribution.

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

IMES DISCUSSION PAPER SERIES

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Μεταπτυχιακή διατριβή Η ΜΑΚΡΟΟΙΚΟΝΟΜΙΚΗ ΕΠΙΔΡΑΣΗ ΑΠΟ ΔΙΑΤΑΡΑΧΕΣ ΤΩΝ ΤΙΜΩΝ ΤΟΥ ΠΕΤΡΕΛΑΙΟΥ ΣΕ ΧΩΡΕΣ ΠΟΥ ΕΙΣΑΓΟΥΝ ΚΑΙ ΕΞΑΓΟΥΝ ΠΕΤΡΕΛΑΙΟ

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Aboa Centre for Economics. Discussion paper No. 122 Turku 2018

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Additional Results for the Pareto/NBD Model

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

t ts P ALEPlot t t P rt P ts r P ts t r P ts

EU energy policy Strategies for renewable energy sources in Cyprus

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

ST5224: Advanced Statistical Theory II

Jeux d inondation dans les graphes

PARTIAL NOTES for 6.1 Trigonometric Identities

Mesh Parameterization: Theory and Practice

Instruction Execution Times


ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Mean-Variance Analysis

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΟΙΟΤΗΤΑ ΑΤΜΟΣΦΑΙΡΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Coupling strategies for compressible - low Mach number flows

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Measurement-driven mobile data traffic modeling in a large metropolitan area

Αναερόβια Φυσική Κατάσταση

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Forêts aléatoires : aspects théoriques, sélection de variables et applications

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Partial Trace and Partial Transpose

ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ: ΜΟΥΣΙΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΑΡΜΟΔΙΟΙ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ: ΦΡΑΓΚΟΥ ΕΥΑΓΓΕΛΙΑ, ΝΤΟΥΡΟΣ ΙΩΑΝΝΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

6. MAXIMUM LIKELIHOOD ESTIMATION

Second Order RLC Filters

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

Math 6 SL Probability Distributions Practice Test Mark Scheme

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

Μεταπτυχιακή διατριβή

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Solutions to Exercise Sheet 5


Other Test Constructions: Likelihood Ratio & Bayes Tests

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»


Μέτρηση αντικτύπου του έργου Αποτελέσματα Ερευνών. Deloitte 26 Οκτωβρίου 2016 Λευκωσία

Module 5. February 14, h 0min

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Transcript:

Three Essays on Canadian Housing Markets and Electricity Market by Yuan Zhang A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Economics Guelph, Ontario, Canada Yuan Zhang, May, 2017

ABSTRACT THREE ESSAYS ON CANADIAN HOUSING MARKETS AND ELECTRICITY MARKET Yuan Zhang University of Guelph, 2017 Advisor: Professor Y. Sun, T. Stengos This thesis includes three empirical applications: spatial dynamic panel data model on Canadian housing market, impulse responses of Canadian housing market, and emission reductions of wind powered electricity in Ontario. Chapter 1 studies the spatial dependence of residential resale housing returns in 10 major Canadian Census Metropolitan areas (CMA) from 1992Q4 to 2012Q4 and makes the following methodological contributions. Firstly, in the context of a spatial dynamic panel data model we use grid search to derive the appropriate spatial weight matrix W among different possible specifications. We select the compound W with the minimum root mean squared error formed by geographical distances and the GDP levels. We further offer an interpretation of the selected W that is directly linked to the definition of the Arrow-Pratt risk aversion parameter. Secondly, contrary to common practice in the literature, we decompose our parameter estimates into direct and indirect effects and we proceed to derive and plot the impulse response functions of housing returns to external shocks. The empirical results suggest that Canadian residential housing markets exhibit statistically significant spatial dependence and spatial autocorrelation and both geographical distances and economic closeness are the dominant channels. Furthermore, in Chapter 2, we calculate impulse response functions and plot in 2-D and 3-D figures, and we find that special feature of the Canadian housing market is, as seen from the impulse response functions, that the responses to shocks do not spread widely across regions and that they fade fast over time. In Chapter 3, We use electricity output of 151 generators in seven fuel sources in year 2010, including nuclear, coal, natural gas, hydroelectric, oil/gas, wind, and wood waste/biomass, and aim to find out how wind energy affect the production of other power sources. We use three different models to estimate the marginal effects of wind powered generators on other fuel sources. The contribution of wind energy to the Ontario s mixed electricity supply system in terms of decreasing the electricity production mainly from coal, natural gas and hydroelectric generators, and reducing the air pollutant (CO2, SO2, and NOx) emissions. When wind generators produce one MW per hour, the marginal effects from other fuel sources is replaced less than one MW. Due to instability of the wind power, the backup power is needed. The backup generators are usually thermal generators that emit air pollutants, and the fuel uses are larger than they operate at a steadily power level, which is so called emission bias.

Therefore, this makes the net marginal effects and emission reduction less than expected.

t s r t ② t rst t ② r t ② s rs Pr ss r Pr ss r s s t s st ② rs r r t r r r ① r s ①tr ② r t t t r t rt t② t st ② t t r t r t ② s r Pr ss r P t t② rs t t rt t s r s ① t t s s t t s t s s t ② r ts ③ r t r r t t ② s ② t r r t r t t st t s rt

t ts t r t r s rs t r s t s r t tr t t t t r t r r t t ② t t t tr ① WN r s ts st t r s ts rr Pr tt r s rs ① t W s t r s r s s s r t tr t s r s s t s s t t r s r t r s s r s s t s t s t t r t s s r r ss s t r tr t t r t r r t s t

t s r r r r ss t s r s r r s ts s s

st r s st r t s r r② r t s r t r s s r s s s t r ③ ③ r r t s r s s t r r s t r ③ ③ r s r s s t s s r t r s t s t t t r t s r s s s st r t s t t r r r t r t r s r s s t s st r t s t t r t st r t s t t r t s r t r s t st r t s t t r t r ② r t ts r t② t t s

st s r② t t st s sts s t st t t s t tr ① st t r s ts t t tr ① t r ts r t r rs t st t r s ts t t tr ① r t s t ① t t t ts s rs t s r t r t t s st r t s s r t r s r r② t t st s t r t t s ts ② t② ss s ts ② t② st t s t s

t r t r t r s rs t r s t s r t tr t r t st s s st r t s r s t r r rr t t t s r t r t t s t ② tr s s r s s ① r r r t r t ② rs t r s t t r t s r t st t t s s r t r r s t s s r s q t② ts r r s s r s t rt r t st t s rt t st ② t s r r t r r s ts s t t s s r t r s t t s st rs rt rs s s ① t s r t r t r r ts t ② r r ② s r t t r s r ②s s t② s r s t r s r s st t t t t r t s r ② r ② t r t s t t s s t r s st t s t② s r s r t r t t ① r t r st s t ① t r t r s ② s t r ss t s t s r t s r ts t r r s s r r s s q t ② tr s tt t t r r s rt s r r t s s r r

r s t s r s r s r r t s rs ss t s s sts t t t s r ts r s r s t r r ts r s s r s t r s t t r t ss ② r rst s s t t r s r s r s t t t s P t s r t s ② rt t t rs s r rs t s r r ts s s s r t r s t s t str t s r s s ss s t r q t② tr s r s t r tr s r s r r s t q t② rs t s r s r s ② t tr r tr s r t r ① q t② t t r r ts s ② r r s r t r s t r r s t s t ② r t t r t ts t s r t t r tr st t t s t t s s ②s ② r t s r tt r s s r r t r r s t s t s r ts t t r t r t rs s r tt r s s r s r t r ② r t r st s t r ts ② t r r ② t t ② t s s r ts r ss r s r t r s s r r s ② t r s r t s r ts s r t s r s s t t s r t t s r r ts s r P t r r s r s t tr t t s r s r ③ s s rst ② t s r st s t r s t s r t t ② s t t s t r t t r t ② t s s t r t r ② r s r t s t t s t t tr ① W t r t r r t t t s t t tr ① W s

r ts r r s rs t r② r ② r ① t t r r t t t st t ts t t s q t r t r st r s t s r t s t st t ts t r t r t s rr t r t t t r t r s r r s r rs t t r r t s t st t s t s ② s t s r s t s t r t r r s r s s t s t s s s t t t s s t t ①t t t t s r r t s r s r ③ s s t rs t t t t t r t t r t r r r r t s t t t t t tr t t ② t r s ts t st t r s ts t rs t s s t t t r t r r s t r st t st t ts r r s r t t s ① t r s s s t t t t st s s t s r ② s t t s s r t r s t s r t t s r t s P s r r s ts t r rt rr s t r t s t t ② r t st t rt t s r t st r t r t r s s str t s t t t s r t t ② t tr r t r s s s t rst t s s s s r s rt t r s t s

s st s s r ts t rs s r t s r ① s s s t s r t t ②③ t t② r rt s s r s r t s r t ss t s r s r s t t ② t t r ts s r t t② r t r t ① ② t r r s t ② rt r s t s t t r r t s r s r s s sts t t s t② s s r t r ts t st ② s r t s s s st t t s r ② r s t r t r r t t ss t t r t r s ② t t r t r s t r ② t ② r s ① ts r r s s t r t r st t t r t r r st s tt t t ① s r s s r t r s r s t t② r s r s r s r ② s s s t t r t r r ss t r t s rt r s r tr t s r s t ① t rt② s ① t t② ts t r P s s t ②③ t s r t t② tr t st t st r s s st t s s t② st t s t st ② s r r t t t② s r s ts s st t t t s r t ① ts t t② st r t r s t ① t t s r s r t s t s r s t t r r s s t r rr r rr t t t t s r sts t st s t t t rs t r st t r s s r t ② r st r t r s t s r s r s r t s st s s rs t t s r

