Fundamentals of Mass Spectrometry Gas Phase Ion/Molecule Reactions

Σχετικά έγγραφα
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Fundamentals of Mass Spectrometry Fundamentals of Electrospray

2. Chemical Thermodynamics and Energetics - I

Supporting Information

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Electronic Supplementary Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Αέρια υψηλής Καθαρότητας Ο συνεργάτης σας για Αέρια, Εξοπλισµό και Υπηρεσίες

Divergent synthesis of various iminocyclitols from D-ribose

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Available online at shd.org.rs/jscs/

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΑΣ. Αναστασία Δέτση Αναπληρώτρια Καθηγήτρια, Σχολή Χημικών Μηχανικών ΕΜΠ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Electronic Supporting Information

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Electronic Supplementary Information

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Ισχυροί και ασθενείς ηλεκτρολύτες μέτρα ισχύος οξέων και βάσεων νόμοι Ostwald

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ΦΑΣΜΑΤΟΜΕΤΡΙΑ ΜΑΖΩΝ. MASS SPECTROMETRY (μέρος 2)

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Atkins & de Paula: Elements of Physical Chemistry, Fifth Edition ANSWERS TO END OF CHAPTER EXERCISES E F. E0.19 (a) / C 100 / C E0.

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

phase: synthesis of biaryls, terphenyls and polyaryls

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Supporting Information

Το άτομο του Υδρογόνου

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Equilibrium pka Table (DMSO Solvent and Reference)

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Table of Contents 1 Supplementary Data MCD

Atkins & de Paula: Elements of Physical Chemistry, Fifth Edition ANSWERS TO END OF CHAPTER EXERCISES E F. E0.19 (a) θ / C= 100 θ / C.

REDOX (2) pe as a master variable. C. P. Huang University of Delaware CIEG 632

1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)

Ενόργανη Ανάλυση II. Ενότητα 3: Φασματομετρία Μοριακών Μαζών. Θωμαΐδης Νικόλαος Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

X g 1990 g PSRB

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting information

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Αλληλεπίδραση ακτίνων-χ με την ύλη

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

ΠΕΡΙΛΗΨΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΟΥ ΠΡΟΙΟΝΤΟΣ (SPC) (AMINOVEN 3.5% Glucose / Electrolytes)

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Influence of Flow Rate on Nitrate Removal in Flow Process

Supporting Information

Supporting Information

Electronic structure and spectroscopy of HBr and HBr +

ΑΕΡΙΟΧΡΩΜΑΤΟΓΡΑΦΙΑ (GAS CHROMATOGRAPHY) ΑΘΗΝΑ, ΔΕΚΕΜΒΡΙΟΣ 2015

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ. 2NH + 3Cl N + 6HCl. 3 (g) 2 (g) 2 (g) (g) 2A + B Γ + 3. (g) (g) (g) (g) ποια από τις παρακάτω εκφράσεις είναι λανθασµένη;

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

SUPPLEMENTARY MATERIAL

Answers and Spectroscopic Assignments Copyright 2012

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Electronic Supplementary Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

4, Cu( II), Zn( II)

Derivation of Optical-Bloch Equations

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Supporting Information

Supporting Information

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. Supplementary to Theoretical Study on the Gas Adsorption Capacity and

Supporting Information

Transcript:

J. Mass Spectrom. Soc. Jpn. Vol. 58, No. 3, 2010 REVIEW 7 Fundamentals of Mass Spectrometry Gas Phase Ion/Molecule Reactions Kenzo H>G6D@6 Kofu, YAMANASHI, JAPAN Clean Energy Research Center, University of Yamanashi, The ionization is the first step for the mass spectrometry. The ion/molecule reactions play major roles not only in the gas-phase chemical ionization but also in the ionization processes in condensed phases, e.g., secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization (MALDI), electrospray ionization (ESI), field desorption (FD), and field ionization (FI). In general, the mass spectra obtained by various ionization methods reflect the outcome of complex ion/molecule reactions taking place in the respective ionization method. Thus, fundamental knowledge on the ion/molecule reactions is indispensable to make the mass spectrometry as the superb analytical technique. In this chapter, the fundamentals of ion/molecule reactions will be described. (Received January 27, 2010; Accepted January 28, 2010) 1. H 3 Thomson 1912 1) H 3 Eyring H 3 Scandal of modern chemistry 2) H 3 3 2 H 3 40 1950 (1), (2) 3), 4) CH 4 CH 4 CH 5 CH 3 (1) CH 3 CH 4 C 2 H 5 H 2 (2) 70 ev CH 4 CH 3 CH 5 C 2 H 5 CH 5 C 2 H 5 (1), (2) Correspondence to: Kenzo H>G6D@6, Clean Energy Research Center, University of Yamanashi, 4 3 11 Takeda, Kofu, Yamanashi 400 8511, JAPAN, e-mail: hiraoka@yamanashi. ac.jp 400 8511 4 3 11 CH 5 C 2 H 5 Field Munson (1), (2) Field CH 5 C 2 H 5 5) (electron ionization: EI) chemical ionization (CI) 6) CI CI EI M m/z M 1 CI CI 7) CI APCI (atmospheric-pressure chemical ionization) CI EI 93

