Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid

Σχετικά έγγραφα
Analytical Expression for Hessian

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Matrix Hartree-Fock Equations for a Closed Shell System

The Friction Stir Welding Process

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution

ANTENNAS and WAVE PROPAGATION. Solution Manual

Fundamental Equations of Fluid Mechanics

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

4.2 Differential Equations in Polar Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Example 1: THE ELECTRIC DIPOLE

Section 7.6 Double and Half Angle Formulas

On mixing generalized poison with Generalized Gamma distribution

Matrices and Determinants

EE512: Error Control Coding

Second Order RLC Filters

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homework 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Example Sheet 3 Solutions

Chapter 7a. Elements of Elasticity, Thermal Stresses

The Simply Typed Lambda Calculus

Strain gauge and rosettes

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

6.3 Forecasting ARMA processes

Homework 8 Model Solution Section

Laplace s Equation in Spherical Polar Coördinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

Tutorial Note - Week 09 - Solution

Other Test Constructions: Likelihood Ratio & Bayes Tests

Concrete Mathematics Exercises from 30 September 2016

Forced Pendulum Numerical approach

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

3.7 Governing Equations and Boundary Conditions for P-Flow

Instruction Execution Times

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Numerical Analysis FMN011

D Alembert s Solution to the Wave Equation

Approximation of distance between locations on earth given by latitude and longitude

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ

Inverse trigonometric functions & General Solution of Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Math 6 SL Probability Distributions Practice Test Mark Scheme

Uniform Convergence of Fourier Series Michael Taylor

Time dependent Convection vs. frozen convection approximations. Plan

The Laplacian in Spherical Polar Coordinates

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

1 3D Helmholtz Equation

[1] P Q. Fig. 3.1

Every set of first-order formulas is equivalent to an independent set

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Partial Differential Equations in Biology The boundary element method. March 26, 2013

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions to Exercise Sheet 5

Finite Field Problems: Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Higher Derivative Gravity Theories

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

Parametrized Surfaces

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CE 530 Molecular Simulation

Srednicki Chapter 55

SOME PROPERTIES OF FUZZY REAL NUMBERS

( y) Partial Differential Equations

Problem Set 3: Solutions

C.S. 430 Assignment 6, Sample Solutions

1 String with massive end-points

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Statistical Inference I Locally most powerful tests

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Math221: HW# 1 solutions

CRASH COURSE IN PRECALCULUS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Transcript:

Advances in Mathematical Physics Volume 016, Aticle ID 9536151, 19 pages http://dx.doi.og/10.1155/016/9536151 Reseach Aticle Two-Phase Flow in Wie Coating with Heat Tansfe Analysis of an Elastic-Viscous Fluid Zeeshan Khan, 1, Rehan Ali Shah, 3 Saeed Islam, 1 and Bilal Jan 1 Depatment of Mathematics, Abdul Wali Khan Univesity, Madan, Khybe Pakhtunkhwa, Pakistan Sahad Univesity of Science and Infomation Technology, Peshawa, Pakistan 3 Depatment of Mathematics, Univesity of Engineeing and Technology, Peshawa, Khybe Pakhtunkhwa, Pakistan Coespondence should be adessed to Zeeshan Khan; zeeshansuit@gmail.com Received 4 Apil 016; Revised 1 May 016; Accepted 7 June 016 Academic Edito: Alexande Iomin Copyight 016 Zeeshan Khan et al. This is an open access aticle distibuted unde the Ceative Commons Attibution License, which pemits unesticted use, distibution, and epoduction in any medium, povided the oiginal wok is popely cited. This wok consides two-phase flow of an elastic-viscous fluid fo double-laye coating of wie. The wet-on-wet (WOW) coating pocess is used in this study. The analytical solution of the theoetical model is obtained by Optimal Homotopy Asymptotic Method (OHAM). The expession fo the velocity field and tempeatue distibution fo both layes is obtained. The convegence of the obtained seies solution is established. The analytical esults ae veified by Adomian Decomposition Method (ADM). The obtained velocity field is compaed with the existing exact solution of the same flow poblem of second-gade fluid and with analytical solution of a thid-gade fluid. Also, emeging paametes on the solutions ae discussed and appopiate conclusions ae awn. 1. Intoduction The study of non-newtonian fluids has gained deep attention fom eseaches due to its vaious applications in industies like oil, polyme, plastic, and so foth. Vaious models, both analytical and numeical, have been discussed in the study of non-newtonian fluids. Fluids models ae chaacteized by the undelying fluid gades like second gade, thid gade, and so foth genealizing to n-gade fluids. In this study non-newtonian thid-gade fluids have been studied fo thei applicability in optical fibe coating. Thid-gade fluids have been studied by many eseaches. Siddiqui et al. [1] studied the tosion flow of such fluid. The same autho studied heat flux of such fluids in two paallel plates which is discussed in []. Islam et al. [3] studied thid-gade fluid with heat tansfe. Aksoy and Pakdemili [4] investigated the thid-gade fluid flow in paallel plates with a poous medium. Thesubjectoftwoimmisciblefluidsflowswithheattansfe has been biefly studied due to its impotance in nuclea and chemical industies. It can be classified into thee goups, namely, segegated flows, tansitional o mixed flows, and dispesed flows [5]. Siddiqui et al. [6] studied two immiscible fluids in poous media. Batchelo [7] studied two immiscible fluidsinananalogousplate.twoimmisciblefluidshavebeen extensively studied theoetically and expeimentally [8, 9]. Diffeent types of fluids ae used fo wie and fibe optics coating, which depends upon the geomety of die, fluid viscosity, tempeatue of the wie o fibe optics, and the molten polyme. Most elevant woks on the wie and fibe optics coating aethussummaizedinthefollowing. Shah et al. [10] studied the wie coating analysis with linealy vaying tempeatue. Unsteady second-gade fluid with oscillating bounday condition inside the wie coating die was investigated by Shah et al. [11]. Exact solution was obtained fo unsteady second-gade fluid in wie coating analysis [1]. Shah et al. [13] studied thid-gade fluid with heat tansfe in the wie coating analysis. All these attempts wee elated to single laye coating flow. Immiscible fluid flow is used fo many industial and manufactuing pocesses such as oil industy o polyme poduction. Kim et al. [14] examined the theoetical pediction on the double-laye coating in wet-on-wet optical fibe coating pocess. Double-laye coating liquid flows wee used by Kim and Kwak [15] in optical fibe manufactuing. Fo this pupose powe-law fluid model was used. Recently Zeeshan et al. [16] used Phan Thien Tanne fluid in doublelaye optical fibe coating. The same autho [17] investigated

Advances in Mathematical Physics Q 1 Pimay coating applicato Seconday Q coating applicato Die cup Die cup Wie in Double coated wie out Figue 1: Manufactuing pocess of wie. Pimay coating esin Seconday coating esin double-laye esin coating of optical fibe glass using wet-onwet coating pocess with constant pessue gadient. Twophase flow of an Oloyd 8-constant fluid was used fo optical fibe coating by Zeeshan et al. [18]. Flow and heat tansfe in double-laye optical fibe coating using wet-on-wet coating pocess wee investigated by Khan et al. [19]. Keeping in view the wide ange of applications, an attempt is made to analyze the flow and heat tansfe in two-phase flow of an elastic-viscous fluid in a pessue type die. In this pape, the task is to find the analytical solutions fo the govening nonlinea equation aising in a coating metallic wie pocess inside a cylinical oll die, to study the fluid flow behavio in paticula, and to examine the effects of the non-newtonian fluid paametes and axial distance fom the cente of the metallic wie. This is ou fist attempt to investigate the double-laye coating flow of an elastic-viscous fluid on the wie using wet-on-wet coating pocess. Apat fom this, no one investigated the double-laye wie coating in wet-on-wet coating pocess using two immiscible elasticviscous fluids in a pessuized coating die. To the best of ouknowledge,nosuchanalysisofthedouble-layecoating flows of two immiscible elastic-viscous fluids on the wie is available in the liteatue. The pesent pape is stuctued as follows. Section isesevedfomodelingofthepoblem.solutionofthe poblem is given in Section 3. Section 4 is eseved fo analysis of esults. Section 5 contains the concluding emaks.. Modeling of the Poblem The geomety of the poblem is shown in Figue 1. The die and wie ae concentic. The coodinate system is taken at the cente of the wie, in which is taken pependicula to the flow diection z. The coating pocess is pefomed in two phases. In the fist phase the uncoveed wie of adius R w is agged with constant velocity V 1 into the pimay coating liquid. In the second phase the wet coating passes though the seconday coating die of adius R d and length L. Inthisway,thewie leaves the system with two layes of coating. The wet layes ae ied up by ultaviolet (UV) lamps. The liquid paametes at each phase ae genealized by coesponding phase numbe denoted by j (j = 1, ). The liquids ae paameteized by tempeatue Θ (j), the fluid density ρ (j),theviscosityμ (j), themal conductivity K (j), themal expansion coefficient β (j), and the specific heat c (j) p.thegasvelocitysuoundingthe polymeatthesufaceofcoatedwieisepesentedbyv as shown in Figue. The govening equations fo the two fluids ae the continuity, momentum, and enegy equations given as follows: u (j) =0, (1) ρ (j) D u (j) Dt = T (j), () c (j) DΘ (j) p =k Dt j Θ (j) + t (T (j) L), (3) whee D/Dt = / t + u (j) isthe substantive acceleation. No-slip bounday conditions ae taken at velocity. The tempeatue conditions Θ (1) and Θ () aetakenatthefibe opticsanddiewall,espectively.atthefluidinteface,we utilize the assumptions that the velocity, the shea stess, the pessue gadient, the tempeatue, and the heat flux ae continuous. The Cauchy stess T (j) given in () is T (j) = pi + S (j). (4) In the above equation p is the pessue and I and S (j) ae the identity and exta stess tenso, espectively. Fo thid-gade fluid S (j) is defined as [1 4, 13] S (j) =μ (j) A (j) 1 +α (j) 1 A(j) +α (j) A(j) 1 +τ (j) 1 A(j) (5) +τ (j) (A (j) 1 A(j) + A (j) A(j) 1 )+τ(j) 3 (t A (j) ) A(j) 1. In which α (j) 1, α(j), τ(j) 1, τ(j),andτ(j) 3 ae constants and A (j) 1, A (j), A(j) 3 ae kinematic tensos defined by A (j) 1 = L (j)t + L (j), A (j) n = A (j) n 1 LT + LA (j) n 1 + DA(j) n 1 Dt, n =,3, whee T stands fo tanspose of a matix. Fo steady and unidiectional flow velocity, tempeatue and stess fields ae defined as u (j) =[0,0,w (j) ()], Θ (j) =Θ (j) (), S (j) =S (j) (). (6) (7)

