ECE 468: Digital Image Processing. Lecture 8

Σχετικά έγγραφα
Ψηφιακή Επεξεργασία Εικόνας

Spherical Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Parametrized Surfaces

Homework 8 Model Solution Section

Math221: HW# 1 solutions

Numerical Analysis FMN011

Section 8.2 Graphs of Polar Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Reminders: linear functions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solution Series 9. i=1 x i and i=1 x i.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Example Sheet 3 Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Trigonometric Formula Sheet

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Lifting Entry (continued)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Answer sheet: Third Midterm for Math 2339

Lecture 26: Circular domains

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

HY Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

11.4 Graphing in Polar Coordinates Polar Symmetries

2 Composition. Invertible Mappings

Homework 3 Solutions

Section 8.3 Trigonometric Equations

D Alembert s Solution to the Wave Equation

Second Order RLC Filters

PARTIAL NOTES for 6.1 Trigonometric Identities

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Sampling Basics (1B) Young Won Lim 9/21/13

5.4 The Poisson Distribution.

The Spiral of Theodorus, Numerical Analysis, and Special Functions

CORDIC Background (4A)

Solutions to Exercise Sheet 5

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Laplace s Equation in Spherical Polar Coördinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Fundamentals of Signals, Systems and Filtering

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Tridiagonal matrices. Gérard MEURANT. October, 2008

If we restrict the domain of y = sin x to [ π 2, π 2

CORDIC Background (2A)

1 String with massive end-points

Inverse trigonometric functions & General Solution of Trigonometric Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

derivation of the Laplacian from rectangular to spherical coordinates

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Introduction to Time Series Analysis. Lecture 16.

Probability and Random Processes (Part II)

Double Integrals, Iterated Integrals, Cross-sections

Graded Refractive-Index

Durbin-Levinson recursive method

Rectangular Polar Parametric

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

The Pohozaev identity for the fractional Laplacian

Uniform Convergence of Fourier Series Michael Taylor

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Section 7.6 Double and Half Angle Formulas

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 9.2 Polar Equations and Graphs

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CRASH COURSE IN PRECALCULUS

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Matrices and Determinants

Statistical Inference I Locally most powerful tests

TMA4115 Matematikk 3

F19MC2 Solutions 9 Complex Analysis

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Τοµογραφία Μετασχηµατισµός Radon

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Other Test Constructions: Likelihood Ratio & Bayes Tests

[1] P Q. Fig. 3.1

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Approximation of distance between locations on earth given by latitude and longitude

PhysicsAndMathsTutor.com

Transcript:

ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions 3D object representation 2

Example: Backprojecting a 1D signal 3...As We Increase the Number of Backprojections halo effect 4

Example: Backprojecting a 1D signal 5 Projection y = ax + b x cos θ + y sin θ = ρ 6

Radon Transform A point in the projection g(ρ j, θ k ) is the ray-sum along x cos θ k + y sin θ k = ρ j 7 Radon Transform g(ρ, θ) = f(x, y)δ(x cos θ + y sin θ ρ)dxdy continuous space coordinates g(ρ, θ) = M 1 x=0 N 1 y=0 f(x, y)δ(x cos θ + y sin θ ρ) discrete space coordinates key tool for reconstruction from projections 8

Example: Radon Transform { A, x 2 + y 2 r 2 0, o.w 9 Sinogram = Image of Radon Transform 10

Properties of Objects from Sinogram Sinogram symmetric = Object symmetric Sinogram symmetric about image center = Object symmetric and parallel to x and y axes Sinogram smooth = Object has uniform intensity 11 Computed Tomography (CT) Key objective: Obtain a 3D representation of a volume from its projections How: Backproject all projections and sum them all in one image By stacking all images we obtain the 3D volume 12

Backprojection from the Radon Transform Given point g(ρ j, θ k ) Backprojection = copy the value of g(ρ j, θ k ) on the entire line ρ f θk (x, y) =g(x cos θ k + y sin θ k, θ k ) π 0 f θ (x, y)dθ 13 Backprojection from the Radon Transform Given point g(ρ j, θ k ) Backprojection = copy the value of g(ρ j, θ k ) on the entire line ρ f θk (x, y) =g(x cos θ k + y sin θ k, θ k ) π 0 f θ (x, y)dθ 13