s s t t t ① t ② ① t r s t r r t s t s t s r t s s t ② t P t ① r s t s r t r s s t r t s t t r t s s t ts r t st r t s r s s t t s ② t r t r r t s s t s r ② s s P t st ② r t s s r s t s s r s t s P t st t t s t r t r t t② r s r ts r t rs t t rs s s t ② r s s t t tr ① W t t r s ss r t r t t t s rs t t rs t t r r t t r st t s ② t t s r t t t s t str t r s P t r s t r t r r t r st t s t r t s t str t r s ss t r t r t ts ss t t rt r ① t r② r s r ① t s t t r ts r t ② r r t t t t ② t t r r s r t ② r r t ts s t t tr ① s t ② t s t r r ss s s s t s t r ① r ss s t t s t ts t s s ② t s t W tr ① t s ② str t s r st s s r r② r t ② t r r s t s s t ts r r t ② t s st t s r ③ r s r s st s r t s t t tr ① t ② r s t t st s t t t r W r s t s t t t② t r② r s s r

r ② s st s t ② ts ② rt t s k r st rs r ② t ts s t s s r r rs s W s r t t t t ①t t s ② s s t st tr rs rt t s t str t r ② st s r s r rs s ② s s t ② r s W t r r s r rs s t t t s t W rt ss s ts t t ①t r r t r s r ① r ② t r t t t s t t tr ① t r t r s t t s r s ss t r t s t r ② ②③ st r s r rs t st ② t r W t ② s t t r r t t r r s ts t t t t s r r t r r s r s r t r r t W r s t t s t W t t t ①t t s r r s rs s t r r t t W s t t r t r t t ② t t s t s r r q rt r ② t r t t s r② st t st s t s r s t r r q r t r ② r s t r s s r s r ② t rs t② r t s tr r r s st t s ② P P r

② s Pr s t s r s r t s rs P t② s s r s st r ③ s t② r t st r ② ① t r s r ss r r r s s tr t r s s s t r r s ① t tr r t t r tt t r t s t r② rt t rt r r t s t r r t s s t r st r t rs r ② s t t tr② r t t t st s s r r r t t r t t r r r s t t r s t r t t r r s s r r t t st r q t② r r t t s r t r t s t t r ②s s ② s ss t② s r t r ts r s t r ts P s t r r t str t str② s t ss r t s t rst st t str t r ss t t s t s s ② st r s t P t t r t sts ss t t str t q rt r ② r s t r ts BP r r t t st s t s s s ② st str t ① s s s r ①② r st t r s r s r s t t st r s r t ② st t ss t r t r ① r t q t② st s P s s ss s s rt s r ① ① ts s r s r t s t t t q t② ts s s t st t t s rt r s s r r r ts t r t ① s sts r r r t r s t t t t st r ② ① t ss r② s ② s ② P s Pr r ② ① r t t st s t s t r r t s s r r r t t② s t s s t s t t t t② r r r t s s ② ② P s s t ② r r t s s ② t t st s r t s t s st t

t r s r r ① st t t s s t r t t st s r t s ② s r s t st rts t s s t t r ts r t rs s str t t t② rs ② st str t t t② r t st rts t r r t t r② s r ① st s st r rs st rs t t t r st t r t s st rts t t rt r t s ① st s s s s r ① r t t t st s s st rts r s r s ② t s s t s r t ② t r t r s t t ① st s st t t ts q rt r ② s st rts t r t r rt s r r t t ② r s s ② st t r t s r t t s r tt r s r r ss ss s t r② s t r② s t ss ss ② r t t r t ts t t ts ② t s r s t r s ② t ts s r ① P s r s s r t t s r s r s t s s st ② r s r s t s r s ① t s t r t s t r s r s r s t r s st ② t t t r t r r s s t s r t t r s ② s t r r s r t t t r t P tr s r s t ts tr s t s str t s t r t t st s s s P s r s t t s t t s r Pr ① s r ① P t r t r t t st s s s s ② r

② r ②s s t r t r r r② r s t s s ② r t r t t r t r r s t t s t r t ② r t s t t r t t s t st s t t t ② r t r rt② r s t r ts r t s ② s st t t ② r r t s r ② t s s s r s t r s t ② r r ts r t ① s t r t t st s t s t s ① s r Pr ① P r t t r t ① s r t ① s s s s r ts t ts s r r s t r rs t r r t ① s s t r r r s r t r t r t ② t r t s P t r t r t s s r s t st rt t t r t t ts s ② t r t s t r r t r s r ② t ② s t ② st t r s s r s r ① t t ② t s P t ② t r t s r s r r t t st s r r r ② st t s r s t t ① t s s t② r s s ② st t r r r s s r s s s r s s t t s s s s s ② s r s ss t r t s r s t t st s ② r s tr s t q rt r ② tr s s q rt r ② t t ss t t t r t s t t t t t r s st t t ② r r s s t s t t tr ① r s s r r s s s ② t t s ss t s r t r st t ② r s t s r t t ② ② t q rt r ② t t t t q rt r ② s

st s t tr t r s r t r s t ② t s t r rs r r t t s s r ② rs ② t s s t t tr ① r r s t t ② t t r t r r ts r r s s t t ② r t t r t r s t s ② r r r t rs r t t r t r ss ② rs r t s s ② r rs r ts t t r r tr r r ts ①t r r ts r r ts r ts t t r t r ss P s t t tr ① s t r r P r t r r r ② rs t t r t t ss t ② s t t r t s r t r t ② s t ② t ② ① ts t Yt = γyt 1 + λwn Yt + Xt 1 β + µ + vt τn + ut ut = ρwn ut + εt, t = 1,..., T. r t s t ② t P s r r s t ② t s t t t r Yt 1 s ① t r② r t s t t r WN Yt t r s s t s r t r s r r t s st r

t r ① r ss s t t r r ss r q t t s t t t s ss t s t ② rr t t r s r t s rt t s Yt = (y1,t, y2,t,..., yn,t ) s N 1 t r t r s i = 1,..., N t = 1,..., T yi,t s t r s r s pi,t r s t t i ② r t r t r s t s yi,t = ln pi,t 1 r pi,t r r s ts s r t r t pi,t 1 s t s r t r s r Yt 1 s N 1 t r r r s t t r s t t r γ s t rr s t t s s r t r s t r ② ts r t r s WN s t r ③ N N st st s t t tr ① t t r t s t r ss s t rr t s WN Yt t r s t rr t t s r s t r r s s ② s t s t t r λ s t rr s t s t s t t r t t r s t s t ts t r t r s t r Xt 1 s N k t r ① t r② r s t r s r β s t k 1 rr s ts t st t s ① t r② r s t t② r s rt r r t t r q ② s r t tr s t s rt ts r ② ② st r t r Xt 1 s t t r ts s s ② r st rts Starts t Completed t t r ts BP str t sts Cost s r ① N HP I s s s r s s t rs r r t r s s inc ② t r t unem t pop µ s t N 1 t r t r t ① ts r r s t t r t r t r st s s r ttr t s vt s t t s ① t t t t r t t rs t

t rt r t s ② τn s t N 1 t r 1 s q t s s t t r r ss r r ss r t rr r t r t t r s t r ss s t ② t ① t s s s t t tr ① WN s s s t t r t s t rr t st r s ρ s t s t t rr t t εt s N 1 t r i.i.d rr r t r t ③ r st t r tr ① σ 2 IN r IN s N N t t② tr ① s st t ② q s ① t ① ts s t ② st t r t ① ts T s r r t t n t r s t st t r s nt s st t s② t t ② r ② str t r t t r t s s r t WN t s s s t t tr ① WN st t s t s t t r λ ρ r r② s s t t t s t ts t s r ② s r r t s t t tr ① s t st rt t ss s t st t r tr s t s r t r s r t r t ts t t r t r t t r r s r r s ② s t r s tt r t r r t st r W ② ② t s t ts r t r r st s st s t tr s t s s t t tr ① s s t s t s t r st r s tr t st t r t r t t tr s s t s s t rr rs ② t t r s ts t s t s t t s t s r t r s s t t rr t st r s s r t s

st s s s str t st t ts s t rs s t s r r rs st r② s r ① r st s r r t s str t s t ts s st s ❼ s t t t② rs r r ② ❼ k r st rs r ② ❼ rs st s r s t s r ❼ t ① t t r r s r s r rs s r tr t tr ① tr t t s t s r r ss r s r ts r ① t st ② t t r r t r s ss st ② t s t t tr ① r ② st s r s t s r rr t s st t st s t s r s t ts s r t s r ② st s t t② rs t tr ts rs t s ss s t s t rs t k r st rs t ② s rs rst rs s rs t r t s t t t s r t r s t t t r rst rs s t s r st ② t t r rs s ts ss t t r rs t r r st ② s t s r t ② s ts r ② r tr s ts s

s t st ② ss st ② t s t ② s t ② s s t rs st t t ① t st t t s rs st t s s r s s s t t wi,j s t i j t t t tr ① W t t② ② r ts t s t r i r j s t wi,i = 0 r i = 1,.., N t ① t s t W 0 t r t tr ① W q s W 0 ② t r st W 0 s t r ③ t r r s r s s t st t② r r s s Pr ② t t t st t i j ② di,j t t r st t tr ① W G,0 s r s s G,0 G,0 W G,0 = wi,j, and wi,j = d α i,j, i 6= j r α s t r r t r t t r t s rs r t G t s t r t r st s α s s ② s t q t r s t ② rs r t s s t t t s r s r t s r t r t t s t t tr ① r t α = 2 s s ② s s t r t② tt t s r t r t t q r t r s t st r t st s W s r t t s st t s st ② str t W tr ① s st t st s r st t tr ① r ② t ① t t t s