Advances in Mathematical Physics 3 Die =R d =R Fist phase flow Second phase flow =R w z Wie V 1 Figue : Two-phase flow model in wie coating die. In view of (7), (1) is satisfied identically and fom () (6) we have S (j) 3 =(α(j) 1 +α (j) )(dw(j) ), S (j) zz =α(j) ( dw(j) ), S (j) dw (j) 3 z =μ(j) +(τ (j) +τ (j) 3 )(dw(j) ). (8) The petinent bounday conditions on the velocity ae [14 19] w (1) =V 1 at =R w, w () =0 at =R d, w (1) =w (), S (1) z =S() z at =R. (10) (11) The petinent bounday conditions on the tempeatue ae [16 19] Fom (8), () and (3) educe to Θ (1) = Θ (1) at =R w, Θ () = Θ () at =R d, (1) (τ (j) +τ (j) 3 ) d 3 ( (dw(j) ) ) + μ(j) d (dw(j) )=0, K (j) ( d + 1 d )Θ(j) +μ (j) ( dw(j) ) 4 +(τ (j) +τ (j) 3 )(dw(j) ) =0. (9) K (1) dθ (1) Θ (1) =Θ (), =K () dθ () at =R, (13) whee (11) and (13) ae the inteface conditions on velocity and tempeatue, espectively. The volume flow ate at some contol suface is Q (j) =πv 1 (h (j) R w ), (14) whee h (j) is the adius of the coated wie.

4 Advances in Mathematical Physics The volume flow ate is [14 19] Q (j) R d = w (j) (). (15) R w Thickness of the coating wie is [14 19] Q(1) h (1) =R w ((1 + πv 1 Rw ) 1), h () =R w ([(1 + h(1) ) + Q() ] R w πv 1 Rw [ ] +(1+ h(1) R w )). 1/ (16) In view of (17), (9) (16) can be educed to the following set of nondimensional equations, espectively: d w j d θ j + dw j +β j (3 d w j (dw j ) +( dw 3 j ) )=0, =0, + 1 w 1 (1) =1, w (δ) =U, w 1 =w, S (1) z =S() z θ 1 (1) =0, θ (δ) =1, θ 1 =θ, dθ j +B j ( dw j ) +B j β j ( dw 4 j ) at =Ω, (18) (19) (0) (1) () = R w, w j = w(j) V 1, θ j = Θ(j) Θ () Θ () Θ (1), τ (j) 0 =τ (j) +τ (j) 3, R d =δ>1, R w R =Ω, R w (17) dθ 1 = K dθ δ Q (j) Q j =Q 1 +Q = πrw V 1 δ + w ()(), Ω h j =h 1 +h = h(j) R w Ω = w 1 ()() 1 at =Ω, Ω 1/ =([1+ w 1 ()() ] 1 δ 1/ 1)+([(1+h 1 ) + w ()() ] Ω (3) (4) (5) V V 1 =U, +(1+h 1 )). λ= μ() μ (1), K= K() K (1), μ (j) V 1 B j =, K (j) ( Θ () Θ (1) ) β j = τ (j) 0 μ (j) (R w /V 1 ). 3. Solution of the Poblem The OHAM is a steadfast method which has been boadly used by the eseaches to solve nonlinea poblems. One special aea of application of this method is to solve equations aising when non-newtonian fluids [0 5] ae studied. To solve (18) coesponding to the bounday conditions given in (0) and (1), we apply OHAM and ADM [6 8]. The details of OHAM and ADM ae given in Appendix. Hee, only the OHAM solution is given.

Advances in Mathematical Physics 5 By using OHAM, the zeoth-, fist-, and second-ode solutions fo both layes ae given below: Collectingtheesults,wewitethevelocityfieldobtainedby OHAM up to second-ode appoximation as w (1)0 =σ 1 +σ ln, w ()0 =σ 3 +σ 4 ln, w (1)1 =σ 5 +σ 6 ln k C 1 k ln + 1 k β 1 8 4 1 C 1 k β 1, w ()1 =σ 7 +σ 8 ln k C 3 k ln + 1 k β 8 4 1 C 3 k β, w (1) =σ 9 +σ 10 ln ln C 1 k 1 ln C 1 k 1 +k w 1 () =w (1)0 () +w (1)1 (, C 1 )+w (1) (, C 1,C ) +, w () =w ()0 () +w ()1 (, C 1 )+w () (, C 3,C 4 ) +. (7) The seies solution up to second-ode appoximation fo both layes is w 1 =Φ 11 +Φ 1 ln +Φ 13 + 1 Φ 14 + 1 Γ 15 + 1 3 Φ 16 + 1 4 Φ 17 + 1 5 Φ 18, (8) C 1k 1 C 1 k C 1 k + 1 C 1 k β 1 5 5 1 C 1 k β 1 3 3 C 1k β 1 4 + C 1 k β 1 10 5 C 1 k β 1 3 4 C 1 k β 1 3 3 + C 1 k β 1 4 C k β 1 + 3C 1 k 1k β 1 + 6C 1k 3 β 1 σ 4 C 1 k4 β 1 C 1 k4 β 1 3 6 3C 1 k4 β 1 4 3C 1k β 1σ 4 σ 4 ln +C 1 σ 4 ln, w () =σ 11 +σ 1 ln ln C 3 k ln C 3 k 1 +k (6) w =Γ 11 +Γ 1 ln +Γ 13 + 1 Γ 14 + 1 Γ 15 + 1 3 Γ 16 + 1 4 Γ 17 + 1 5 Γ 18. Inviewof(4)thevolumeflowateineachphaseisobtained as follows: Q 1 = 1 4 +Φ 14 (Ω 1) +Φ 11 (Ω 1) Φ 1 4 Ω + Φ 13 3 (Ω3 1)+( Φ 1 3 Ω +Φ 15 ) ln Ω Φ 16 ( 1 Ω 1) Φ 17 ( 1 Ω 1) C 3k 1 C 1 k C 3 k + 1 C 1 k β 5 5 1 C 3 k β 3 3 C 3k β 4 + C 3 k β 10 5 C 3 k β 3 4 C 3 k β 3 3 + C 3 k β 4 C 4k β + 3C 3 k 1k β + 6C 3k 3 β σ 6 C 3 k4 β C 3 k4 β 3 6 3C 3 k4 β 4 3C 3k β σ 6 σ 6 ln +C 3 σ 6 ln. Q Φ 18 3 ( 1 Ω 3 1), = (Ω δ) (( Γ 11 (Ω+δ) + Γ 13 (Ω+δ) +Γ 14 )) +Γ 15 (ln ln ( Ω δ )) ( 1 Ω 1 δ )Γ Γ 11 16 ( 1 Ω + 1 δ ) + Γ 86 ( 1 Ω + 1 δ ). (9)

6 Advances in Mathematical Physics 4. Solution fo the Tempeatue Distibution Now inseting w 1 () and w () fom (8) into (19) and solving with bounday conditions given in () and (3), we obtain the tempeatue fields fo both layes as θ 1 =c 1 +c ln + Ψ 1 + Ψ 1 + Ψ 3 0 + Ψ 4 19 + Ψ 5 18 + Ψ 6 17 + Ψ 7 16 + Ψ 8 15 + Ψ 9 14 + Ψ 10 13 + Ψ 11 1 + Ψ 1 11 + Ψ 13 10 + Ψ 14 9 + Ψ 15 8 + Ψ 16 7 + Ψ 17 6 + Ψ 18 5 + Ψ 19 4 + Ψ 0 3 + Ψ 1 + Ψ +Ψ 3 + Ψ 4 +Ψ 5 (ln ), θ =c 3 +c 4 ln + Λ 1 + Λ 1 + Λ 3 0 + Λ 4 19 + Λ 5 18 + Λ 6 17 + Λ 7 16 + Λ 8 15 + Λ 9 14 + Λ 10 13 + Λ 11 1 + Λ 1 11 + Λ 13 10 + Λ 14 9 + Λ 15 8 + Λ 16 7 + Λ 17 6 + Λ 18 5 + Λ 19 4 + Λ 0 3 + Λ 1 + Λ +Λ 3 + Λ 4 +Λ 5 (ln ), (30) whee c 1, c, c 3, c 4, σ 1, σ, σ 3, σ 4, σ 5, σ 6, σ 7, σ 8, σ 9, σ 10, σ 11, σ 1, Ψ 11, Ψ 1, Ψ 13, Ψ 14, Ψ 15, Ψ 16, Ψ 17, Ψ 18, Γ 11, Γ 1, Γ 13, Γ 14, Γ 15, Γ 16, Γ 17, Γ 18, Λ 1, Λ, Λ 3, Λ 4, Λ 5, Λ 6, Λ 7, Λ 8, Λ 9, Λ 10, Λ 11, Λ 1, Λ 13, Λ 14, Λ 15, Λ 16, Λ 17, Λ 18, Λ 19, Λ 0, Λ 1, Λ, Λ 3, and Λ 4 ae all constants containing the convegence-contol paametes C 1,...,C 4, which ae optimally detemined by themethodofleastsquaesandaegiveninappendix. 5. Analysis of the Results Two-phase flow of an elastic-viscous thid-gade fluid is used fo wie coating. Actually, we ae making a platfom fo coating of polyme on the wie using theoetical appoach. The wie needs flexibility; that is why we need two-laye coating of the polyme. The inne coating o pimay coating potectsthewiefombending,whiletheoutecoating o seconday coating potects the pimay coating fom mechanical damage. Fo coating of the double-laye wie the wet-on-wet coating pocess is applied. Axial velocity distibution, flow ate, thickness of the coated wie, and tempeatuedistibutionsfoeachphaseaeobtainedby OHAM. The convegence of the method is also necessay to check the eliability of the methodology. The convegence of the obtained seies is shown in Figues 3 and 4. The cuent computed esults obtained ae also compaed with ADM, and an outstanding coespondence is seen to exist between the two sets of data as evealed in Figues 5 and 6 and Table 1. Futhemoe, the obtained esults ae also compaed with Table 1: Numeical compaison of OHAM and ADM when β 1 = 0.1, β = 0.5, λ = 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. OHAM ADM Absolute eo 1 1 1 0 1.1 0.0317171 0.0316170 0.136 10 7 1. 0.001541 0.00543 0.51 10 7 1.3 0.00610390 0.0063039 0.87 10 7 1.4 0.01160741 0.0116061 0.101 10 6 1.5 0.01044045 0.01044141 0.71 10 7 1.6 0.00150519 0.001551 0.101 10 7 1.7 0.006014981 0.00714980 0.106 10 7 1.8 0.00410161 0.00410063 0.103 10 7 1.9 0.0000363 0.00003164 0.10 10 7.0 0.003051 10 19 0.003061 10 19 0.011 10 0 Table : Compaison of the pesent wok with published wok [1] when β 1 = 0.1, β = 0.5, λ = 0.3, δ=, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. Pesent wok Published wok [1] Absolute eo 1 1 1 0 1.1 0.040810 0.04085 0.000005 1. 0.043001 0.043004 0.000003 1.3 0.040173 0.040103 0.000007 1.4 0.03718 0.0371 0.000006 1.5 0.01556 0.01551 0.000005 1.6 0.003731 0.00371 0.000003 1.7 0.0081 0.0080 0.000001 1.8 0.006013 0.006011 0.00000 1.9 0.00001 0.0000 0.000010.0 0.000010 0.000010 0 Table 3: Compaison of the pesent wok with published wok [13] when β 1 = 1 = β, λ = 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. Pesent wok Published wok [13] Absolute eo 1.0 1 1 0 1.1 0.5139 0.51080 0.00031 1. 0.73548 0.7356 0.0000 1.3 0.130913 0.130915 0.00001 1.4 0.19370 0.19360 0.000010 1.5 0.19713 0.193707 0.00051 1.6 0.093035 0.09306 0.000088 1.7 0.07517 0.07510 0.000004 1.8 0.0161 0.01611 0.0000001 1.9 0.000031 0.00003 0.0000001.0 0 0 0 peceding published elated liteatue, as a special case of the poblem and admiable ageement is obseved in this case also, as shown in Tables and 3.