K. Hiraoka 8), 9) 1980 CI APCI CI 2. CI 1 k n k n 2.1 CH 5 M [M H] 1 2.1.1 M (m D ) N 2 CH 4 m M k L Langevin 10), 11) (3) k L 2pe(a/m) 1/2 (3) Langevin a m [mm/(m M)] AÕ 3 (u) Langevin (4) k L 2.34 10 9 (a/m) 1/2 cm 3 molecule 1 s 1 (4) (1) a 2.56 AÕ 3 16 16/(16 16) 8 u k L 1.32 10 9 cm 3 molecule 1 s 1 (1.1 10 9 cm 3 molecule 1 s 1 ) Langevin 2.1.2 HCl H 2 O H d Cl d average dipole orientation (ADO) 12), 13) (5) k ADO (2pe/m 1/2 )[a 1/2 cm D (2/pkT) 1/2 ] (5) 1 (3) 2 m D k Boltzmann T (K) c Fig. 1 m D /a 1/2 0 1 locking a AÕ 3 m (u), m D (Debye) cgs 10 18 esu cm SI 3.3 10 30 C m (5) (6) k ADO 2.34 10 9 (a/m) 1/2 3.016 10 9 c m D 94

Table 1. m (Debye) a (AÕ 3 ) Fig. 1. locking 12) 1973, Elsevier (2780/Tm) 1/2 cm 3 molecule 1 s 1 (6) Average dipole orientation (7) CH 5 NH 3 CH 4 NH 4 (7) a 2.16 AÕ 3 m D 1.47 Debye, m 17 17/(17 17) 8.5 u, c m D /a 1/2 1.47/(2.16) 1/2 1 Fig. 1 c 0.22 (6) 300 K k ADO 2.2 10 9 cm 3 molecule 1 s 1 (2.3 10 9 cm 3 molecule 1 s 1 ) Table 1 14) 17) (6) A B A B k L k ADO 18) O d d C d O d 19) k L k ADO Franck Condon 20) k L k ADO k L k ADO k n 1 n (molecule/ cm 3 ) He 0 0.21 Ne 0 0.41 Ar 0 1.64 Kr 0 2.48 Xe 0 4.02 H 2 0 0.81 D 2 0 0.8 O 2 0 1.57 N 2 0 1.74 CO 0.1 1.94 NO 0.16 1.7 HCl 1.03 2.58 HBr 0.79 3.49 CO 2 0 2.59 CS 2 0 8.08 H 2 O 1.84 1.45 N 2 O 0.17 2.92 H 2 S 1.02 3.61 SO 2 1.62 3.78 CH 4 0 2.56 CCl 4 0 10.24 C 2 H 4 0 4.1 C 2 H 6 0 4.39 n-c 4 H 10 0 8 i-c 4 H 10 0 8 C 6 H 6 0 9.99 NH 3 1.47 2.16 H 2 CO 2.31 2.81 CH 3 OH 1.7 3.25 (CH 3 ) 2 CO 2.85 6.11 2.2 (sticky collision) 1 DH, DH : 95