G,0 W G,0 = wi,j, G,0 = exp( αdi,j ), i 6= j and wi,j r t r α s s t t r s t t tr ① s s st s r s r t rs t t r ② s t str t t t r rs P r t t ② t s t t t r t② i t t② j s t ② t rs t t r r α = 1 t r st r ③ t s t rs t t t r t r t r α t r t t ①t r str t t t s t rs t t t t r t s r t② t r s rst t s r s s emp,0, W emp,0 = wi,j emp,0 and wi,j = empi empj α, i 6= j empi empj t s t r t t ② t s t t r s rs t s r s t r s t s r ② t t r t s t s t tr ① r ts t s ss t t ② t s t t r s s t W mig s r t t r t r t t t t s r migi,j s s s t rs t r t r r ts t r i j ② r r r t r migi,j = 1/number of migrants between CM A i and j r r r t r r ts t s r t migi,j t r ② t rs t s tr t str t t tr ① s t t ① t t r t s s s r t t t r s s s ② s t rs st t t t str t t t

mig,0 migi,j t s r migi,j s t r t t t s wi,j t r r s t r t r i j t r t s t r s r t t r r ③ t s r s s W mig,0 = wmig,0, mig,0 α = migi,j, i 6= j and wi,j t r t tr ① s r rs t i j s r s s mov,0 W mov,0 = wi,j, mov,0 = movi movj α, i 6= j and wi,j s t tr ① s s t t r rs rs r t t r t r ss ② rs r t s s ② r r ts t t r r tr r r ts ①t r r ts r r ts r ts r t r ss rt t tr ① s s P s s r s s GDP,0 W GDP,0 = wi,j, GDP,0 = GDPi GDPj α, i 6= j and wi,j s t tr ① s s t t r t s r t② r P s t t r s r r s t t tr ① s t s WN s t tr ① WN0 ② t r t r ③ t r r t s s t t ③ r s r mov i,j r t r ss ② rs r t s s ② r r r ss r t ② t t r r migi,j ② ts t r t i j s ② t s t t t r t r r ts ①t r r ts s t r s r r t t t ② r t rt t s s t t t s t r s t i j r r t tt r ① t s t s r t r s

0 w12 w13 w21 0 w23 WN = 0 w31 w32 wn 1 wn 2 wn 3... w1n... w2n... w3n... 0 rst r t r s t s t t t t rst tr t r t r tr t r s t r r s t r ts t r tr t r s t t s r t r t rst tr t r r ① t t w12 t s t s r t s r t r t rst r w21 r r s ts t t t rst r t s r t t t t s t t tr ① WN s t s② tr t st r ③ t t s t t t t r i s r j ② t t s s t t r j r i s t t t ts WN r s t s t r s t t str t s t t tr ① s t r t t W = aw G + (1 a)w E, a [0, 1] r W G s t r t tr ① str t ② t r t r t rs st t t r t t ① t t t W E s t t t t s s r W emp, W mig W mov W GDP s q t s t r t r a s t t t r s t s s t r t t s

s t rr s ② r s t s t s ② st t r t rs r t s t t tr ① ② r s r t t st r r t WN ② st t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) αg s t r r t r r t αe s t r r t r t r st di,j s t ② t r r s s r t② zi,j s t ② s t r r t r αg r r t tr ① t r r t r αe r t s t tr ① t t r t r a s t s ② r t θ st t ② t t s t t θ t t ③ s t s t st t θ ② ② r s r r t s t t s t t tr ① W r t r r t t s s tr r② t r t t t r t r t s r ss s t t tr ① r s ts t s r t sts r ③ r r s rst t r t s r t r s r s ① t r ss s t

s P s r s t st s P s r r t r s r ss s t t t s t ts r s P s t sts s rt t t ② ① ts s t t t t s t t st t t s t t rr t rr r t r s s st t s s t r t ② t s t st r t t r ts r t ① ts s t s s t t s t s s t s t r s ts r st t r s ts t rs st t r str t ② s r ts r r s rs t r② st t r s ts q t s r st t ② q s ① t ① ts s t rst st t t P t r t s t s t s t t tr ① q t s t t rst sts t r s ts r tr t ② t t t s t t r t s s r t t t s s r r t t r s t st t s t s t rr r t r s t t r s t t st t r s ts r W s t r r st s s t s t r ss s t s ts r t s t rs t t t t r ts r t ② t t ① t t st s st r s r s ts W s t r t t ② t s t r r ts t t t r rs r P s q t s t s s t ② r r t s t s t

t st t s λ ρ r t s t t s t t rt s W emp s t s t t s r t② t t ② t s tt r ① s t t s t tr s t r t s t r ts r s t t r s ts t t t t rs t st t rr s t tr ① s ② WN = a W G + (1 a) W E r② a r t r② αg αe t t s t s ② st s r r a = 0.1, αg = 0.55, αe = 0.35. s t r s t st t r t tr ① s WN = 0.1W G + 0.9W GDP t t t t st t s r s r t r r r st s t r r t ② s t rs st t t r q t s t s t tr ① λ W r s t s t tr ①ρ W r s t s r ss t s r s r s t s②st s st t r② t s rt t t t t t tr s s s t s r t② ② ss t ① s r t ① t② ss t ② t r s P r s s ss st t t t s t tr ① r ② s t ② t t tr s s t t r s r t s r ② t s r s s s t tr s s t rs ② t t ② s t W r ② r st s t r P s s t t ① s s r t rs P s r t s t t s s t ss t② t t ② t s s r t ① t② r r r rr t t t t tr ① s t r r s r t ② ss t② r t r r s r

s r ss t t ② ① t r② r t t r ts s r t t t t ② t t r r s s r t t r s ss t r t ② ① t t ② r t rs t t r t ② s r r t s t s r ts s t s ② t t r r s t t t ① st t s t t r t s t t t ② s rr r s r t t r r s r r r r t r r s r q t s Yt = (IN λwn ) 1 γyt 1 + (IN λwn ) 1 Xt 1 β + (IN λwn ) 1 (µ + vt τn + ut ) ut = (IN ρwn ) 1 εt. t Sk (W ) t N N rt r t tr ① ① t Y t r s t t t kt ① t r② r X r 1 t r N t t t s ss r t t t t 1 t ② Qt 1 r q t Sk (W ) = E (Yt Qt 1 ) = (IN λwn ) 1 βk T Xt 1,k r IN s t N N t t② tr ① k s t kt ① t r② r ts i j t t s t ② [Sk (W )]i,j P t r t t r t t s r t kt r r s E(yi,t Qt 1 ) xj,t 1,k = [Sk (W )]i,j

r i 6= j E(yi,t Qt 1 ) xi,t 1,k = [Sk (W )] i,i r s t ② t ③ r t t kt ① t r② r r j t t s r t r s t r r s [Sk (W )]i,j 6= 0 s r t s r s t t s r t r s r i r ① t r② xi,k t r r s t ts Sk (W ) r r s t t t r t ts ts r r s t t r t ts r t t s r r t t s [Sk (W )] i,i r t ts tr ① Sk (W ) = (IN λw ) 1 βk r t ts t r i s t it r Sk (W ) ① t r t t [Sk (W )] i,i r t k t ① t r② r s r t t s rs s kt ① t r② r t r r s r i r t t r r i s s r ② t it Sk (W ) ① t t t [Sk (W )] i,i s r r t ts s r s s t kt ① t r② r r i t r r s t t r t t t s t r s r t ts r r ② q r t s t s r s r r s t r t t r r t t ts ② t s t t t r r t t r r t r st t s t λ t r s t s t s r t r s t r s s t r r s t s t s t r s t t r r t t t r t rs s r r r t s s t r t r λ s t t rr t r t r ρ r st t t 0.8038 0.9984 t ② r s t st t s λ s t s t r t t

r t ts r t s t s s r t t s t s t t rr t s t r r st t s r t② r P s st t t t r t s 2.6497 s st t st ② s t t t s t s s t r st r st t s s t t r rt t t t r t r s s r t t② ② t r st t s t t r t t t r s r t ts r t t ① t r② r s rst s t r t ts r r s t t r t r t r②t s r s t s r ① t t r t r t r r s s ② t r t t r s s r t r r s ② t r s q t r s t t r t r t t r r s t s r t r r r ② t r t r r s s ② t r r s s r t r s r ② r rr s t t s r r t t r s ss t t r s t r t r t s t r t t r t t t r r r s 1.28 st r t t r t t s t t r r r t r r s t t r r s ss t t s t r t r t s t r t s st t s r t s ② s r s s t t t r st rts Starts t Completed r st t st ② s t t t s r s t ② t r s r s t s t t r st rts t r t rs ① t r r t t r s s r t r s t r r t t t r r r s