Advances in Mathematical Physics 7 1.0E 011 1.0 1.00E 011 8.00E 01 0.8 6.00E 01 4.00E 01.00E 01 w() 0.6 0.4 0.00E + 000 0.0 0. 0.4 0.6 0.8 1.0 Figue 3: Eo gaph (showing convegence of OHAM): OHAM up to second-ode solution when U = 0., β 1 = 0.3, β =1, λ = 0.3, and δ=. 3.50E 013 3.00E 013.50E 013.00E 013 1.50E 013 1.00E 013 0. 1.0 OHAM ADM 1. 1.4 1.6 1.8.0 Figue 5: Velocity compaison between OHAM and ADM esults when U = 0., β 1 = 0.1, β = 0.5, λ = 0.3, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981,andC 4 = 0.0009417. 1.0 0.8 0.6 5.00E 014 0.00E + 000 θ() 0.4 0.0 0. 0.4 0.6 0.8 1.0 Figue 4: Eo gaph (showing convegence of OHAM): OHAM up to second-ode solution when U = 0., β 1 = 0.1, β = 0.3, λ = 0.3, and δ=. 0. 0.0 1.0 1. 1.4 1.6 1.8.0 The vaiation of the non-newtonian paamete β 1,the Binkman numbe B 1, the conductivity atio K,andtheadii atio δ onthevelocity,tempeatue,andthicknessofcoated wie ae elaboated numeically in Tables 4 8. Table 4 shows the effects of the non-newtonian paamete β 1 on the velocity pofile. Hee, we vaied β 1 = 0., 0.3, 0.5, 0.8 and fixed the values of U = 0., λ = 0.1, β = 0.5,andδ=.Itistobenoted that the ise of the non-newtonian paamete deceases the speedoftheflow.theeffectsofthebinkmannumbeb 1 and the conductivity atio K on the tempeatue distibution ae givenintables5and6.intable5wevaiedb 1 = 5, 10, 13, 18 and fixed the values of λ = 0.1, β 1 = 0.1, β = 0.3, and δ=. Table 6 gives the numeical values of the tempeatue distibution by taking diffeent values of the conductivity atio K. We obseve fom these tables that the tempeatue inside the fluid inceases by inceasing the values of the OHAM ADM Figue 6: Tempeatue compaison between OHAM and ADM esults when β 1 = 0.1, β = 0.5, λ = 0.3, B 1 =3, B =5, δ=, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, and C 4 = 0.0009417. conductivity atio. The incease in the Binkman numbe significantly affects the tempeatue distibution as shown in Table 5. Futhemoe, the tempeatue pofile attains its maximum values at the cente of the annula die fo diffeent values of B 1 ; then it deceases to meet the fa field bounday conditions fo fixed paametes. Tables 7 and 8 pesent the impact of enlaging the adii atio δ and the viscosity atio λ on the thickness of the coated wie, espectively. Fom these

8 Advances in Mathematical Physics Table 4: Velocity pofile fo vaious values of β 1,whenβ = 0., λ= 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. β 1 = 0. β 1 = 0.3 β 1 = 0.5 β 1 = 0.8 1.0 1 1 1 1 1.1 0.95913 0.9598 0.895634 0.868704 1. 0.91910 0.859577 0.80706 0.761416 1.3 0.87837 0.798656 0.730893 0.6733 1.4 0.8339 0.738489 0.660351 0.59534 1.5 0.7839 0.674541 0.58959 0.50467 1.6 0.71988 0.60079 0.51754 0.44056 1.7 0.6417 0.51589 0.44158 0.353576 1.8 0.5445 0.410078 0.317355 0.48183 1.9 0.41560 0.7786 0.185196 0.11839.0 0 0 0 0 Table 5: Tempeatue distibutions fo seveal values of B 1,when β 1 = 0.1, β = 0.3, B = 10, K = 0.3, λ = 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. B 1 =5 B 1 =10 B 1 =13 B 1 =18 1.0 0 0 0 0 1.1.98376 4.93489 7.91381 1.11141 1. 4.03495 7.06917 11.4536 17.76048 1.3 4.54514 7.95893 1.19506 18.5089 1.4 4.68145 8.06743 1.69515 0.07146 1.5 4.75303 8.8599 13.05673 0.05669 1.6 4.33 7.435 10.65331 15.8411 1.7 3.76761 6.4576 8.6779 1.39587 1.8 3.19079 5.03953 6.5438 8.39888 1.9.516.18318 3.6751 4.00935.0 1 1 1 1 Table 6: Tempeatue distibutions fo seveal values of conductivity atio K, whenβ 1 = 0.1, β = 0.3, B 1 = 10, B = 15, λ = 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. K = 0.1 K = 0.3 K = 0.7 K = 1 1.0 0 0 0 0 1.1 0.179451 0.1575 0.1399 0.119676 1. 0.31816 0.78081 0.4949 0.973 1.3 0.430445 0.386476 0.35996 0.33371 1.4 0.56147 0.483906 0.453590 0.43591 1.5 0.61117 0.574786 0.547935 0.5981 1.6 0.69744 0.661999 0.639849 0.6445 1.7 0.770691 0.47384 0.730476 0.71873 1.8 0.847449 0.831795 0.80495 0.81607 1.9 0.93776 0.915937 0.91077 0.90635.0 1 1 1 1 tables it is obseved that the thickness of coated wie inceases with incease of δ and λ,espectively. Table 7: Thickness of coated wie fo vaious values of δ when β 1 = 0.1, β = 0.3, λ = 0.3, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. δ = 1. δ = 1.4 δ = 1.8 δ = 1.0 0.86354 1.604 1.65398 1.89453 1. 0.99746 1.5918 1.85637.36485 1.4 1.03548 1.983550.4870 3.004536 1.6 1.55709.0047563 3.76449 3.97816 1.8 1.98107.88345 4.77954 4.984535.0.45093 3.96949 5.03544 5.78359 Table 8: Thickness of coated wie fo vaious values of λ when β 1 = 0.1, β = 0.3, δ =, C 1 = 0.0014349, C = 0.0004811, C 3 = 0.00103981, andc 4 = 0.0009417. λ = 0. λ = 0.4 λ = 0.5 λ = 0.6 1.0 1.5475 1.4340 1.74536.5475 1. 1.55389.345 3.453 3.8845 1.4.3768.54763 3.8935 4.01045 1.6 3.0014 3.4564 4.08439 4.745385 1.8 3.84735 4.1035 4.47365 5.543343.0 4.36448 4.8754 5.01436 6.34650 Additionally, the thickness of the coated wie can be maintained at a equied level by adjusting these paametes. 6. Conclusions Two-phase flow of an elastic-viscous thid-gade fluid and wet-on-wet coating pocess is applied fo wie coating analysis. The obtained nonlinea equations ae solved fo velocity fields and tempeatue distibution by OHAM. ADM is also used fo claity. The effect of vaious emeging paametes on the velocity pofile, thickness of coated wie, and tempeatue distibution is discussed numeically. It is obseved that, with inceasing β 1,thevelocityofthefluiddeceases. The tempeatue inside the fluid is found to be inceased with inceasing the Binkman numbe B 1 and conductivity atio K. Futhemoe, the thickness of the coated wie also inceases with δ and λ. Appendix A. Analysis of ADM ADM is an analytical technique fo decomposing an unknown function into infinitely many components. Fo bette undestanding we conside the following: w (i) (, t) = n=0 w (i)n (, t), i = 1,. (A.1) To find the components w (i)0, w (i)1, w (i),..., sepaately, decomposition method is used.