K. Hiraoka 2.2.1 1,800 1 (RE: recombination energy) 21) ionization energy: IE Ar C 6 H 6 Ar C 6 H 6, IE IE(Ar) IE(C 6 H 6 ) 15.6 9.2 6.4 ev C 6 H 6 C 6 H 6 RE Franck Condon 22) Horning (APCI) 23), 24) CI N 2 e N 2 2e (8) N 2 2N 2 N 4 N 2 (9) N 4 H 2 O H 2 O 2N 2 (10) H 2 O H 2 O H 3 O OH (11) H (H 2 O) n 1 H 2 O N 2 H (H 2 O) n N 2 (12) N 4 C 6 H 6 C 6 H 6 2N 2 (13) C 6 H 6 M M C 6 H 6 (14) MH C 6 H 5 (15) N 2 He, Ar, gas chromatography (GC) gas chromatography chemical ionization mass spectrometry (GC-CIMS) (RE) (IE) 25) 9.2 ev NO 26) 31) Trimethylsilyl (TMS) M 28) 2.2.2 (7) k L (4) T k ADO (6) 1/T 1/2 2 32) (4) (6) 50 2.2.3 (H ) hydride ion, s-c 3 H 7 i-c 4 H 10 t-c 4 H 9 C 3 H 8 (16) t-c 4 H 9 i-c 5 H 12 t-c 5 H 11 i-c 4 H 10 (17) H electron a$nity: EA 0.75 ev He H (18) H H CH 4 H H C CH 3 H 2 (18) H H H CH 4 C H s (18) 3 2 33) CH 3 H 2 H 34) (18) tight complex 32), 35), 36) tight complex tight complex 96

tight complex complex k (17) k 640 K 1.7 10 12 cm 3 molecule 1 s 1 1,000 1 300 K 1.4 10 11 cm 3 molecule 1 s 1 100 1 200 K 1.1 10 9 cm 3 molecule 1 s 1 (19) k 300 K, 640 K 1.6 10 9 1.5 10 9 cm 3 molecule 1 s 1 t-c 4 H 9 (C 2 H 5 ) 3 N (C 2 H 5 ) 3 NH i-c 4 H 8 (19) 2.2.4 (20) 3 M A B M kf AB M (20) A B kc kb [AB ] (21) [AB ]M ks AB M (22) A B 3 A B H 3 2 (20) (21), (22) k c A B (collision), k b [AB ] (back dissociation), k s [AB ] M [AB ] (stabilization) k c k s k L k ADO (21), (22) [AB ] (20) (23) k f k ck s [M] k b k s [M] (23) 3 M 3 M [AB ] 3 M A B k b k s [M] k f (24) k f k ck s [M] k b k t [M] (24) (20) [A ], [B] [M] 1 3 3 [M] 3 k t 37) 3 H 3 O (25) k t T 4 38) H 3 O H 2 O CH 4 H 3 O (H 2 O) CH 4 (25) k t 3.7 10 17 /T 4 cm 6 molecule 2 s 1 (26) A B [AB ] [AB ] 3 (22) (24) k b k t k s 3 M M [AB ] (V) M (T) V T M V T M (V V) (V R) k s k s (24) k t 39, 40 Fig. 2 [AB ] 3 M k b k s [M] (23) (27) k f k c (27) k f A B k c (20) 2 Fig. 2. (E), (V), (R), (T) 97

K. Hiraoka 2 (pseudo 2 nd order reaction) k b k s [M] k b k s [M] N 2 N 2 N 4 O 2 O 2 O 4 41), NH 4,CH 3 NH 3 (CH 3 ) 2 NH 2 2 3 k f 3 M (23) 42) 44) (21), (22) 2.2.5 AB e AB (28) AB A B (29) AB M AB M (30) AB e A B e (31) AB X AB X (32) CI (electron capture) O 2 e O 2 (33) O O (34) SF 6 e SF 6 (35) SF 5 F (36) CCl 4 e Cl CCl 3 (37) Fig. 3 O 2 O 2 45) O 2 O 2 O 2 (v 0) 0.08 ev O 2 (v4) 0.08 ev O 2 (v4) O 2 O 2 (v4) Fig. 3. Fig. 4. O 2 (X 3 g ) O 2 (X 2 P g ) 45 1986, Elsevier s a (e max ) (cm 2 ) e max (ev) 46 1971 John Wiley & Sons O 2 O 2 O 2 (v4) 3 M v3 O 2 e O 2 (38) O 2 M O 2 M (39) 98