Laminogram Obtained from Sinogram Backprojection for a specific angle f θk (x, y) =g(x cos θ k + y sin θ k, θ k ) Summation over all theta π f θ (x, y) θ=0 14 Laminogram Obtained from Sinogram Backprojection for a specific angle f θk (x, y) =g(x cos θ k + y sin θ k, θ k ) Summation over all theta π f θ (x, y) θ=0 14

Example Laminograms Significant improvements can be obtained by reformulating backprojections! 15 Relating 1D Fourier Transform of the projection with 2D Fourier Transform of the image from which the projection was obtained. 16

1D Fourier Transform of the Projection g(ρ, θ)e j2πωρ dρ 17 1D Fourier Transform of the Projection g(ρ, θ)e j2πωρ dρ by definition f(x, y)δ(x cos θ + y sin θ ρ)e j2πωρ dx dy dρ 17

1D Fourier Transform of the Projection g(ρ, θ)e j2πωρ dρ by definition f(x, y)δ(x cos θ + y sin θ ρ)e j2πωρ dx dy dρ = f(x, y)e j2πω(x cos θ+y sin θ) dx dy 17 1D Fourier Transform of the Projection g(ρ, θ)e j2πωρ dρ by definition f(x, y)δ(x cos θ + y sin θ ρ)e j2πωρ dx dy dρ = f(x, y)e j2πω(x cos θ+y sin θ) dx dy = F (ω cos θ, ω sin θ) 17

1D Fourier Transform of the Projection g(ρ, θ)e j2πωρ dρ by definition f(x, y)δ(x cos θ + y sin θ ρ)e j2πωρ dx dy dρ = f(x, y)e j2πω(x cos θ+y sin θ) dx dy = F (ω cos θ, ω sin θ) Fourier Slice Theorem 17 Fourier Slice Theorem 1D FT = a slice of 2D FT 18

Reconstruction Using Filtered Backprojections by definition F (u, v)e j2π(ux+vy) du dv 19 Reconstruction Using Filtered Backprojections by definition F (u, v)e j2π(ux+vy) du dv u = ω cos θ, v= ω sin θ, dudv = ωdωdθ 2π 0 0 F (ω cos θ, ω sin θ)e j2πω(x cos θ+y sin θ) ω dω dθ 19

Reconstruction Using Filtered Backprojections by definition F (u, v)e j2π(ux+vy) du dv u = ω cos θ, v= ω sin θ, dudv = ωdωdθ 2π 0 0 F (ω cos θ, ω sin θ)e j2πω(x cos θ+y sin θ) ω dω dθ by Fourier Slice Theorem 2π 0 0 G(ω, θ)e j2πω(x cos θ+y sin θ) ω dω dθ 19 Reconstruction Using Filtered Backprojections G(ω, θ + 180 )=G( ω, θ) 20

Reconstruction Using Filtered Backprojections G(ω, θ + 180 )=G( ω, θ) π 0 0 ω G(ω, θ)e j2πω(x cos θ+y sin θ) dω dθ 20 Reconstruction Using Filtered Backprojections G(ω, θ + 180 )=G( ω, θ) π 0 0 ω G(ω, θ)e j2πω(x cos θ+y sin θ) dω dθ π 0 [ 0 ] ω G(ω, θ)e j2πωρ dω dθ ρ=x cos θ+y sin θ 20

Reconstruction Using Filtered Backprojections G(ω, θ + 180 )=G( ω, θ) π 0 0 ω G(ω, θ)e j2πω(x cos θ+y sin θ) dω dθ π 0 [ 0 ] ω G(ω, θ)e j2πωρ dω dθ ρ=x cos θ+y sin θ 1D filtering 20 Box + Ramp Filter 21

Algorithm for Filtered Backprojection 1. Given projections g(!,") obtained at each fixed angle " 2. Compute G(#,") = 1D Fourier Transform of each projection g(!,") 3. Multiply G(#,") by the filter function # modified by Hamming window 4. Compute the inverse of the results from 3. 5. Integrate (sum) over " all results from 4. 22 Examples naive backprojection zoom ramp filter windowed ramp filter ramp filter windowed ramp filter 23