Advances in Mathematical Physics 9 Conside the following nonlinea diffeential equation: L t w (i) (, t) +L w (i) (, t) +R (i) w (i) (, t) +N (i) w (i) (, t) =g (i) (, t), L w (j) (, t) =g (j) (, t) L t w (j) (, t) R (j) w (j) (, t) N (j) w (j) (, t). (A.) (A.3) Hee L = / and L t = / taelinea opeatos, g (i) (, t) is a souce tem, R (i) w (i) (, t) is a emainde linea opeato, and N (i) u (i) (, t) is a nonlinea tem. Applying L 1 on (A.3) to both side we have L 1 L w (i) (, t) =L 1 g (i) (, t) L 1 L tw (i) (, t) L 1 R (i)w (i) (, t) L 1 N (i)w (i) (, t), w (i) (, t) =f (i) (, t) L 1 L tw (i) (, t) L 1 R (i)w (i) (, t) L 1 N (i)w (i) (, t). (A.4) The function f (j) (, t) is obtained by utilizing the bounday conditions given in (0) and (1). The opeato L 1 = ( ) is used fo second-ode diffeential equations. With the seies solution of w (i) using ADM, we have n=0 w (i) (, t) = n=0 w (i)n (, t), w (i)n (, t) =f (i) (, t) L 1 L 1 N (i) n=0 R (i) n=0 w (i)n (, t) w (i)n (, t) (A.5) In view of Adomian polynomials the nonlinea tem N (i) n=0 w (i)n(, t) can be expessed as N (i) w (i)n (, t) = n=0 n=0 A (i)n, (A.6) whee the components w (i)0, w (i)1, w (i), w (i)3,... ae detemined as w (i)0 +w (i)1 +w (i) +w (i)3 +w (i)4 + Theecusiveelationisdefinedas w (i)0 (, t) =f (i)0 (, t) w (i)1 (, t) = L 1 R (i) [w (i)0 (, t)] L 1 (A (i)0 ), w (i) (, t) = L 1 R (i) [w (i)1 (, t)] L 1 (A (i)1 ), w (i)3 (, t) = L 1 R (i) [w (, t)] L 1 (A (i) ), and so on. B. Analysis of OHAM (A.8) To study the basic idea of OHAM, we conside the following nonlinea diffeential equation: A(w (i) ())+G (i) () =0, Λ, B(w (i), dw (i) )=0, Δ, (B.1) whee A is the diffeential opeato and B is the bounday opeato, w (i) is the unknown function, is the spatial independent vaiable, Δ is the bounday of the domain Λ, and G (i) () is the unknown analytical function. The opeato A can be witten as A=L (i) +N (i), (B.) whee L (i) and N (i) ae the linea and nonlinea opeatos, espectively. Fom (9), we have L (j) [φ (j) (, p)]= d w (j) N (j) [φ (j) (, p)] =β (j) (3 d w (j) G (j) =0, + dw (j), ( dw (j) ) +( dw 3 (j) ) ), (B.3) whee L (j), N (j), and G (j) ae linea opeato, nonlinea opeato, and souce tem, espectively, and p [0,1]is an embedding paamete. We conside a homotopy φ (j) (,p) : Λ [0,1] Rthat satisfies =f (i) (, t) L 1 R (i) (w (i)0 +w (i)1 +w (i) +w (i)3 + ) L 1 N (i) (A (i)0 + A (i)1 + ). (A.7) To detemine the seies components w (i)0, w (i)1, w (i), w (i)3,...,itshouldbenotedthatadmsuggestthatf (j) (, t), in fact descibe the zeoth component w (i)0. [1 p] [L (j) [φ (j) (, p)]+ G (j) ()] H (j) (p) [L (j) [φ (j) (, p)]+ N (j) [φ (j) (, p)]+ G j ()] =0, B(φ (j) (, p), φ (j) (, p) )=0, (B.4)

10 Advances in Mathematical Physics with bounday conditions φ 1 (1, p) = 1, φ (δ, p) = U, φ 1 (Ω, p) = φ (Ω, p), S z(1) (Ω, p) = S z() (Ω, p), (B.5) whee H (j) (p) is a nonzeo auxiliay function and φ (j) (, p) is an unknown function. Fo p=0, (11) only ecupeate the linea pat of solution; that is, φ (j) (, p) = w (j)0 (), Fist-ode poblem with bounday conditions is shown as follows: p 1 : d w (1)1 + dw (1)1 dw (1)0 dw (1)0 C 1 β 1 C 1 ( dw 3 (1)0 ) d w (1)0 d w (1)0 C 1 d w (1)0 6β 1 C 1 ( dw (1)0 ) =0, L (j) [φ (j) (, 0)]+G() =0, B(w (j)0, w (j)0 ), (B.6) Fo p = 1, we ecupeate the nonlinea bounday value poblem and the solution conveges to exact solution; that is, φ (j) (, 1) = w (j) (). Thesolutionφ (j) (, p) appoaches fom w (j)0 to w (j) () as p vaies fom 0 to 1. In ode to impove the accuacy of the esults and also in ode to ensue a faste convegence to the exact solution, we use the following genealized auxiliay function involving an inceased numbe of convegence-contol paametes even in the fist ode of appoximation, including also a physical paamete o a function of the physical paamete p 1 : d w ()1 + dw ()1 dw (1)0 dw ()0 C 3 β C 3 ( dw 3 ()0 ) d w ()0 d w ()0 C 3 d w ()0 6β C 3 ( dw ()0 ) =0, w (1)1 (1) =0, w ()1 (δ) =0, w (1)1 (Ω) =w ()1 (Ω), (B.10) H (t; p, C i )=ph 1 (t, C i )+p H (t, C i )+, (B.7) whee H i (t; C j ), i = 1,,..., ae auxiliay functions depending on it (o anothe physical paamete) and unknown convegence-contol paametes C j, j=1,,... Fo appoximate solution, φ (j) (, p) is expanding with espect to p by using Taylo seies φ (j) (, p, C i )=w (j)0 () + k=1 w (j)k (, C i )p k, i=1,,... (B.8) Substituting both (B.7) and (B.8) into (B.4), and equating each coefficient like powe of p and p, we have diffeent ode poblems. Zeoth-ode poblem with bounday conditions is shown as follows: S z(1)1 (Ω) =S z()1 (Ω). Second-ode poblem with bounday conditions is shown as follows: p : d w (1) + dw (1) dw (1)0 C β 1 C ( dw 3 (1)0 ) dw (1)1 d w (1)0 d w (1)0 dw (1)1 C C 1 6β 1 C 1 dw (1)1 ( dw (1)0 ) p 0 : d w (1)0 + dw (1)0 =0, p 0 : d w ()0 + dw ()0 =0, w (1)0 (1) =1, w ()0 (δ) =U, w (1)0 (Ω) =w ()0 (Ω), S z(1)0 (Ω) =S z()0 (Ω). (B.9) d w (1)0 6β 1 C ( dw (1)0 ) d w (1)0 dw (1)0 dw (1)1 1β 1 C 1 d w (1)1 C 1 d w (1)1 6β 1 C 1 d w (1)1 p : d w () + dw () dw ()0 C 4 ( dw (1)0 ) =0,

Advances in Mathematical Physics 11 β C 4 ( dw 3 ()0 ) dw ()1 d w ()0 d w ()0 dw ()1 C 4 C 3 6β C 3 dw ()1 ( dw ()0 ) d w ()0 6β C 4 ( dw ()0 ) d w ()0 dw ()0 dw ()1 1β C 3 d w ()1 C 3 d w ()1 6β C 3 d w ()1 w (1) (1) =0, w () (δ) =0, w (1) (Ω) =w () (Ω), S z(1) (Ω) =S z(1) (Ω). ( dw ()0 ) =0, (B.11) The convegence of (B.8) depends upon the auxiliay constant and ode of the poblem. If it conveges at p=1,onehas w (j) (, C 1,C,...,C n ) =w (j)0 () + w (j)n (, C 1,C,...,C n ). n=1 (B.1) Using (B.1) in (B.1), the expession fo the esidual in the following is obtained as R (j) (, C n )=L (j) w(,c n )+G (j) () +N (j) (w (, C n )), n=1,,...,m. (B.13) Many methods such as Ritz Method, Galekin s Method, collocationmethod,andleastsquaemethodaeusedtofind the auxiliay constants. Hee we use the least squae method to find the auxiliay constant: b J(C 1,C,...,C m )= R (j) (, C 1,C,...,C m ), a J = J (B.14) = =0, C 1 C whee a and b (taking fom domain) ae constant that locate the auxiliay constants which minimize the esidual. The above sequence of poblems given in (B.9) (B.11) ae solved using Mathematica softwae (see (6) in Solution of the Poblem): σ 1 =1, σ 3 =U σ 4 ln δ, σ = U 1 ln Ω σ ln δ 4 ( ln Ω 1), σ 4 = p 3p 3 + 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ), 3 1/3 p 3 ln δ p 1 =1+( ln Ω 1)(1 6γ 1 Ω (U 1 ln Ω ) ), p = 6γ 1 Ω (U 1 δ )(ln ln Ω ln Ω 1), p 3 = 3 Ω (γ ln δ γ 1 ( ln Ω 1) ), p 4 = U 1 ln Ω,

1 Advances in Mathematical Physics σ 5 =k β 1C 1 k 8 + β 1C k, σ 6 = 1 ln Ω Ωk +C 1 k β 1 + λc 1k β 1 Ω +C 3 k ln δ Ωk C 3 k ln Ω σ 8 (ln (Ωδ)), σ 7 = σ 8 ln δ+δk +C 3 k ln δ λc 4k β 8δ 4 + λc 3k β δ, σ 8 = λ (ζ/ω + ln (δω)) [C 1k ln Ω C 1 k β 0 + C 1k β 1 Ω +C 3 k ln δ C 4k β 8δ 4 + C 3k β δ C 3 k ln Ω+ C 4k β 8Ω 4 ] C 3k β Ω Ω ln Ω (ζ/ω + ln (δω)) [k + C 1k Ω + C 1k β 1 Ω 5 C 1k β 1 Ω 3 C 1k β 1 Ω 3 ζ(k + C 3k Ω + C 1k β 1 Ω 5 C 3k β 1 Ω 3 )], σ 9 = k (1 + C 1 )+1613 48 λc 1k β 1 + 83 40 C 1 k β 1 +C k β 1 3C 1 k β 1 6C 1 k 3 β 1 3 C 1 k3 β 1 + 5 6 C 1 k4 β 1 +σ 4 (1 +k 1 +3C 1 k β 1), σ 10 = λ ln Ω [ σ 9 k (C 1 (1 + C 1 ) C 3 (1 + C 3 ) 3 (σ 4 +σ 6 )) ln Ω k Ω (C3 1 C3 3 +C 1 C 3 )+Ω(C 1 +C 3 ) +( k 10Ω 5 k 3Ω 4 )(β 1C 1 +β C 3 )+( k 3Ω 3 + k 4Ω )(β 1C 1 +β C 3 )+( k 10Ω 5 + k 3Ω 4 )(β 1C 1 +β C 3 ) + k 3Ω 3 (β 1C 1 +β C 3 ) k 4Ω 4 ((β 1C 1 β C 3 )+(β 1C +β C 4 )) ( 3k 1k Ω 3k Ω )(β 1C 1 β C 3 ) + k4 3Ω 6 (β 1C 1 +β C 3 ) k 4Ω (β 1C 1 β C 3 )] + k4 Ω 4 (β 1C 1 +β C 3 )+ 1 Ω (σ 4 +σ 6 )+ 1 Ω (C 1σ 4 +C 3 σ 6 ) + 3k4 Ω (β 1C 1 σ 4 +β C 3 σ 6 )+σ 11 +σ 1 ln Ω, σ 11 = [σ 1 ln Ω + λk 1 (C 3 C 3 ) ln Ω δk + λk δ C 3 δk C 3 + k δ C 3 k 10δ 5 β C 3 + λk 3Ω 4 β C 3 k 3δ 3 β C 3 k 10δ 5 β C 3 k 3δ 4 β C 3 + k 3δ 3 β C 3 + k 4δ β C 3 k δ β C 4 + 3k 1k δ β C 3 + 6k3 δ β C 3 + 3k3 δ 3 β C 3 + k4 3δ 6 β C 3 σ 4 δ σ 4 ln δ+c 1 σ 4 ln δ 3k δ β C 3 σ 4], σ 1 =( λ Ω (ln δ 1))[ k 1 (C 1 C 3 ) ln Ω k 1 (C 3 1 C3 3 ) ln Ω+ k Ω (C 1 +C 3 ) k (C 1 C 3 )+ k Ω (C 1 +C 3 ) + k Ω 6 (β 1C 1 +β C 3 )+ k 8Ω 5 (β 1C 1 +β C 3 )+ k Ω 4 (β 1C 1 +β C 3 )+ k Ω 3 (β 1C 1 +β C 3 )+ k Ω 6 (β 1C 1 +β C 3 ) + k 8Ω 5 (β 1C 1 +β C 3 )+ k Ω 4 (β 1C 1 +β C 3 )+ k Ω 3 (β 1C 1 +β C 3 )+k Ω 3 (β 1C +β C 4 )+3k 1k Ω 3 (β 1 C 1 +β C 3 ) + 6k Ω (β 1C 1 +β C 3 )+ 3k3 Ω 3 (β 1C 1 +β C 3 ) k4 Ω 7 (β 1C 1 +β C 3 ) 6k4 Ω 5 (β 1 C 1 β C 3 ) 1 Ω (σ 4 σ 6 )