Table 2. (ev) H 0.75 O 1.46 F 3.4 Cl 3.62 Br 3.37 I 3.07 NO 0.024 NO 2 2.43 NO 3 3.7 N 2 O 0.22 O 2 0.5 O 3 2.05 OH 1.83 SCN 2.17 SF 6 0.6 SF 5 2.8 2.83 0.98 0.88 0.66 0.55 0.14 O 2 O (29) Fig. 4 AB e A B (s amax (cm 2 )) (e MAX (ev)) 46) (cm 2 ) Fig. 3 O 2 (v 0) O 2 (v0) 0.5 ev Table 2 47) 2.2.6 S N 2 48) 50) H, H 2, H 2 51) 2.2.7 CI APCI matrix-assisted laser desorption/ionization (MALDI), secondary ion mass spectrometry (SIMS), electrospray ionization (ESI) 52 55 1980 55) Viggiano 1,100 9,300 3. 3.1 DH DH DS DGDHTDS, DG (RE) (IE) AH B A BH B A A BH AH B A B A B C D, DH DH f DHDH f (C ) DH f (D) DH f (A ) DH f (B) 99

K. Hiraoka 56 (NIST Chemistry WebBook, URL: http://webbook. nist.gov/chemistry/ ). 3.2 CI, APCI ion cyclotron resonance, ICR Torr kev ms ms ms ICR 10 2 Torr ( 5 ms) 300 1,000 ms K K DG DH DS (40) van t Ho# RT ln K DGDHTDS (40) (40) (41) 1/T van t Ho# DH, 1/T 0 DS ln K DH RT DS R (41) 57 59 3.3 CI APCI MALDI SIMS (42) K (43) B 1 H B 2 B 1 B 2 H (42) K [B 1 ][B 2 H ]/[B 1 H ][B 2 ] (43) DG (40) (42) B 1 B 2 (proton a$nity: PA) PA(B 1 ) PA(B 2 ), DH (40) (42) DG van t Ho# DH (42) DS Lau 60) (42) DS s (44) DS rotsym R ln s(b 1H )s(b 2 ) s(b 2 H )s(b 1 ) (44) 61 300 K DG (44) DS (42) DS 8 12 J/K mol DGDH DG DHPA(B 1 ) PA(B 2 ). PA PA H 2 O s PA H 2 O NH 3 p n non-bonding PA NH 3 n Table 3 61 PA PA H 2 H 3 CO C O PA 594 426.3 kj/mol COH HCO CO (highest occupied molecular orbital: HOMO) 5s C CO C (C d O d ), 5s (HOMO) C C 2 H 4 C 2 H 5 p (HOMO) H 2 CH CH 2 H 3 C CH 2 H 3 O NH 3 N (HOMO) NH 4 NH 4 H 100