r ② t r s r s t s t t r t t r②t s t r r t t r s ② t r r t t t r r r s ② ② t r t s ② s r s t t t r t s ② r t t ② st ② t s r s s t t ② s r r t s ② s r Starts Completed t s st t st ② s t r t s t t s r t r r t s Pr ① N HP I s s st t st ② s t t t s t s s r s s s rt r tr t r r ② t s t r s t ② t s r t s r t ① t t t s t ② rr t s s r s s s t t s st t t s s t r r t r s r s t ② r t t r r t t t st t s P s s r t t r t t s t② t r s r s s r t r r t r t t t r s s r t r r ts r s ② r st r t t r s s r t r r s s t r t s st r t t rs r t r r t t s t r s r s s r t r s r t r r s ② r Yt 1 s st t st ② s t t s t q t t r t r t r s ② r r s ② r②t s st t t r r t t r s s r t r t s ② r t r r t t r s ② t r s r t t st r t r r s ts t t t s r s r st ② t r r s t r t r s r t ①t r s r s ② ttr t t t r q ② s tr s t s s ② rs

st ② r t r s tr s t r t st t t t r t t s r s t st t st ② s t t t s s r s r s st r t s s st r t r rts t s r t r ① t r s r r t r s t r ② r t r s ② r s t t s r s s t s r ② rs s t ② t r t s r s t r s r s t s t t s r s t r t st r q r r t s t t s s s r r s t rt r s s t t s r t r s t s t r t s t r t t r rr Pr tt r s rs ① t W t s st r② t s ss ss t r t r s s ② r r t t s r r s r t ① t ss t s t s r t r s r s r r s t r t s t ts r r t t t t tr ① r st r ③ t r st s G D(di,j ) = d α i,j t st t s s αe G(gi,j ) = gi,j, and gi,j = GDPi GDPj

r i 6= j αg, αe > 0 ② r s r t st t t s t t tr ① q t r t r st ts ts r ts r t t s t s r t② P s t s ts r t r t ① t s t r t s t rr Pr tt s t r s rs A1 (di,j ) A2 (gi,j ) s s r s s t t② t r s r t r s r ts t s r ts t r A1 (di,j ) A2 (gi,j ) r s s t t t r t r s r ts t t rr Pr tt s r s t r s rs ss t t s A1 (di,j ) = 1 D (di,j ) = (1 + αg ) D (di,j ) di,j A2 (gi,j ) = D (gi,j ) 1 = (1 + αe ) D (gi,j ) gi,j r st di,j t st gi,j s t ② rr t t A1 A2 r s t ② t r r st di,j t s r A1 (di,j ) s t r r t ss r t② t s r A2 (gi,j ) t s t r r t r st ss r t② t s r s s t t② t r s r t r s rs ts t r r s t r s r r s s t t r t r s r ts r r ② r s r r s t t s r P s s r t r r t rs αg αe t r t r t r s s t t t r t r s r ts ② r s r rs s t ② s α s t t r r t α = 2 r r t r t② s r s αg αe t t t ② r s r rr t st t s α G = 0.55

α E = 0.35 t t ③ t s t st t s r t r t ② s [0.1, 4] t r t tt s s t t② t r t r s r ts s s t s st rs t t s r st s t s rt r ② ss s r P s r s s r ② r ② s r ts r s ② s r s r r t r ts t s s r r tr s tt t t t r r ② s ② r s rs sts s r s s r t s r ts t t r t r ② r t r t ② ② t s r r t r ts t ② r ss ② t t t t s t s s s r t t st rs ② s r s rs t s t ① t st ts s r st s ① r s ② D = exp( αdi,j ) r t ss t A(di,j ) = D1 (di,j ) D1 (di,j ) = α st t s s sts t t st s r t r t t t s s t t② r t r s r ts t s r ts s t t t s t s rt ② r r s ts s r t r s t t s rt r r t t s t t tr ① r rs r t r st r s t t t ① t st t t t r t t s t s t r st ② t s r t r s r s s tr t r s r t t s t s t s t t rr t ① st t s r ts st t ② s t ② t s r s r t r t r r t s t t

tr ① W r t ss s t s t r t s t W s t ③ s r t sq r rr r W r ② r st s t P s s s t t r r s t s t s r t r s r s t s r t s r t s r t② P s r s ss rt r r t r r t t t s t W t t s r t ② t t t t rr Pr tt r s rs r t r r t t r r t t t t r t r s r r t r st t s t r t r t ts t r s t s r s t r t r t t s r s s t s s r t r s t ①t r s s

t r t r s r s s s r t tr t s st ② s t s t r r s ts t r t s t ① sts t s t ts t t t rt r ① r r t t s t ts s r s s t s r s s r t r t r t t s s r s ② s s t s ② s t s r t r t r t r st ② t s t ② t s s t t t s r s s s t r t r ss t s st t t s s r t r s t t st t s r t r s s t r t s t t r s t s s ② t s tr s r t s r t rt r t r r t t t r st t r s ts st ② t s r s s t s t t r st s s t rr t t r r st s r t r s t s r s s t s t s ① q rt rs s s r s ss s r t ② t t s s t s t s ss s t rst s s t s s t s r t r s t t s ss s t s s s t s s t t r t s r s s t tr s t t t r t r r s s t s ② t s t q t r ② s t t t tt r rst t t s s s r t r s r t r ss

s s r Yt = γyt 1 + λwn Yt + Xt 1 β + µ + vt τn + (IN ρwn ) 1 εt s ② t t t t IN λwn = A IN ρwn = B rr Yt = A 1 γyt 1 + A 1 Xt 1 β + A 1 (µ + vt τn ) + A 1 B 1 εt st t s r s s t t s t r εt t η t t t s IRF0 = A 1 B 1 η Yt+1 = A 1 γyt + A 1 Xt β + A 1 (µ + vt+1 τn ) + A 1 B 1 εt+1 t + 1 s st t t q t t t Yt+1 =γ 2 A 2 Yt 1 + γa 2 Xt 1 β + A 1 Xt β + γa 2 + A 1 µ + γa 2 vt τn + A 1 vt+1 τn + γa 2 B 1 εt + A 1 B 1 εt+1 ss t s t t Xs vs εt s t ss t t t r r r s t X s εs vs r s t r r r ② s r t r s s s r t r t s s t s s ε t s str ss t t s s r t r s s s s t r s t s r t t t

t t r s ts Yt+1 = γ 2 A 2 Yt 1 + γa 2 + A 1 (Xt 1 β + µ + vt τn )+γa 2 B 1 εt +A 1 B 1 εt+1 rr s s r s s t r t+1 s IRF1 = γa 2 B 1 η t t s r r Yt+2 =γ 3 A 3 Yt 1 + γ 2 A 3 + γa 2 + A 1 (Xt 1 β + µ + vt τn ) + γ 2 A 3 B 1 εt + γa 2 B 1 εt+1 + A 1 B 1 εt+2 Yt+3 =γ 4 A 4 Yt 1 + γ 3 A 4 + γ 2 A 3 + γa 2 + A 1 (Xt 1 β + µ + vt τn ) γ 3 A 4 B 1 εt + γ 2 A 3 B 1 εt+1 + γa 2 B 1 εt+2 + A 1 B 1 εt+3

Yt+h =γ h+1 A (h+1) Yt 1 + γ h A (h+1) + γ h 1 A h + + γa 2 + A 1 (Xt 1 β + µ) + γ h A (h+1) B 1 εt + γ h 1 A h B 1 εt+1 + + γa 2 B 1 εt+h 1 + A 1 B 1 εt+h rr s s r s s t s r IRF2 = γ 2 A 3 B 1 η IRF3 = γ 3 A 4 B 1 η IRFh = γ h A (h+1) B 1 η r h = 0, 1, 2,...T. r r t str t t t r r s r s s t t t st r rr rs r t IRFh t t s s t t t st r rr r t t r t t tr s r t t r s t t t r t r t ② t ② t s② t t r t tr s r r t r s V ar(irfh ) = IRFh IRFh IRFh,, γ λ ρ Σ 1 IRFh IRFh IRFh,, γ λ ρ

r Σ s t s② t t r r tr ① t st t rs γ λ ρ t str t t t r ˆ h) ˆ h ± 1.96 se(irf CI = IRF ˆ h s t st t IRFh t r t s IRFh r t IRF r r t str t t t r t t t st r rr rs r t st t s IRFh t ② t t t r t s IRFh t r s t t r t r (γ, λ, ρ) r r h = 0 t h = 6 r r s t r t h = 0 s s t t ② η t IRF0 (γ, λ, ρ) = (IN λwn ) 1 (IN ρwn ) 1 η =A 1 B 1 η r t IRF0 t r s t t (γ, λ, ρ) s