Advances in Mathematical Physics 13 +(σ 4 +σ 6 ) ln Ω 1 Ω (C 1σ 4 C 3 σ 6 ) (C 1 σ 4 C 3 σ 6 ) ln Ω 6k Ω 3 (β 1C 1 σ 4 β C 3 σ 6 )+ 1 ln Ω σ 9], Φ 11 =1 β 1 C 1k +β 1 σ 5, Γ 11 =1 β C 3k +β σ 7, Φ 1 = U 1 ln δ +β 1σ 6 β 1 C 1 k +β 1 σ 10, Γ 1 = U 1 ln δ +β σ 8 β C 3 k +β σ 1, Φ 13 =β 1 k β 1 k, Γ 13 =β k β k, Φ 14 =β 1 C 1 k +6β 1 C 1 k 3 σ 4 (1 + C 1 )+β 1 C 1k, Γ 14 =β C 3 k +6β C 3 k 3 σ 6 (1 + C 3 )+β C 3k, Φ 15 = 1 C 1k β 1 1 4 C 1k β3 1 +3C 1k β 1 σ 4 1 4 C 1k β 1 + 1 C 1 k β 1 +3C 1 k β3 1 k 1 C k β3 1, Φ 16 = 1 3 C 1k β3 1 1 3 C 1 k β3 1, Γ 16 = 1 3 C 3k β3 1 3 C 3 k β3, Φ 17 = 1 8 C 1k β 1 1 3 C 1k β3 1 1 3 C 1 k β3 1 1 C 1 k4 β3 1, Φ 18 = 1 10 C 1k β3 1 1 10 C 1 k β 1, Γ 18 = 1 10 C 3k β3 1 10 C 3 k β, Γ 15 = 1 C 3k β 1 4 C 3k β3 +3C 3k β σ 6 1 4 C 3k β + 1 C 3 k β +3C 3 k β3 k 1 C 4 k β3, Γ 17 = 1 8 C 3k β 1 3 C 3k β3 1 3 C 3 k β3 1 C 3 k4 β3, Ψ 1 = 65 4 B 1β 1 Φ 4 18, Ψ = 4000 441 B 1β 1 Φ 17 Φ 3 18, Ψ 3 = 1B 1 β 1 Φ 17 Φ 18 15 B 1β 1 Φ 16 Φ 3 18, Ψ 4 = 1B 1 β 1 Φ 17 Φ 18 15 B 1β 1 Φ 16 Φ 3 18, Ψ 5 = 560 361 B 1β 1 Φ 3 17 Φ 18 700 361 B 1β 1 Φ 16 Φ 17 Φ 18 000 361 B 1β 1 Φ 15 Φ 3 18, Ψ 6 = 18 81 B 1β 1 Φ 4 17 160 9 B 1β 1 Φ 16 Φ 17 Φ 18 5 3 B 1β 1 Φ 16 Φ 18 400 7 B 1β 1 Φ 15 Φ 17 Φ 18 50 81 B 1β 1 Φ 14 Φ 3 18, Ψ 8 = 7 4 B 1β 1 Φ 16 Φ 17 4B 1β 1 Φ 15 Φ 3 17 135 3 B 1β 1 Φ 3 16 Φ 18 45 B 1β 1 Φ 15 Φ 16 Φ 17 Φ 18 15 B 1β 1 Φ 14 Φ 17 Φ 18 75 16 B 1 β 1 Φ 15 Φ 18 5 3 B 1β 1 Φ 14 Φ 16 Φ 18 + 75 8 B 1β 1 Φ 1 Φ 17 Φ 18 + 15 3 B 1β 1 Φ 13 Φ 3 18,

14 Advances in Mathematical Physics Ψ 9 = 96 5 B 1β 1 Φ 3 16 Φ 17 56 5 B 1β 1 Φ 15 Φ 16 Φ 17 51 5 B 1β 1 Φ 14 Φ 3 17 48 5 B 1β 1 Φ 15 Φ 16 Φ 18 18 15 B 1β 1 Φ 15 Φ 17Φ 18 64 5 B 1β 1 Φ 14 Φ 16 Φ 17 Φ 18 + 18 15 B 1β 1 Φ 1 Φ 17 Φ 18 16 3 B 1β 1 Φ 14 Φ 15 Φ 18 +8B 1β 1 Φ 1 Φ 16 Φ 18 + 3 3 B 1 β 1 Φ 13 Φ 17 Φ 18, Ψ 10 = 81 98 B 1β 1 Φ 4 16 43 49 B 1β 1 Φ 15 Φ 16 Φ 17 19 49 B 1β 1 Φ 15 Φ 17 88 49 B 1β 1 Φ 14 Φ 16 Φ 17 + 18 49 B 1β 1 Φ 1 Φ 3 17 360 49 B 1 β 1 Φ 15 Φ 16Φ 18 70 49 B 1β 1 Φ 14 Φ 16 Φ 18 480 49 B 1β 1 Φ 14 Φ 15 Φ 17 Φ 18 + 70 49 B 1β 1 Φ 1 Φ 16 Φ 17 Φ 18 + 480 49 B 1 β 1 Φ 13 Φ 17 Φ 18 75 49 B 1β 1 Φ 14 Φ 18 + 300 49 B 1β 1 Φ 1 Φ 15 Φ 18 + 450 49 B 1β 1 Φ 13 Φ 16 Φ 18, Ψ 11 = 43 169 B 1β 1 Φ 15 Φ 3 16 115 169 B 1β 1 Φ 15 Φ 16Φ 17 864 169 B 1β 1 Φ 14 Φ 16 Φ 17 768 169 B 1β 1 Φ 14 Φ 15 Φ 17 + 115 169 B 1 β 1 Φ 1 Φ 16 Φ 17 + 51 169 B 1β 1 Φ 13 Φ 3 17 30 169 B 1β 1 Φ 3 15 Φ 18 1440 169 B 1β 1 Φ 14 Φ 15 Φ 16 Φ 18 + 1080 169 B 1β 1 Φ 1 Φ 16 Φ 18 480 169 B 1β 1 Φ 14 Φ 17Φ 18 + 190 169 B 1β 1 Φ 1 Φ 15 Φ 17 Φ 18 + 880 169 B 1β 1 Φ 13 Φ 16 Φ 17 Φ 18 + 600 169 B 1β 1 Φ 1 Φ 14 Φ 18 + 100 169 B 1 β 1 Φ 13 Φ 15 Φ 18, Ψ 1 = 3B 1 β 1 Φ 15 Φ 16 3 B 1β 1 Φ 14 Φ 3 16 16 9 B 1β 1 Φ 3 15 Φ 17 8B 1 β 1 Φ 14 Φ 15 Φ 16 Φ 17 +6B 1 β 1 Φ 1 Φ 16 Φ 17 4 3 B 1 β 1 Φ 14 Φ 17 + 16 3 B 1β 1 Φ 1 Φ 15 Φ 17 +8B 1β 1 Φ 13 Φ 16 Φ 17 10 3 B 1β 1 Φ 14 Φ 15 Φ 18 5 B 1β 1 Φ 14 Φ 16Φ 18 + 10B 1 β 1 Φ 1 Φ 15 Φ 16 Φ 18 + 15 B 1β 1 Φ 13 Φ 16 Φ 18 + 0 3 B 1β 1 Φ 1 Φ 14 Φ 17 Φ 18 + 40 3 B 1β 1 Φ 13 Φ 15 Φ 17 Φ 18 5 1 B 1 β 1 Φ 1 Φ 18 + 5 6 B 1β 1 Φ 13 Φ 14 Φ 18, Ψ 13 = 19 11 B 1β 1 Φ 3 15 Φ 16 43 11 B 1β 1 Φ 14 Φ 15 Φ 16 + 16 11 B 1β 1 Φ 1 Φ 3 16 384 11 B 1β 1 Φ 14 Φ 15 Φ 17 88 11 B 1 β 1 Φ 14 Φ 16Φ 17 + 115 11 B 1β 1 Φ 1 Φ 15 Φ 16 Φ 17 + 864 11 B 1β 1 Φ 13 Φ 16 Φ 17 + 384 11 B 1β 1 Φ 1 Φ 14 Φ 17 + 768 11 B 1 β 1 Φ 13 Φ 15 Φ 17 40 11 B 1β 1 Φ 14 Φ 15Φ 18 + 480 11 B 1β 1 Φ 1 Φ 15 Φ 18 + 70 11 B 1β 1 Φ 1 Φ 14 Φ 16 Φ 18 + 1440 11 B 1 β 1 Φ 13 Φ 15 Φ 16 Φ 18 480 11 B 1β 1 Φ 1 Φ 17Φ 18 + 960 11 B 1β 1 Φ 13 Φ 14 Φ 17 Φ 18 600 11 B 1β 1 Φ 1 Φ 13 Φ 18, Ψ 14 = 8 5 B 1β 1 Φ 4 15 7 5 B 1β 1 Φ 14 Φ 15 Φ 16 7 5 B 1β 1 Φ 14 Φ 16 + 108 5 B 1β 1 Φ 1 Φ 15 Φ 16 + 54 5 B 1β 1 Φ 13 Φ 3 16 48 5 B 1 β 1 Φ 14 Φ 15Φ 17 + 96 5 B 1β 1 Φ 1 Φ 15 Φ 17 + 144 5 B 1β 1 Φ 1 Φ 14 Φ 16 Φ 17 + 88 5 B 1β 1 Φ 13 Φ 15 Φ 16 Φ 17 48 5 B 1 β 1 Φ 1 Φ 17 + 96 5 B 1β 1 Φ 13 Φ 14 Φ 17 5 B 1β 1 Φ 3 14 Φ 18 + 4 5 B 1β 1 Φ 1 Φ 14 Φ 15 Φ 18 + 4 5 B 1β 1 Φ 13 Φ 15 Φ 18 18 5 B 1 β 1 Φ 1 Φ 16Φ 18 + 36 5 B 1β 1 Φ 13 Φ 14 Φ 16 Φ 18 48 5 B 1β 1 Φ 1 Φ 13 Φ 17 Φ 18 1 4 B 1Φ 18 3B 1β 1 Φ 13 Φ 18, Ψ 15 = 64 81 B 1β 1 Φ 14 Φ 3 15 16 9 B 1β 1 Φ 14 Φ 15Φ 16 + 3 9 B 1β 1 Φ 1 Φ 15 Φ 16 + 8 3 B 1β 1 Φ 1 Φ 14 Φ 16 + 16 3 B 1β 1 Φ 13 Φ 15 Φ 16 3 81 B 1β 1 Φ 3 14 Φ 17 + 18 7 B 1β 1 Φ 1 Φ 14 Φ 15 Φ 17 + 18 7 B 1β 1 Φ 13 Φ 15 Φ 17 3 9 B 1β 1 Φ 1 Φ 16Φ 17 + 64 9