Table 3. (kj/mol) (kj/mol) C 4 H 10 O n-c 4 H 9 OH 789.2 He He 177.8 C 4 H 10 O i-c 4 H 9 OH 793.7 Ne Ne 198.8 C 4 H 10 O (C 2 H 5 ) 2 O 828.4 Ar Ar 369.2 C 6 H 6 O C 6 H 5 OH 817.3 Kr Kr 424.6 C 12 H 24 O 6 18-Crown-6 967 Xe Xe 499.6 NH 3 NH 3 853.6 H 2 H 2 422.3 CH 5 N CH 3 NH 2 899 O 2 O 2 421 C 2 H 7 N (CH 3 ) 2 NH 929.5 N 2 N 2 493.8 C 3 H 9 N (CH 3 ) 3 N 948.9 CO CO at C 594 C 2 H 3 N CH 3 CN 779.2 CO CO at O 426.3 C 2 H 7 N C 2 H 5 NH 2 912 CO 2 CO 2 540.5 C 4 H 5 N Pyrrole 875.4 CS 2 CS 2 681.9 C 4 H 9 N Pyrrolidine 948.3 NO NO 531.8 C 5 H 5 N Pyridine 930 N 2 O N 2 O at N 549.8 C 5 H 11 N Piperidine 954 N 2 O N 2 O at O 575.2 C 6 H 7 N C 6 H 5 NH 2 882.5 NO 2 NO 2 591 C 9 H 7 N Quinoline 953.2 SO 2 SO 2 672.3 O 3 O 3 625.5 CH 5 N 3 Guanidine 986.3 H 2 S H 2 S 705 C 2 H 5 NO 2 Glycine 886.5 C 3 H 7 NO 2 A-Alanine 901.6 CH 4 CH 4 543.5 C 3 H 7 NO 2 S A-Cysteine 903.2 C 2 H 6 C 2 H 6 596.3 C 3 H 7 NO 3 A-Serine 914.6 C 2 H 4 CH 2 CH 2 680.5 C 4 H 4 N 2 O 2 Uracil 872.7 C 2 H 2 C 2 H 2 641.4 C 4 H 5 N 3 O Cytosine 949.9 C 3 H 8 C 3 H 8 625.7 C 4 H 7 NO 4 A-Aspartic acid 908.9 C 3 H 6 CH 3 CH CH 2 751.6 C 4 H 8 N 2 O 3 A-Aspargine 929 C 3 H 4 H 2 C C CH 2 775.3 C 4 H 9 NO 3 A-Threonine 922.5 C 3 H 4 H 3 CC CH 748 C 5 H 5 N 5 Adenine 942.8 C 4 H 10 i-c 4 H 10 677.8 C 5 H 5 N 5 O Guanine 959.5 C 6 H 6 C 6 H 6 750.4 C 5 H 6 N 2 O 2 Thymine 880.9 C 7 H 8 C 6 H 5 CH 3 784 C 5 H 9 NO 2 A-Proline 920.5 C 10 H 8 o-xylene 796 C 5 H 9 N 3 Histamine 999.8 C 10 H 8 p-xylene 794.4 C 5 H 10 N 2 O 3 A-Glutamine 937.8 C 12 H 10 Biphenyl 813.6 C 5 H 11 NO 2 A-Valine 910.6 C 14 H 10 Anthracene 877.3 C 5 H 11 NO 2 S A-Methionine 935.4 C 24 H 12 Coronene 861.3 C 6 H 6 N 2 O Nicotinamide 918.3 C 6 H 9 N 3 O 2 A-Histidine 988 H 2 O H 2 O 691 C 6 H 13 NO 2 A-Leucine 914.6 H 2 O 2 H 2 O 2 674.5 C 6 H 13 NO 2 A-Isoleucine 917.4 CH 2 O H 2 CO 712.9 C 6 H 14 N 2 O 2 A-Lysine 996 CH 4 O CH 3 OH 754.3 C 6 H 14 N 4 O 2 A-Arginine 1051 CH 2 O 2 HCOOH 742 C 9 H 11 NO 2 A-Phenylalanine 922.9 C 2 H 6 O C 2 H 5 OH 776.4 C 9 H 11 NO 3 A-Tyrosine 926 C 2 H 6 O CH 3 OCH 3 792 C 9 H 12 N 2 O 6 Uridine 947.6 C 2 H 4 O 2 CH 3 COOH 783.7 C 9 H 13 N 3 O 5 Cytidine 982.5 C 3 H 8 O n-c 3 H 7 OH 786.5 C 10 H 13 N 5 O 2 Guanosine 993.4 C 3 H 8 O i-c 3 H 7 OH 793 C 10 H 13 N 5 O 4 Adenosine 989.3 C 4 H 4 O Furan 803.4 C 11 H 12 N 2 O 2 A-Tryptophan 948.9 C 4 H 8 O Tetrahydrofuran 822.1 (NH 3 CH 3 NH 2 (CH 3 ) 2 NH (CH 3 ) 3 N), PA Table 3 PA PA (1,051 kj/mol) PA (986.3 kj/mol) PA PA 101