IRF0 =0; γ i d [vec (A 1 )] IRF0 h 1 T = B η IN λ dλ i h h i d {vec [(A 1 )]} d vec IN λ WN T = B 1 η IN dvec (A) dλ ih i h T T = B 1 η IN A 1 A 1 [ vec (WN )] i h T = A 1 B 1 η A 1 vec (WN ) ; d [vec (B 1 )] IRF0 = ht A 1 ρ dρ d [vec (B 1 )] d [vec (IN ρ WN )] = η T A 1 dvec (B) dρ i h T = η T A 1 B 1 B 1 vec (WN ) h i T = B 1 η A 1 B 1 vec (WN ) r r rs t t r r r t WN tr s r s r t + h WN vec (WN ) s t t r ③ t tr ① t t r r h 1 IRFh (γ, λ, ρ) =γ (IN λwn ) (h+1) (IN ρw ) 1 η =γa (h+1) B 1 η r h 1 t r t IRFh t r s t t (γ, λ, ρ) s

IRFh =hγ h 1 A (h+1) B 1 η; γ h+1 X (h+2 j) 1 IRFh h A =γ B η A j vec (WN ) ; λ j=1 h i T IRF1 =γ h B 1 η A (h+1) B 1 vec (WN ). ρ s r s s t s s t t r s r t r s st t t s r s s t ts t s s t s s r t r s r t r st t r s s s r r② r t s ② r t t s r s s t ts s t s t r r t r② s r t r s t s t s r s r t t r s r t t t s r s s t s t r s s s t t s r t ts s r r ss t r ③ st r ③ s t s ② t st r ③ s r r r ② t s ss t r s ss r t s r r t ② t r ③ s t r ② t r t r t t r t t r r t t t t r s t s t tt r s t r s s t s t r s r t r s t r s s r s r t r s ② t t q rt r s t s s t st t ② r s s t r s r t r s st t ② t s t st t t t r s s r t r s t q rt r s s r② s

r t r s r s t st t t rs s s t ② s t t t r s t r q rt r t r s s t s t r② s r t r s ② st t ② t r s s r t r s r s st t ② t ② s t ts t r q rt r s r t r s t r s t st r s s t t s s st r t s r t s r t r t s r t r s r s ② st t ② ② t rst q rt r t r s s r t r s r s st t ② ① t r r② t tr s r t r s r s t st t rs s s s t ② s t t t r q rt r r t s s ② st t s t t s r t r t ② q ② t r t r s ts s r r t t st t t t s t s ① t s s s r r ss st s t t s t t t s r r t t s r s t t r t r t ② s t t r ③ st r ③ t r r s s r t r t s ②s st r r t r r ss s t r s t t s s r r ② t s ss r t s r ts t r t s s s t t t t s s t r r t r r s ② t t s r t t r s ss r t s r s r t t t r ③ t ① s tt r ③ t ① s s t t r ③ r q rt r ③ r t q rt r s ① t r s s t ② s r ss t s st r t t ② s r ss t st s s s t s r r s s r s t s r st tr② ② t t r t r t t t s r s t t rt② s t s r t ② t r r t rs r t r ② r

t r r st r s t s s r t t t s t s t r st t t s r t② t r s r P s t t s t r t r s st t t st t st ② s t t s r s s t s s t ss r ss r s t s t ② t r q rt r ③ r s t t st t t s t s s r s t t s t t r s s t s t t t r r s s r t r t st r s r r t s t t r r s r r t r t r s s t r r r t s r② t r t r s r t tt tr ① r t t s r s s t s t s t t t r r r t r t r s r t r s r ① s t s t s t r r s t s r t r s ② st r t t r r ② r s t ② t s s ② st t s t r t t t s r s t r s t r s st r t s t r t t r r s r t r r s ② r s t ② t r s s r t r s r s st t ② ① s r t r s t t st ② t r ② t r s st r t s t r t r② t t s r s s r t r s r s t r s s r t r s r s st t ② tt s t st ② t s s t r s t t s s t st q rt r s t s r t r r t r s st r t s t t r r r t tt tr

① t s r s s r t r s r s st t ② t r s s r t r s r s st t ② t r s t st r s s t t s s ts s r t r s r s ② t t t t s r s s s t s t t t s r s t t t s r s s s t s s t t s s r r t t s s t r s s s s s s t t s s t s t ② s t ② r t ts t t r r t s r s s s r r t t r s t s t s t t s t s s ② st t t t s s s t rs st q rt r t s r t t rs t r q rt r t s s ② st t ts r s t t r s t r ③ ③ r r ss s t ts t r t s r s r ss t t s r r r s r ② t st r t s r s r t t t ① s tt ① s s t t r ③ r q rt r ③ r t q rt r s ① s r s s t s t s t t r t s t st t r s ts t st t t t r t r t s s t r st r t st t s t

s s t t t r t s t ② t r t t ts r s t s r t r s s r s t r st t s r s s t s t t t r t s s st r t s t t t r t r t t r t ② s t tt r s t s r s s t s rst t t t s r s s t s t s t t ① t r② r s Xt 1 r Yt =γa 1 Yt 1 + A 1 Xt 1 β + A 1 (µ + vt τn ) + A 1 ut Yt+1 =γ 2 A 2 Yt 1 + γa 2 Xt 1 β + A 1 Xt β + γa 2 + A 1 µ+ + γa 2 vt τn + A 1 vt+1 τn + γa 2 ut + A 1 ut+1 Yt+2 =γ 3 A 3 Yt 1 + γ 2 A 3 Xt 1 β + γa 2 Xt β + A 1 Xt+1 β + γ 2 A 3 + γa 2 + A 1 µ + γ 2 A 3 vt τn + γa 2 vt+1 τn + A 1 vt+2 τn + γ 2 A 3 ut + γa 2 ut+1 + A 1 ut+2 Yt+h =γ h+1 A (h+1) Yt 1 + γ h A (h+1) Xt 1 β + γ h 1 A h Xt β + + γa 2 Xt+h 2 β + A 1 Xt+h 1 β + γ h A (h+1) + γ h 1 A h +... + γa 2 + A 1 µ + γ h A (h+1) vt τn + γ h 1 A h vt+1 τn + + γa 2 vt+h 1 τn + A 1 vt+h τn + γ h A (h+1) ut + γ h 1 A h ut+1 + + γa 2 ut+h 1 + A 1 ut+h r IN λwn = A t N 1 t r ψ t t s t r t t t t 1 βp s t t r t t t r t t rr s s r s s t s r t st r t t r t s st st

IRF0 =A 1 ψβp IRF1 =γa 2 ψβp IRF2 =γ 2 A 3 ψβp IRFh =γ h A (h+1) ψβp q t s t r s s q rt r t t s s r rr t s s r s s t r ③ ③ r s ② t t t q t t str t t t r r s t r t s t t r q r t str t t rr r s r t t r t s t t r q r ② q t t str t t t r t s r s s t s t t r t s t r s t t r t rs s γ λ βp r A = IN λwn βp s t r t r r t t t r t ψ s N 1 t r t s t s t t t r t t r ③ ③ r h = 0 IRF0 = A 1 ψβp t r t IRF0 t r s t t (γ, λ, βp ) s

IRF0 =0; γ i d [vec (A 1 )] IRF0 h = (ψβp )T IN λ dλ i d {vec [(A 1 )]} d [vec (I λw )] h N N = (ψβp )T IN dvec (A) dλ ih i h T = (ψβp )T IN A 1 A 1 [ vec (WN )] i h T 1 1 vec (WN ) ; = A ψβp A IRF0 =A 1 ψ. βp r t + h r h 1 IRFh = γ h A (h+1) ψb r h 1 t r t IRFh t r s t t (γ, λ, βp ) s IRFh =hγ h 1 A (h+1) ψβp ; γ h+1 X (h+2 j) IRFh A =γ h ψβp A j vec (WN ) ; λ j=1 IRF1 =γ h A (h+1) ψ. βp r s ②s t s s r t r s t st r t s t t t r t r r② r t ② r s s t t s t t r t s r r r ts r s s ② st t ② t s s s t st rt r q rt r s r t r s r s

st t ② t r st s t r ③ ③ r r② r s s t st ② t r s st r t s t r② t r t r② q rt r ② s r t r s r s ② t r s s r t r s r s st t ② t r s s s t st t r s t s s t s r t t r t t s r t r s r t ts r s ② st t ② t ② s t q rt r r st s s r t r r s st t ② t r ③ ③ r ① s t t st t r s q rt r ② s r t r s r t t s t t r t s t s r t s r t ② r t t t t s s s r r ② t r st r t s r t r ③ t ① s r r s r t t t r s ss r t s r tt ① s s t ② r ③ r q rt r t q rt r s ① s r t t t ② t s r s s s r ss s s st r t t t ② r s t r t s t t r s t r s s t s t r t r t t r r t r t r s ② r s t ② s r t r s r r s st t ② r t r q rt r ② s r t r s r s ② r q rt r ② s r t r s r s ② t r s s r t r s r s st t ② r s s t t s s s t t st t r s r s s t t s t s t r t r② t t s r s s r t r s r s st t ② t t r s s r t r r s st t ② s s t ② s t t t t rs st t t rst q rt r tt q rt r ② s r t r s r s t st ② st r r s ②s t s r s s s