Advances in Mathematical Physics 15 B 1 β 1 Φ 13 Φ 14 Φ 16 Φ 17 18 7 B 1β 1 Φ 1 Φ 13 Φ 17 + 40 7 B 1β 1 Φ 1 Φ 14 Φ 18 80 7 B 1β 1 Φ 1 Φ 15Φ 18 + 160 7 B 1 β 1 Φ 13 Φ 14 Φ 15 Φ 18 80 9 B 1β 1 Φ 1 Φ 13 Φ 16 Φ 18 40 81 B 1Φ 17 Φ 18 160 7 B 1β 1 Φ 13 Φ 17Φ 18, Ψ 16 = 3 4 B 1β 1 Φ 14 Φ 15 +B 1β 1 Φ 1 Φ 3 15 3 8 B 1β 1 Φ 3 14 Φ 16 + 9 B 1β 1 Φ 1 Φ 14 Φ 15 Φ 16 + 9 B 1β 1 Φ 13 Φ 15 Φ 16 7 16 B 1 β 1 Φ 1 Φ 16 + 7 8 B 1β 1 Φ 13 Φ 14 Φ 16 + 3 B 1β 1 Φ 1 Φ 14 Φ 17 3B 1 β 1 Φ 1 Φ 15Φ 17 +6B 1 β 1 Φ 13 Φ 14 Φ 15 Φ 17 9B 1 β 1 Φ 1 Φ 13 Φ 16 Φ 17 1 4 B 1Φ 17 3B 1β 1 Φ 13 Φ 17 15 8 B 1β 1 Φ 1 Φ 14Φ 18 + 15 8 B 1β 1 Φ 13 Φ 14 Φ 18 15 B 1 β 1 Φ 1 Φ 13 Φ 15 Φ 18 15 3 B 1Φ 16 Φ 18 45 8 B 1β 1 Φ 13 Φ 16Φ 18, Ψ 17 = 16 49 B 1β 1 Φ 3 14 Φ 15 + 96 49 B 1β 1 Φ 1 Φ 14 Φ 15 + 64 49 B 1β 1 Φ 13 Φ 3 15 + 7 49 B 1β 1 Φ 1 Φ 14 Φ 16 144 49 B 1β 1 Φ 1 Φ 15Φ 16 + 88 49 B 1β 1 Φ 13 Φ 14 Φ 15 Φ 16 16 49 B 1β 1 Φ 1 Φ 13 Φ 16 96 49 B 1β 1 Φ 1 Φ 14Φ 17 + 96 49 B 1β 1 Φ 13 Φ 14 Φ 17 384 49 B 1 β 1 Φ 1 Φ 13 Φ 15 Φ 17 4 49 B 1Φ 16 Φ 17 88 49 B 1β 1 Φ 13 Φ 16Φ 17 + 40 49 B 1β 1 Φ 3 1 Φ 18 40 49 B 1β 1 Φ 1 Φ 13 Φ 14 Φ 18 0 49 B 1Φ 15 Φ 18 40 49 B 1β 1 Φ 13 Φ 15Φ 18, Ψ 18 = 1 18 B 1β 1 Φ 4 14 + 4 3 B 1β 1 Φ 1 Φ 14 Φ 15 4 3 B 1β 1 Φ 1 Φ 15 + 8 3 B 1β 1 Φ 13 Φ 14 Φ 15 B 1β 1 Φ 1 Φ 14Φ 16 +B 1 β 1 Φ 13 Φ 14 Φ 16 8B 1 β 1 Φ 1 Φ 13 Φ 15 Φ 16 1 4 B 1Φ 16 3B 1β 1 Φ 13 Φ 16 + 8 9 B 1β 1 Φ 3 1 Φ 17 16 3 B 1 β 1 Φ 1 Φ 13 Φ 14 Φ 17 4 9 B 1Φ 15 Φ 17 16 3 B 1β 1 Φ 13 Φ 15Φ 17 + 10 3 B 1β 1 Φ 1 Φ 13Φ 18 5 18 B 1Φ 14 Φ 18 10 3 B 1 β 1 Φ 13 Φ 14Φ 18, Ψ 19 = 8 5 B 1β 1 Φ 1 Φ 3 14 48 5 B 1β 1 Φ 1 Φ 14Φ 15 + 48 5 B 1β 1 Φ 13 Φ 14 Φ 15 96 5 B 1β 1 Φ 1 Φ 13 Φ 15 + 4 5 B 1β 1 Φ 3 1 Φ 16 144 5 B 1β 1 Φ 1 Φ 13 Φ 14 Φ 16 1 5 B 1Φ 15 Φ 16 144 5 B 1β 1 Φ 13 Φ 15Φ 16 + 96 5 B 1β 1 Φ 1 Φ 13Φ 17 8 5 B 1Φ 14 Φ 17 96 5 B 1 β 1 Φ 13 Φ 14Φ 17 + 5 B 1Φ 1 Φ 18 + 4 5 B 1β 1 Φ 1 Φ 13 Φ 18, Ψ 0 = 3 4 B 1β 1 Φ 1 Φ 14 + 1 B 1β 1 Φ 13 Φ 3 14 +B 1β 1 Φ 3 1 Φ 15 6B 1 β 1 Φ 1 Φ 13 Φ 14 Φ 15 1 4 B 1Φ 15 3B 1β 1 Φ 13 Φ 15 + 9 B 1 β 1 Φ 1 Φ 13Φ 16 3 8 B 1Φ 14 Φ 16 9 B 1β 1 Φ 13 Φ 14Φ 16 + 1 B 1Φ 1 Φ 17 +6B 1 β 1 Φ 1 Φ 13 Φ 17 + 5 8 B 1Φ 13 Φ 18 + 5 B 1 β 1 Φ 3 13 Φ 18, Ψ 1 = 8 9 B 1β 1 Φ 3 1 Φ 14 8 3 B 1β 1 Φ 1 Φ 13 Φ 14 + 16 3 B 1β 1 Φ 1 Φ 13Φ 15 4 9 B 1Φ 14 Φ 15 16 3 B 1β 1 Φ 13 Φ 14Φ 15 + 3 B 1 Φ 1 Φ 16 +8B 1 β 1 Φ 1 Φ 13 Φ 16 + 8 9 B 1Φ 13 Φ 17 + 3 9 B 1β 1 Φ 3 13 Φ 17, Ψ = 1 B 1β 1 Φ 4 1 +6B 1β 1 Φ 1 Φ 13Φ 14 1 4 B 1Φ 14 3B 1β 1 Φ 13 Φ 14 +B 1Φ 1 Φ 15 +1B 1 β 1 Φ 1 Φ 13 Φ 15 + 3 B 1 Φ 13 Φ 16 +6B 1 β 1 Φ 3 13 Φ 16,