t t s t s t t t r r t r r t tt tr ① r t r s r t r s r s st t ② t s t q rt r t ② s st t ② t t t r st s t r ③ ③ r t s ② t q rt r ② s r t r s r t t st ② t s s t r s ② t r t r s t r t s r r r t s r t s r t r s s r r ss r s t r ③ ③ r t ts t r r s t t s r s s s t s r s r tt r r ③ s ② s t ts s s t r s t s r t r s r r t r t r s r rs t r tr s s s s r t st r r ss t s r ts t t r r s s t ② ② P s r t r ②s s t s t t r s s r s t t ② t t s t s t s r s s r t t r r s r ② r s r s r ss t tr② t t s t s r t r q st s t t r r t r s s s t t s r ② st t s s r s r t s r ss s r t s t s s r s r ss s t st t t ② rs s r s s s s r t r s r s t s r ts s r ts s s t r ② ttr t t t s②st rt r t s s②st s ② s r s t s st s②st t r t s rt r t r r t r t st r t r s s rt r t s t t s r ① t ① rt ③ t r r t

s r rt s s r r t ② rs t ① t r r rt s s r r t t ② t r r rt s s r s r t r str t t② r t r r tr s s s s r t s r t t ss r t s s s s s ② s t t t ②③ t s t r s t r s s r t r r ss r s r t t s t r st t t s s r t r s t t st t s r t r s s t r t s t t t s s s ② st r s rt t r ③ t s r ② r ss s s s s t r r t s r t r t r tr s t s r r r t r r s r t r ① t r str t t t s t ss s t t tr ① W t t ts ts t t s s t r st r r t r s t r s t r r t t r r t r s r r ①t t rr t P r tr t s r tr tt t t t r t s t t t g(w ) r r r s t t t s t t t t t st t ss s t t r rt ① r t t t② t t tr ①

t r s r r ss s t r tr t t r s t r ss t r r ② t r r t r r s t r ② ② r r t t ss s r r ② r r ② ② t t t r s ts tr t② s ② ① t r r s st s ② t r r r s s s r ② r r ② r s t r tr t t t r s t t tr t② s ② r t r r t rs r s t t s r ② s t r t ② s st r r ② t r s tr t② r t r r s ① r r r t s r t t t tr t② ②s t r t r r r tr t② t t t r t r s t t tr t② t t ② t r s tr t② s r r tr t② r t r r s ① r r ② r t t r s ts ② t r s r ② r t s r ② s t r t ② s st r r ② r t t t r str② r ② t r st t t② r r t st t t t ② s ① tt s P s P r r ② ss t r st t②

t r s t t r t r s t t r ② r t s t s t r s r t tr t② t tr t② t t r t r r r ② s t str t s st ② r t ② t s t r s ② r t tr t② t s str t r s s t r s r r t t tr t② r ts t s r s t r t s t r s t t s t② ② str r t ts t ② t s s str r t r t s r s r s ts t t t t r s t ②s r st r tr t② t t ② s ② t s t r t st t st ② s r tr t② s s r s rt ② r r ② r tr st t s s t s t② s r t rs r tr t② t st t r r t s r r t rs r ss t r② t r t ts t s st t t r r r t s r r t rs t r r t rs r t r s s r ② r tr st t s r r t q ② st r r t rs r t t t r t t r s s st ss r r t rs r r r r s s s r t ts s r r t rs r s r ① 2 s r ① 2 tr ① s X t r s st r t rs r s 2 X t t r r ts t t tr t② s ② s②st t② ② r s r ts t t st r r t st r s ② t ss r ts t t r s st ② rt② tr t② r ② t s t ② q t r s tr t② r t t r ② tr t② s t s s t st r t r t st rt r t t r s s t r t t r s s t ① t s s

t r r t t tr t② s ② s②st s t t t s ② t t t t r tr t② t t s t t ② t ① st t s st t t t r t s t r ② t r r ② t s r s t ① r t t r t ts tr r ② t t r s tr t② s ② r ② ②③ r ② tr t② t t t r t r s r t rs ② r t r t r r ② s r ts s r t r t r ② r s r s t r t ts r s s t r s r s r t s r t t ss s r s t st r s r r ② t st st t② r tr t② r t t r t t r t r s rts r r ② r ① s t ① st t r t r r ② s rts s t s ts s s 2 ss r t s r t s r t tr t② r r t s r ss ② r t t s s t t t t r r r t rt ss r ② s s s s r ② st t t r t st ② t ts r ② r t r s r s s r t s r t t r t s ② t rs á ③ r t t r t r r r t r s t t tr t r ② t s r s t tr t② r s②st s r s t ② t t r rs t t t ss r ② t r t r s s s r r t t

ss s r t r t s t rst t t ② t r t s st t t s r r s tr t ② r r t q t ② r t ts s r q ② t r t t t r ① s tr t② r t r t s ② s r t t s t rt r q ② tr t② t t t r r t r t s ③ r s t r t r② t s t r r s s tt ts t s t s ③ r t r r ② r t ② r s t r r r tr t② r t r r ss r t r r r s s r r t t tr t② t t t r ③ r s r t tr t② r t rs t r r r s t s t t s t s ③ r t r r t r t t tr t② t t r t r s t② r ② r r s s t ① s r r ss rs r s t r t t ts t② s t r ② t ③ r t r r r st t t t s r s t rst tt t t r r ② t ③ r t r r ss t t r q ② r tr t② t t t s r t tr t q s t s t r ② tr t② t t r r t rs s t r ② tr t② t t r t r s r ② s r r r s t s t t ③ r t r r r t t r ② s r r r ss r t ① st t r t r r r s t s r ① t t ttr t t r s r rs r t r st st ② t ts r ② ss r t s r r q ② r tr t② t t t t r s tr t② r t s s t t str t t

s ss r t ② r r r s ts s t t t t r r t r s ② ② rt t r s t t ss r t s t t t r r t s s rt s t r t r t ss s r ② s r r r ss r ① r t s t r t t r ② r t t r r ss r s ① t r tr t r② t t r s r s r t t t t r r t rs t s t ② st t r tr t② t t s t s r t t t r t tr t② r s r tr t② ② r t t r r r ss r r t t r t tr t② r s t r s r tr t② ② r t t r r r ss r r t r t t t r r r ss r st t s t s st t t ts r t r st t s t s st t t ts t r s t s t r t s t t s r ② tr t② t t t tr t② r t rs t t r ② tr t② t r ② r r tr r t t t r t r s r t st t s r t s r t rs t rs t t r r s t r ② tr t② t t t s t s r

r r r t rs r r t rs r t rs t r s r t rs ② r r t rs s r t rs st ss r t rs t r ② r r r t rs r t r r t tr t② r t r r ② r r ② r t t t tr t② s ② t r r s t ② s s t st t t r t r s s st ss r r t rs r r r r t t② s r t ts r s r t rs r s r ① 2 s r ① 2 tr ① s X t r s st r t rs r s 2 ① t tr t② r t r t r s s st ss r ② t r t t tr t② s ② t r r s t ② r r r t s s t t r r ② s t r t s r t r r ② r r r t r ② r t t r s t r t t r r s t t t t s t r tr t② s ② r t② s tr t② s rt t r s t tr s ss r s r t t t tr s ss r s t r s t r t t t r rt tr t② ① rt tr t② tr t② s ① rt t r r s st t s t s t t r t r s t t tr t② s s t t ① rt tr t② 2 th r r ss t r s r ② t r st r ts t r s ② s s t r t t r r ② r r r t r t r t r ②s r r t t

tr t② t r r r ② t r t r t r r t t t s t tr t② r t rs r s ② t s t t r r s r s ② r r t rs r s ② t s r rs r s r s r t r s str r t st t s r s ② t s r r s r s s t t s t② t rs t s r t r② r t r s t r t r s t t t r t s t s r ts r st t st t r t t r t r t r t t r st t tr t② r t rs t st t s s t t rs s t s r s t t t r r t r s t r t r t r tt r r ① t t tr t r t r t t s t s s r s t r t r t r r t rs s t t r t r r s s s s t s t s t t② t r t s r t s t s r② st t st s t r ② r t tr t② t ts r t② r ② t r t r r ② tr t② s t t tr t② t t r t r t s r ② s r s s r r t s ①t t st r rts t r t tr t② t t r r t② s r t t r t rs ② t r t r s t t tr t② t t t t t s r r r t rs t st t t② r t st st t② r ② r t r t rs t s st t t② st t② r t t r r ② tr t② t ts r t r r ② r t r s r t rs r s tr t② ② t s t t r t r r s s s s r t t② t r s t t r t r t t r t t r s t r t t r s t t q t r t r t rs t r s t ① t r r ss t t t t r t r t s r r ss r

r s r t t r t s r r s r s r tr t② s t st ② s t t ①t ② r ②s t r ② s ②s s t t t s t r str ② r s t t r t t r ② s t s t t r t s rt ① s r s s r s t t t r r r ② ① ts r t st ② t t t t t ts r ② r t r s r ② ① t s r ② tt r s t t t r ② s r r t rs r t st t t t t tr t② s r r s str r s t st t t t t s t ts r t s t tr t r t t r s tr t② r t t t t r t r t② s r ss s s r t s r t t s q st r s t ②③ r t t r r t t s rst t s t t tr t② t t t r r② r t r s t t r tt t t ① r t r t t r t r tr t② t ts t t ts r t r r r t t r r ② s r s r t t r r t r ② tr t② t ts ② r ② s r s t t r ② t ts r r ② s r s r t st t t tt t r r ② r s rs tr t② tr t② Pr s

t t r s t t st t r t ② t r t r tr t② t ts t t t ts r t r r ② s r r t ② t rst s r r r r ss r ② s t t r t r t s s t s r r ② tr t② t ts r r t rs s t t ③ r s r t t r r t ③ r t t s r t r s ② r tr s st r t rs r s t ② t r s r t t s r s r t tr t② t ts r t r t s r ② s r ② s s ① s r ① t t r s t s t s s t t r ts r ② t r t ②s rst st t t r ts r r t r s r t t r t t r ts ② r ② s r r t tr t② t ts ② r ② s r t st t t r ts r ② t r t r t rs r ② t s t② r r r r ss s r r r ss t 2 + αi Xt + γi Zt + ηi Oi,t + εi,t Yi,t = β1,i W indt + β2,i W ind2t + ρi dt + δ1,i Ti,t + δ2,i Ti,t

r i = 1, 2,..., 133 t = 1, 2,..., 8760 εi,t s t rr r t r t ③ r t r t r Yi,t s r ② t t r t it r t r t t t r W indt s t r ② tr t② t t r r t rs W ind2t s t sq r t r W indt r dt s t r ② tr t② r t t r r s Ti,t Ti,t2 r t r ② t r t r t sq r t r t t r t r r s t ② r t t r t r s t s r Xi,t s tr r s t t r r r t rs rs t t s t ② r W indt 1 W indt 2 W indt 24 W ind2t 1 W ind2t 2 W ind2t 24 dt 1 dt 1 dt 24 Ti,t 1 Ti,t 2 Ti,t 24 r s Xi,t r s t tr r ② str s r s ① t t s s ss t t t r s s s t rs r r t ts r t r Zt s ② r s r ②s rs r Oi,t s r t ② r t ③ r t th r t r s t r t t rs r r t r t s t t t t r t rs r t s r t r t r ss r t rs r q t t t r ts r t th r t r s r t t t t s s E (Yi,t W indt, Γi,t ) = β1,i + 2β2,i W indt W indt 2 = dt, Ti,t, Ti,t, Xt, Zt s r t s r r ss rs q t M Ei,t = r Γi,t ① t W indt W ind2t r t t r ts r r t rs r r t s r ② s r s t t t t tr t② t t s r t② t t t t r s t t t r ② r t t t

r t q t ② r t s st t t s r ② s st t ② t r st sq r s r t st t t r ts ② r t r t rs β1,i β2,i ② t r st t s r s r ② s t t r t r t ts t s t② str t r r r s r t s t s t r t r ② tr t② t t t t s ② ③ r s t r t r s t s r t s t s r r r rt r t r t r q t ③ r r s s tt r ② t s t s t t r r t s r r t s t s r ② st t t s r ① t t t t s t t t t t t r s t ② ③ r r ③ t s t r t s s s 2 + αi Xt + γi Zt + εi,t Yi,t =β1,i W indt + β2,i W ind2t + ρi dt + δ1,i Ti,t + δ2,i Ti,t Yi,t = max Yi,t, 0 r i = 1, 2,..., 133 s t = 1, 2,..., 8760 r t r s r t s t s t t r t ② r s t ts t s r ③ r t r ss ② q t

r t t r t r s ① t t t t t t s ② E (Yi,t β1,i W indt + β2,i W ind2t + λti Γi,t W indt, Γi,t ) =Φ β1,i W indt + β2,i W ind2t + λti Γi,t σi β1,i W indt + β2,i W ind2t + λti Γi,t σi +ϕ σi r λi = [ρi, δ1,i, δ2,i, αi, γi ]T Φ ( ) ψ ( ) r t t str t t r t② s t② t st r r r r t r t r t it r t r s t t t t t s ② E (Yi,t W indt, Γi,t ) W indt β1,i W indt + β2,i W ind2t + λ i Γi,t =Φ (β1,i + 2β2,i W indt ) σi M Ei,t = r q t t q t s t t t r t r r t t s r t r t t t r t r r r ss s t s t t str t s ②s ss t r q t rst t r ts r t t r rs r s t r t r ③ r t t r tr t② t t s r s t s ① st t t r t r t r s t t rst r r t t r ts ② t② rst r t t t ts ② t② r r r ss t r t r ② t ts r

t s ① r ② s r s t t t r ② r t ts ② t s s ① s r t r r t t t t s ①t s t t ① s r r ss rs s s tt r s ② t rt t s t s p, d, q Ö P, D, Q S r t s s r t S t s rt t r t t s s t② p P r t r r r t r r ss rt t d D t r t s t t t t s r q Q r t r r r r rt t r s S = 24 r ② t s t s t r s s r r s s di S i Φi B S φi (B) D θi (B) ui,t + β1,i W indt + β2,i W ind2t S Yi,t =Θ B 2 + ρi dt + δ1,i Ti,t + δ2,i Ti,t + α i X t + γ i Zt 2 r i = 1, 2, 3, 4, 5, 6 t = 1, 2,..., 8760 r ui,t s t s 0, σi,u r dt Xit Zt W indt W ind2t r t s s t T i,t q s t r t r t r ② r t rs r ② s r t r Yi,t s r ② t t r t r t th t② t t B s t r t r d D S st r s s s s r r t r t t t di Di r t r r t i t Φi ( ) φi ( ), Θi ( ) θi ( ) r ② t s r r P p Q q r s t ② r q t t t r ts r s s M Ei,t = E (Yi,t W indt, Γi,t ) = β1,i + 2β2,i W indt W indt

r i = 1, 2, 3, 4, 5, 6 r Γi,t t s st r r s Yi t rr t st s dt, Xi,t, Zt, W ind2t, T i,t r r ② t t t s t s r s t t r r t st t r t t s r s s s s t r ts s r s s t r t t sts t t st r s ② ② r r r s ② r t t st s t r t st s s t r ts t t r r q s ② t r ② t ①t t t st t ② t r q ② s s r t s t t ② ② r tr t ① ts s s t r t r q r s rst r t tr t② t t t r t r r ② s r s r s s ② st t r② st t t s ② ③ t t s sq r s tr ② r r p d q P D Q r t r ② ③ t ② s r t r t r r s tr s s s s r rs ② t ① s s t r t r t rs q t ② t r st t s s r st t r ts r t r t r r t r t② s t r r s t r r r r t s s t r t t sts r t s s ① s t ② t s t r r t s rst st s t r st t r② s s t② rst r ② r tr t t t t st t r② st t r② s q s r s r t s t r t s p d q P D Q t r t s t s s t t t rr s p d q P D Q

r r s ts r rts r st t r ts r tr t② r t ② t② s t r s r r t r t r t r s ② r st ss r t rs t r t r s r r r t rs t r t t s s r r s ts t s t ② r r ts s t s r s ① t t t r s t t t t r r s t t r t s t s ts rst s ① t tr t s t r r t rs r tr t② s t s ② s r t ① t t r② r ② t ts r t t t t s s s rt ② s t s ts r t t r s t st t s r r t r s r r s t t r s t t s ① t t t t t t s t r t t② s s r r t t s ts ② s s s r r s t ② t t r s s r t t t s t s t st r ① t t t t r t s s s t ② ttr t t t ss r ② rt r t t r rt s tr t② q s st t r s tr t② t t r r r t rs r r ts r s r r r r s s r t t t r s s st t t r t r s r t r r ② s s s ① t tr t s t s ② r r t rs s r r ② t t t t ① t s s ts ② r r t s

s r s ② r st t t t s ts r r r t rs r st t t t s ts r t r s r r t rs r t r r r s ts s rt t t s ts ss s r r s r ② q t ② ss r t s r ① 2 s r ① tr ① s X r s t r st t s r ② r tr r t rs r t s t r t② s r t rs t t ② r t ts s s r ① 2 s r ① 2 tr ① s X s ③ r s r r rt ss s ts r t t r r t rs r s t s t r tr t② t t s ts t s t r r ss r t s ② t r t rs t ss s r t r s s st r t rs t r ss r t s r t r s s r r t rs r s 2 r r t rs t ss r t s r s s r s t ② r t rs r s X t r s s st r t rs t ① ss r t s r s s s s r s t ② r s t t ss s ts r② s r ② r s t r t t r s s t ② s r r ss s ts t t r r r r ss r ① s ts r st t t s r r s t t s r t r t t r st t r s s s ② s t t t s ts t r s r s r t s s ts ① r s t ② s t t s s r s t ② t s ss s ts r r t t s s r r r t s

s r ss s ts r r s r t s t ss r t s r t r r ss r t s t ss s t rs ② r r r s r t t t ss r t s t t ss s t r t r t r t s tr t② r t rs r t st t ② r t st ② r ① t② r t rs r t t rt t② ② r s ss r t s s r s r r r r q r s t r r t r r t s r s s s t r s r r t t ② s ss r s r ① t③ st t st ② r ss r t s ② s r r ② ss s r t s r s t r s s②st r ② t t s r s t ② ss ② ② rs r t st s②st t ② ① t r t s t tr t s r ② ① t r t s t rst s②st r s s ss s ② t s t ① t r t s t r r t t t r t② Pr ss rs ss s r s ② s s ts st rt s t t s s s r s s t r t t t ① s t ② r ss s t t t s r t t ② r t ② s s s t r t s r r r t r t r ② r tr t② r r t r st r tr t② t r s rs r r q r s rs t t t r s