16 Advances in Mathematical Physics Ψ 3 = 8B 1 β 1 Φ 3 1 Φ 13 +B 1 Φ 1 Φ 14 + 4B 1 β 1 Φ 1 Φ 13 Φ 14 +4B 1 Φ 13 Φ 15 +16B 1 β 1 Φ 3 13 Φ 15, Ψ 4 = B 1 Φ 1 Φ 13 8B 1 β 1 Φ 1 Φ 3 13, Ψ 5 = 1 4 B 1Φ 13 1 B 1β 1 Φ 4 13, Ψ 6 = 1 B 1Φ 1 6B 1β 1 Φ 1 Φ 13 +B 1Φ 13 Φ 14 +4B 1 β 1 Φ 3 13 Φ 14, Λ 1 = 65 4 B β Γ 4 18, Λ = 4000 441 B β Γ 17 Γ 3 18, Λ 3 = 1B β Γ 17 Γ 18 15 B β Γ 16 Γ 3 18, Λ 4 = 1B β Γ 17 Γ 18 15 B β Γ 16 Γ 3 18, Λ 5 = 560 361 B β Γ 3 17 Γ 18 700 361 B β Γ 16 Γ 17 Γ 18 000 361 B β Γ 15 Γ 3 18, Λ 6 = 18 81 B β Γ 4 17 160 9 B β Γ 16 Γ 17 Γ 18 5 3 B β Γ 16 Γ 18 400 7 B β Γ 15 Γ 17 Γ 18 50 81 B β Γ 14 Γ 3 18, Λ 7 = 1536 89 B β Γ 16 Γ 3 17 430 89 B β Γ 16 Γ 17Γ 18 3840 89 B β Γ 15 Γ 17 Γ 18 3600 89 B β Γ 15 Γ 16 Γ 18 400 89 B β Γ 14 Γ 17 Γ 18 + 1000 89 B β Γ 1 Γ 3 18, Λ 8 = 7 4 B β Γ 16 Γ 17 4B β Γ 15 Γ 3 17 135 3 B β Γ 3 16 Γ 18 45 B β Γ 15 Γ 16 Γ 17 Γ 18 15 B β Γ 14 Γ 17 Γ 18 75 16 B β Γ 15 Γ 18 5 3 B β Γ 14 Γ 16 Γ 18 + 75 8 B β Γ 1 Γ 17 Γ 18 + 15 3 B β Γ 13 Γ 3 18, Λ 9 = 96 5 B β Γ 3 16 Γ 17 56 5 B β Γ 15 Γ 16 Γ 17 51 5 B β Γ 14 Γ 3 17 48 5 B β Γ 15 Γ 16 Γ 18 18 15 B β Γ 15 Γ 17Γ 18 64 5 B β Γ 14 Γ 16 Γ 17 Γ 18 + 18 15 B β Γ 1 Γ 17 Γ 18 16 3 B β Γ 14 Γ 15 Γ 18 +8B β Γ 1 Γ 16 Γ 18 + 3 3 B β Γ 13 Γ 17 Γ 18, Λ 10 = 81 98 B β Γ 4 16 43 49 B β Γ 15 Γ 16 Γ 17 19 49 B β Γ 15 Γ 17 88 49 B β Γ 14 Γ 16 Γ 17 + 18 49 B β Γ 1 Γ 3 17 360 49 B β Γ 15 Γ 16Γ 18 70 49 B β Γ 14 Γ 16 Γ 18 480 49 B β Γ 14 Γ 15 Γ 17 Γ 18 + 70 49 B β Γ 1 Γ 16 Γ 17 Γ 18 + 480 49 B β Γ 13 Γ 17 Γ 18 75 49 B β Γ 14 Γ 18 + 300 49 B β Γ 1 Γ 15 Γ 18 + 450 49 B β Γ 13 Γ 16 Γ 18, Λ 11 = 43 169 B β Γ 15 Γ 3 16 115 169 B β Γ 15 Γ 16Γ 17 864 169 B β Γ 14 Γ 16 Γ 17 768 169 B β Γ 14 Γ 15 Γ 17 + 115 169 B β Γ 1 Γ 16 Γ 17 + 51 169 B β Γ 13 Γ 3 17 30 169 B β Γ 3 15 Γ 18 1440 169 B β Γ 14 Γ 15 Γ 16 Γ 18 + 1080 169 B β Γ 1 Γ 16 Γ 18 480 169 B β Γ 14 Γ 17Γ 18 + 190 169 B β Γ 1 Γ 15 Γ 17 Γ 18 + 880 169 B β Γ 13 Γ 16 Γ 17 Γ 18 + 600 169 B β Γ 1 Γ 14 Γ 18 + 100 169 B β Γ 13 Γ 15 Γ 18, Λ 1 = 3B β Γ 15 Γ 16 3 B β Γ 14 Γ 3 16 16 9 B β Γ 3 15 Γ 17 8B β Γ 14 Γ 15 Γ 16 Γ 17 +6B β Γ 1 Γ 16 Γ 17 4 3 B β Γ 14 Γ 17 + 16 3 B β Γ 1 Γ 15 Γ 17 +8B β Γ 13 Γ 16 Γ 17 10 3 B β Γ 14 Γ 15 Γ 18 5 B β Γ 14 Γ 16Γ 18 +10B β Γ 1 Γ 15 Γ 16 Γ 18 + 15

Advances in Mathematical Physics 17 B β Γ 13 Γ 16 Γ 18 + 0 3 B β Γ 1 Γ 14 Γ 17 Γ 18 + 40 3 B β Γ 13 Γ 15 Γ 17 Γ 18 5 1 B β Γ 1 Γ 18 + 5 6 B β Γ 13 Γ 14 Γ 18, Λ 13 = 19 11 B β Γ 3 15 Γ 16 43 11 B β Γ 14 Γ 15 Γ 16 + 16 11 B β Γ 1 Γ 3 16 384 11 B β Γ 14 Γ 15 Γ 17 88 11 B β Γ 14 Γ 16Γ 17 + 115 11 B β Γ 1 Γ 15 Γ 16 Γ 17 + 864 11 B β Γ 13 Γ 16 Γ 17 + 384 11 B β Γ 1 Γ 14 Γ 17 + 768 11 B β Γ 13 Γ 15 Γ 17 40 11 B β Γ 14 Γ 15Γ 18 + 480 11 B β Γ 1 Γ 15 Γ 18 + 70 11 B β Γ 1 Γ 14 Γ 16 Γ 18 + 1440 11 B β Γ 13 Γ 15 Γ 16 Γ 18 480 11 B β Γ 1 Γ 17Γ 18 + 960 11 B β Γ 13 Γ 14 Γ 17 Γ 18 600 11 B β Γ 1 Γ 13 Γ 18, Λ 14 = 8 5 B β Γ 4 15 7 5 B β Γ 14 Γ 15 Γ 16 7 5 B β Γ 14 Γ 16 + 108 5 B β Γ 1 Γ 15 Γ 16 + 54 5 B β Γ 13 Γ 3 16 48 5 B β Γ 14 Γ 15Γ 17 + 96 5 B β Γ 1 Γ 15 Γ 17 + 144 5 B β Γ 1 Γ 14 Γ 16 Γ 17 + 88 5 B β Γ 13 Γ 15 Γ 16 Γ 17 48 5 B β Γ 1 Γ 17 + 96 5 B β Γ 13 Γ 14 Γ 17 5 B β Γ 3 14 Γ 18 + 4 5 B β Γ 1 Γ 14 Γ 15 Γ 18 + 4 5 B β Γ 13 Γ 15 Γ 18 18 5 B β Γ 1 Γ 16Γ 18 + 36 5 B β Γ 13 Γ 14 Γ 16 Γ 18 48 5 B β Γ 1 Γ 13 Γ 17 Γ 18 1 4 B Γ 18 3B β Γ 13 Γ 18, Λ 15 = 64 81 B β Γ 14 Γ 3 15 16 9 B β Γ 14 Γ 15Γ 16 + 3 9 B β Γ 1 Γ 15 Γ 16 + 8 3 B β Γ 1 Γ 14 Γ 16 + 16 3 B β Γ 13 Γ 15 Γ 16 3 81 B β Γ 3 14 Γ 17 + 18 7 B β Γ 1 Γ 14 Γ 15 Γ 17 + 18 7 B β Γ 13 Γ 15 Γ 17 3 9 B β Γ 1 Γ 16Γ 17 + 64 9 B β Γ 13 Γ 14 Γ 16 Γ 17 18 7 B β Γ 1 Γ 13 Γ 17 + 40 7 B β Γ 1 Γ 14 Γ 18 80 7 B β Γ 1 Γ 15Γ 18 + 160 7 B β Γ 13 Γ 14 Γ 15 Γ 18 80 9 B β Γ 1 Γ 13 Γ 16 Γ 18 40 81 B Γ 17 Γ 18 160 7 B β Γ 13 Γ 17Γ 18, Λ 16 = 3 4 B β Γ 14 Γ 15 +B β Γ 1 Γ 3 15 3 8 B β Γ 3 14 Γ 16 + 9 B β Γ 1 Γ 14 Γ 15 Γ 16 + 9 B β Γ 13 Γ 15 Γ 16 7 16 B β Γ 1 Γ 16 + 7 8 B β Γ 13 Γ 14 Γ 16 + 3 B β Γ 1 Γ 14 Γ 17 3B β Γ 1 Γ 15Γ 17 +6B β Γ 13 Γ 14 Γ 15 Γ 17 9B β Γ 1 Γ 13 Γ 16 Γ 17 1 4 B Γ 17 3B β Γ 13 Γ 17 15 8 B β Γ 1 Γ 14Γ 18 + 15 8 B β Γ 13 Γ 14 Γ 18 15 B β Γ 1 Γ 13 Γ 15 Γ 18 15 3 B Γ 16 Γ 18 45 8 B β Γ 13 Γ 16Γ 18, Λ 17 = 16 49 B β Γ 3 14 Γ 15 + 96 49 B β Γ 1 Γ 14 Γ 15 + 64 49 B β Γ 13 Γ 3 15 + 7 49 B β Γ 1 Γ 14 Γ 16 144 49 B β Γ 1 Γ 15Γ 16 + 88 49 B β Γ 13 Γ 14 Γ 15 Γ 16 16 49 B β Γ 1 Γ 13 Γ 16 96 49 B β Γ 1 Γ 14Γ 17 + 96 49 B β Γ 13 Γ 14 Γ 17 384 49 B β Γ 1 Γ 13 Γ 15 Γ 17 4 49 B Γ 16 Γ 17 88 49 B β Γ 13 Γ 16Γ 17 + 40 49 B β Γ 3 1 Γ 18 40 49 B β Γ 1 Γ 13 Γ 14 Γ 18 0 49 B Γ 15 Γ 18 40 49 B β Γ 13 Γ 15Γ 18, Λ 18 = 1 18 B β Γ 4 14 + 4 3 B β Γ 1 Γ 14 Γ 15 4 3 B β Γ 1 Γ 15 + 8 3 B β Γ 13 Γ 14 Γ 15 B β Γ 1 Γ 14Γ 16 +B β Γ 13 Γ 14 Γ 16 8B β Γ 1 Γ 13 Γ 15 Γ 16 1 4 B Γ 16 3B β Γ 13 Γ 16 + 8 9 B β Γ 3 1 Γ 17 16 3 B β Γ 1 Γ 13 Γ 14 Γ 17 4 9 B Γ 15 Γ 17 16 3 B β Γ 13 Γ 15Γ 17 + 10 3 B β Γ 1 Γ 13Γ 18 5 18 B Γ 14 Γ 18 10 3 B β Γ 13 Γ 14Γ 18, Λ 19 = 8 5 B β Γ 1 Γ 3 14 48 5 B β Γ 1 Γ 14Γ 15 + 48 5 B β Γ 13 Γ 14 Γ 15 96 5 B β Γ 1 Γ 13 Γ 15 + 4 5 B β Γ 3 1 Γ 16 144 5