tr ss r t r t s r ② t r r t r s t st t r t ts tr t② r t r r t r ② s r s ② r t r t r ts t r t ②s r t r r r r ss s t s ② r t t r rst ② t r t r r r② r t r t r t t r ts ② r ② s r r t s ② r t t r rst ② r t tr t② t t ② r ② s r t t t rr s r ts s t t s r s t s t ② r t t t ss s t ts t t r r ts t rt r r tr t st ② r t ss r t s r r q ② tr t② t t t

r② t t st s r s t ① s r t r s Yt st rts Starts ts t Completed s t P r ts BP s str t ① U W I s r ① N HP I t ① Rent P t r t pop ② t t unem s inc r st s km r t t ② t emp rs s tr r ts ② rs r P $1, 000 s rs 1, 000 rs s t r ① t r② r s s s t rs r s s s t t tr ① r s ② P r r t s s r ② r t r st s r t r s t t s r s r t ① s t s ① t tr r t t r tt t r t s t r② rt t rt r r t s t r r t s

r ss s t s t t ② ts H1 H0 H1 2 > 0 σµ ρ 6= 0 2 > 0 σµ s r rr t rr r t r s ss H1 εt s r rr t rr r t r s H0 ρ 6= 0 ① ts H1 ss r ts s t t rr t s ts H0 H1 2 =0 H 0 ρ = σµ r ss s t H0 s t r t ② t s s 1.5037 24.3421 37.7409 52.5103 8.1093 st st t st s 0.22401 5.178e 06 1.998e 09 3.958e 12 5.092e 16 p R s t r s t st s s t r rr t ② r ① st t s s ① ts t t s r rr t εi,t ② t s s t t st tr t s t t s t t tr ① str t s rt r ss s t t ② s t P r ②r r t s t r t t st r s t s s t tr t ② s t s t st t s P s r s t st r rs t t t st P s r r s P s t st s s r s P r t s t st t t st r s t s t s t st r s t s s s t t st r s P s t st t ②s ① t P s r s t st r r ss s t s sts sts s t

0.0060 0.0083 0.0019 0.0031 0.0003 Completed BP 0.0383 0.66836 σ 0.02032 0.0382 (0.0375) 0.0055 (0.0097) (0.5668) 2.1758 (0.0029) 0.0045 0.1425 (0.0238) (0.1280) 0.1241 0.0022 (0.0038) (0.0034) 0.0078 0.0062 (0.0033) (0.0339) 0.1139 (0.1728) = empi empj 0.01963 0.0216 (0.0371) 0.0060 (0.0093) (0.5780) 2.7144 (0.0029) 0.0043 0.1350 (0.0249) (0.1311) 0.6466 (0.0037) 0.0017 (0.0033) 0.0079 0.0054 (0.0031) (0.0322) 0.0789 (0.1915) (0.1791) 0.9943 0.7881 α = 0.28 emp,0 wi,j α 0.02025 0.0349 (0.0375) 0.0047 (0.0097) (0.5814) 2.6422 (0.0028) 0.0064 0.1308 (0.02346) (0.1310) 0.1079 (0.0038) 0.0001 (0.0036) 0.0092 0.0065 (0.0033) (0.0331) 0.1118 (0.1734) (0.1611) 0.9878 0.7968 α = 0.28 = movi movj 0.02005 0.0247 (0.0379) 0.0062 (0.0099) (0.6192) 3.0981 (0.0031) 0.0052 0.1297 (0.02367) (0.1352) 0.0473 (0.0039) 0.0036 (0.0037) 0.0099 0.0077 (0.0033) (0.0354) 0.0792 (0.0641) 0.1637 (0.0393) 0.0367 α = 0.02 mov,0 wi,j = mig,0 wi,j α migi,j α = GDPi GDPj α 0.02145 0.0278 (0.0383) 0.0071 (0.0098) 2.9388 (0.6060) (0.0030) 0.0049 0.1299 (0.0253) 0.0562 (0.1349) (0.0039) 0.0035 (0.0036) 0.0096 0.0071 (0.0034) 0.0813 (0.0352) (0.0333) 0.0762 (0.0276) 0.0356 α = 0.1 GDP,0 wi,j t t t s t t tr ① t r s r st t s t ② t t r t s t t tr ① st t t t r t r r t r α, t α ③ s s r rt t s s t s t t st t s st t st ② s t t s t r s t ② rst s t st t r s t r t ② 0.02051 (0.0379) 0.0291 (0.0421) inc 0.0042 (0.0097) 0.0054 (0.5725) 2.5322 3.0193 (0.6507) (0.0028) 0.0046 (0.0032) 0.0051 (0.0029) unem pop Rent 0.1367 (0.0234) 0.1337 N HP I (0.0273) (0.1286) (0.1454) 0.1360 0.0806 (0.0038) (0.0035) UW I (0.0043) (0.0038) (0.0033) 0.0069 (0.0038) Starts (0.0339) 0.1060 (0.1466) 0.0830 Yt 1 (0.0380) 0.8988 0.8173 ρ (0.1565) 0.7098 (0.1397) α = 0.5 0.7353 = exp( αdi,j ) α = 0.35 t t W λ G,0 wi,j = G,0 wi,j d α i,j st t t s t tr ①

st t r s ts t t tr ① t r ts r t r rs t λ 0.4W G + 0.6W emp 0.5W G + 0.5W mov 0.2W G + 0.8W mov 0.1W G + 0.9W GDP αg = 0.35 αe = 0.4 αg = 0.45 αe = 0.15 αg = 0.55 αe = 0.25 αg = 0.55 αe = 0.35 0.8429 0.8964 0.9007 0.8038 0.9979 0.9988 0.9774 0.9984 0.0905 0.1084 (0.1644) ρ Yt 1 Starts Completed BP UW I N HP I Rent pop unem inc σ (0.1697) (0.0334) 0.0070 (0.1528) (0.1550) (0.1596) (0.1586) 0.0835 (0.0334) (0.0333) 0.0059 0.0073 (0.1735) (0.1831) 0.0747 (0.0335) 0.0070 (0.0032) (0.0033) (0.0032) (0.0031) 0.0080 0.0084 0.0078 0.0070 0.0013 0.0017 0.0008 0.0015 0.0987 0.1314 0.0870 (0.0033) (0.0037) (0.1299) 0.1377 (0.0037) (0.0033) (0.0038) (0.0040) (0.1273) (0.1286) 0.1337 0.1297 (0.0031) (0.0036) 0.0741 (0.1295) 0.1403 (0.0241) (0.02294) (0.0237) (0.0251) 0.0042 0.0050 0.0045 0.0038 (0.0029) 2.4379 (0.5707) 0.0051 (0.0094) 0.0029 (0.0028) (0.0028) 2.2804 2.6339 (0.5668) (0.5704) 0.0042 0.0046 (0.0096) (0.0093) 0.0385 0.0281 (0.0029) 2.6497 (0.5721) 0.0037 (0.0092) 0.0241 (0.0371) (0.0373) (0.0375) (0.0372) 0.01968 0.01984 0.01962 0.01949 t s t t st t s st t st ② s t t s t r s t ② s r s r t t st r r t W st t t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) r t tr ① s t ② s s r t② s t ② s t r r t r αg r t tr ① t r r t r αe t s t t t r t r a s t s ② st t s ③ t

st t r s ts t t tr ① r t s t ① t t t ts s rs t s λ 0.8W G + 0.2W emp 0.9W + 0.1W mig 0.5W G + 0.5W mov 0.4W G + 0.6W GDP αg = 0.6 αe = 0.11 αg = 0.5 αe = 0.05 αg = 0.5 αe = 0.35 αg = 0.15 αe = 0.5 0.7607 0.8028 0.8977 0.8092 0.9693 0.9971 0.9973 0.9985 (0.1600) ρ Yt 1 Starts Completed BP UW I N HP I Rent pop unem inc σ (0.1770) 0.1147 (0.0337) 0.0062 (0.1624) (0.1542) (0.1785) (0.1590) 0.0920 0.1141 (0.0336) (0.0332) 0.0061 0.0074 (0.1721) (0.1807) 0.0729 (0.0336) 0.0074 (0.0033) (0.0033) (0.0032) (0.0031) 0.0077 0.0077 0.0075 0.0076 0.0024 (0.0038) 0.0023 (0.0038) 0.0004 0.0023 0.1250 0.1241 0.0876 (0.0034) (0.1273) 0.1434 (0.0023) (0.0033) (0.0037) (0.1268) (0.1281) 0.1416 0.1349 (0.0033) (0.0037) 0.0702 (0.1297) 0.1404 (0.0237) (0.0236) (0.0236) (0.0253) 0.0045 0.0045 0.0045 0.0038 (0.0028) 2.1436 (0.5637) 0.0056 (0.0096) 0.0382 (0.0028) (0.0028) 2.1415 2.5286 (0.5615) (0.5662) 0.0054 0.0056 (0.0096) (0.0093) 0.0383 0.0301 (0.0029) 2.6497 (0.5721) 0.0039 (0.0092) 0.0228 (0.0374) (0.0372) (0.0372) (0.0371) 0.02004 0.01990 0.01967 0.01958 t s t t st t s st t st ② s t t s t s r s t ② s r s r t t st r r t W st t t t t t tr ① r ② t r st s r t s WN = g (di,j, zi,j, θ) r θ = (αg, αe, a) r t tr ① s t ② s s r t② zi,j s t ② s t r r t r αg t r t t r r t r αe t t t t r t r a s t s ② st t s ③ t