18 Advances in Mathematical Physics B β Γ 1 Γ 13 Γ 14 Γ 16 1 5 B Γ 15 Γ 16 144 5 B β Γ 13 Γ 15Γ 16 + 96 5 B β Γ 1 Γ 13Γ 17 8 5 B Γ 14 Γ 17 96 5 B β Γ 13 Γ 14Γ 17 + 5 B Γ 1 Γ 18 + 4 5 B β Γ 1 Γ 13 Γ 18, Λ 0 = 3 4 B β Γ 1 Γ 14 + 1 B β Γ 13 Γ 3 14 +B β Γ 3 1 Γ 15 6B β Γ 1 Γ 13 Γ 14 Γ 15 1 4 B Γ 15 3B β Γ 13 Γ 15 + 9 B β Γ 1 Γ 13Γ 16 3 8 B Γ 14 Γ 16 9 B β Γ 13 Γ 14Γ 16 + 1 B Γ 1 Γ 17 +6B β Γ 1 Γ 13 Γ 17 + 5 8 B Γ 13 Γ 18 + 5 B β Γ 3 13 Γ 18, Λ 1 = 8 9 B β Γ 3 1 Γ 14 8 3 B β Γ 1 Γ 13 Γ 14 + 16 3 B β Γ 1 Γ 13Γ 15 4 9 B Γ 14 Γ 15 16 3 B β Γ 13 Γ 14Γ 15 + 3 B Γ 1 Γ 16 +8B β Γ 1 Γ 13 Γ 16 + 8 9 B Γ 13 Γ 17 + 3 9 B β Γ 3 13 Γ 17, Λ = 1 B β Γ 4 1 +6B β Γ 1 Γ 13Γ 14 1 4 B Γ 14 3B β Γ 13 Γ 14 +B Γ 1 Γ 15 +1B β Γ 1 Γ 13 Γ 15 + 3 B Γ 13 Γ 16 +6B β Γ 3 13 Γ 16, Λ 3 = 8B β Γ 3 1 Γ 13 +B Γ 1 Γ 14 +4B β Γ 1 Γ 13 Γ 14 +4B Γ 13 Γ 15 + 16B β Γ 3 13 Γ 15, Λ 4 = B Γ 1 Γ 13 8B β Γ 1 Γ 3 13, Λ 5 = 1 4 B Γ 13 1 B β Γ 4 13, Λ 6 = 1 B Γ 1 6B β Γ 1 Γ 13 +B Γ 13 Γ 14 +4B β Γ 3 13 Γ 14, k 1 = U 1 ln Ω ( p 3p 3 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) ln δ + )( 3 1/3 p 3 ln Ω 1), k = p 3p 3 1/3 ( p +3p 1p 3 ) 3p 3 ( p 3 +9p 1p p 3 7p3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ) + ( p 3 +9p 1p p 3 7p 3 p 4 + 4( p +3p 1p 3 ) 3 +( p 3 +9p 1p p 3 7p3 p 4) 1/3 ). 3 1/3 p 3 (B.15) Competing Inteests The authos declae that they have no competing inteests. Refeences [1] A. M. Siddiqui, T. Haoon, and S. Ium, Tosional flow of thid gade fluid using modified homotopy petubation method, Computes & Mathematics with Applications, vol.58,no.11-1, pp. 74 85, 009. [] A. M. Siddiqui, A. Zeb, Q. K. Ghoi, and A. Benhabit, Homotopy petubation method fo heat tansfe flow of a thid gade fluid between paallel plates, Chaos, Solitons & Factals,vol.36, no. 1, pp. 18 19, 008. [3] S.Islam,R.A.Shah,andI.Ali, Optimalhomotopyasymptotic solutions of couette and poiseuille flows of a thid gade fluid

Advances in Mathematical Physics 19 with heat tansfe analysis, Intenatioal Jounal of Non-Linea Sciences and Numeical Simulation,vol.11,pp.389 400,010. [4] Y. Aksoy and M. Pakdemili, Appoximate analytical solutions fo flow of a thid-gade fluid though a paallel-plate channel filled with a poous medium, Tanspot in Poous Media, vol. 83,no.,pp.375 395,010. [5] A. M. Siddiqui, R. Mahmood, and Q. K. Ghoi, Thin film flow of a thid gade fluid on a moving belt by He s homotopy petubation method, Intenational Jounal of Nonlinea Sciences and Numeical Simulation,vol.7,no.1,pp.7 14,006. [6] A. M. Siddiqui, R. Mahmood, and Q. K. Ghoi, Homotopy petubation method fo thin film flow of a thid gade fluid down an inclined plane, Chaos, Solitons & Factals,vol.35,no. 1,pp.140 147,008. [7] G. K. Batchelo, An Intoduction to Fluid Dynamics, Cambidge Univesity Pess, Cambidge, UK, 1999. [8] M. Ishii, Themo-Fluid Dynamic Theoy of Two-Phase Flow, Eyolles, Pais, Fance, 1975. [9] M. Akai, A. Inoue, and S. Aoki, The pediction of statified two-phase flow with a two-equation model of tubulence, Intenational Jounal of Multiphase Flow,vol.7,no.1,pp.1 39, 1981. [10] R. A. Shah, S. Islam, A. M. Siddiqui, and T. Haoon, Heat tansfe by lamina flow of an elastico-viscous fluid in postteatment analysis of wie coating with linealy vaying tempeatue along the coated wie, Heat and Mass Tansfe,vol.48,no.6,pp.903 914, 01. [11] R. A. Shah, S. Islam, A. M. Siddiqui, and T. Haoon, Optimal homotopy asymptotic method solution of unsteady second gade fluid in wie coating analysis, JounaloftheKoean Society fo Industial and Applied Mathematics,vol.15,no.3,pp. 01, 011. [1] R. A. Shah, S. Islam, and A. M. Siddiqui, Exact solution of a diffeential equation aising in the wie coating analysis of an unsteady second gade fluid, Mathematical and Compute Modelling,vol.57,no.5-6,pp.184 188,013. [13] R. A. Shah, S. Islam, M. Ellahi, T. Haoon, and A. M. Siddiqui, Analytical solutions fo heat tansfe flows of a thid Gade fluid in case of post-teatment of wie coating, Intenational Jounal of the Physical Sciences, vol. 6, pp. 413 43, 011. [14] K. Kim, H. S. Kwak, S. H. Pak, and Y. S. Lee, Theoetical pediction on double-laye coating in wet-on-wet optical fibe coating pocess, Jounal of Coatings Technology Reseach, vol. 8, no. 1, pp. 35 44, 011. [15] K. J. Kim and H. S. Kwak, Analytic study of non-newtonian double laye coating liquid flows in optical fibe manufactuing, AppliedMechanicsandMateials, vol. 4, pp. 60 63, 01. [16] Zeeshan, R. A. Shah, S. Islam, and A. M. Siddique, Doublelaye optical fibe coating using viscoelastic phan thien tanne fluid, New Yok Science Jounal, vol. 6, no.10, pp.66 73, 013. [17] Zeeshan, S. Islam, R. A. Shah, I. Khan, and T. Gul, Exact solution of PTT fluid in optical fibe coating analysis using two-laye coating flow, Jounal of Applied Envionmental and Biological Sciences,vol.5,pp.96 105,015. [18] Zeeshan, R. A. Shah, I. Khan, T. Gul, and P. Gaskel, Doublelaye optical fibe coating analysis by withawal fom a bath of oloyd 8-constant fluid, Jounal of Applied Envionmental and Biological Sciences, vol. 5, pp. 36 51, 015. [19] Z. Khan, S. Islam, R. A. Shah, and I. Khan, Flow and heat tansfe of two immiscible fluids in double laye optical fibe coating, Jounal of Coatings Technology and Reseach,016. [0]T.Gul,R.A.Shah,S.Islam,andM.Aif, MHDthinfilm flows of a thid gade fluid on a vetical belt with slip bounday conditions, Jounal of Applied Mathematics, vol. 013, Aticle ID70786,14pages,013. [1] V. Mainca, N. Heişanu, and I. Nemeş, Optimal homotopy asymptotic method with application to thin film flow, Cental Euopean Jounal of Physics,vol.6,no.3,pp.648 653,008. [] V. Mainca and N. Heişanu, Application of Optimal Homotopy Asymptotic Method fo solving nonlinea equations aising in heat tansfe, Intenational Communications in Heat and Mass Tansfe,vol.35,no.6,pp.710 715,008. [3] V. Mainca, N. Heisanu, C. Bota, and B. Mainca, An optimal homotopy asymptotic method applied to the steady flow of a fouth-gade fluid past a poous plate, Applied Mathematics Lettes,vol.,no.,pp.45 51,009. [4] N. Heisanu, V. Mainca, and G. Madescu, An analytical appoach to non-linea dynamical model of a pemanent magnet synchonous geneato, Wind Enegy,vol.18,no.9,pp. 1657 1670, 015. [5] N. Heişanu and V.Mainca, Optimal homotopy petubation method fo a non-consevative dynamical system of a otating electical machine, Zeitschift fu Natufoschung A,vol.67,no. 8-9, pp. 509 516, 01. [6] G. Adomian, A eview of the decomposition method and some ecent esults fo nonlinea equations, Mathematical and Compute Modelling,vol.13,no.7,pp.17 43,1990. [7] A.-M. Wazwaz, Adomian decomposition method fo a eliable teatment of the Batu-type equations, Applied Mathematics and Computation,vol.166,no.3,pp.65 663,005. [8] A.-M. Wazwaz, Adomian decomposition method fo a eliable teatment of the Emden-Fowle equation, Applied Mathematics and Computation,vol.161,no.,pp.543 560,005.

Advances in Opeations Reseach Advances in Decision Sciences Jounal of Applied Mathematics Algeba Jounal of Pobability and Statistics The Scientific Wold Jounal Intenational Jounal of Diffeential Equations Submit you manuscipts at Intenational Jounal of Advances in Combinatoics Mathematical Physics Jounal of Complex Analysis Intenational Jounal of Mathematics and Mathematical Sciences Mathematical Poblems in Engineeing Jounal of Mathematics Discete Mathematics Jounal of Discete Dynamics in Natue and Society Jounal of Function Spaces Abstact and Applied Analysis Intenational Jounal of Jounal of Stochastic Analysis Optimization