K. Hiraoka 3.4 AH AH B A BH [CH 3 COOH H] CH 3 COOH CH 3 COO H H 2 H H 3 H 2 H 2H H CH 3COOH H 2 H CH 3COOH H 2 CH 3COO CH 3COOH H CH 3COO CI (45) A 1 A 2 H A 1 H A 2 (45) DH 45 A H D(A H) A EA(A ) (46) DH 45 D(A 2 H) EA(A 2 ) D(A 1 H) EA(A 1 ) (46) A PA(A ) DH 45 (47), (48) IE(H) DH 45 PA(A 2 ) PA(A 1 ) (47) PA(A ) D(A H) EA(A) IE(H) (48) (48) A H AH, D(A H) EA(A) AH H AH (45) DH Table 4. [D EA] [D EA] (kj/mol) H 2 361 H 2 O 322 CH 3 OH 264 C 2 H 5 OH 256 DMSO 255 CH 3 CN 250 (CH 3 ) 2 CO 236 HF 235 H 2 S 161 C 6 H 5 OH 151 CH 3 COOH 146 HCOOH 132 C 6 H 5 COOH 112 HCl 84 CF 3 COOH 38 HBr 42 HI 3 62) 72) (D EA) Table 4 CI A AH (45) O 2 e O O (49) O 2 e M 3 O 2 M 3 (50) H 2 O e (6.5 ev) OH H (51) CH 4 e (10 ev) H CH 3 C 2 H,C 2,C, etc. (52) NH 3 e H NH 2 or NH 2 H (53) CI CI CCl 4,NF 3,CH 3 ONO CCl 4 e Cl CCl 3 (54) NF 3 e F NF 2 (55) CH 3 ONO e CH 3 O NO (56) Cl, F, CH 3 O CCl 3 Cl CCl 4 CCl 3 Cl, 297 kj/mol Cl EA 349 kj/mol (54) 349 297 52 kj/ mol Table 4 HI HI I I HI HI H,OH,CH 3 O H 2,H 2 O, CH 3 OH OH,CH 3 O H 2 O, CH 3 OH OH H 2 CH 4 N 2 O 73) N 2 O O O H 2 CH 4 OH 102

Table 5. DH (kj/mol) DS (J/mol K) n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 H 3 (H 2 ) n 28.8 13.8 13.2 7.2 6.9 6.4 3.7 3.3 2.5 72.7 72.7 77.3 74.8 79 83.6 69 74.8 79.8 N 2 (N 2 ) n 107.8 11.5 11.3 10.6 10.3 9.5 8.5 7.8 7.4 87.8 62.7 66 69.4 85.7 90.7 85.3 80.7 86.5 O 2 (N 2 ) n 20.9 18.8 17.6 16.7 11.3 10.2 9.4 8.8 7.8 72.7 79.8 81.9 94.1 67.7 67.3 77.3 80.6 79.8 He (He) n 227.8 15.6 2.7 2 74 53.5 45.1 NO (NO) n 59.4 53.5 15.9 23.8 14.6 17.1 12.5 15.5 12.1 96.1 154.7 79.4 133.8 104.5 125.4 96.1 112.9 83.6 H 3 O (H 2 O) n 146.3 84.4 74.8 53.1 48.5 44.7 126.2 98.6 118.7 97.8 104.5 109.1 CH 3 OH 2 (CH 3 OH) n 115.4 82.8 58.9 48.5 41 37.2 122.9 114.1 104.9 96.1 86.5 84.4 H (CH 3 COCH 3 )(CH 3 COCH 3 ) n 123.7 51 35.5 122.5 96.1 71.1 H (C 2 H 5 OH)(H 2 O) n 100 80.3 59.4 52.3 54.8 109 117 109 109 117 t-c 4 H 9 (H 2 O) n 46.8 74 58 92 121 120 Li (H 2 O) n 142 109 88 67 59 50 96 88 105 125 130 134 Na (H 2 O) n 100 84 67 59 50 46 92 92 92 105 117 109 K (H 2 O) n 71 67 54 50 46 42 83 100 96 105 105 109 Rb (H 2 O) n 67 59 50 46 42 88 92 100 105 105 Cs (H 2 O) n 59 50 46 44 81 92 100 105 F (H 2 O) n 97.4 80.2 64 58.1 51.4 45.6 43.5 46.8 46.4 76 93 96 111 109 104 109 130 137 Cl (H 2 O) n 61.4 54.3 49.3 44.3 39.7 36.8 82 89 93 95 91 88 Br (H 2 O) n 48.9 48.5 47.7 46 45 43 61 75 94 110 119 118 I (H 2 O) n 43.1 39.7 38.5 38.5 64 74 85 99 F (CO 2 ) n 135 30.5 30.1 24.2 23.4 22.2 16.3 111.6 76.1 94.5 84.9 93.2 94.1 CI 73) 75) F (55) HF (Table 4), F (45) HCl Cl 3.5 1.2.3 RH (57) DG DH DS DH f 56 NIST (URL: http://webbook.nist.gov/chemistry/ ). R 1 R 2 H R 1 H R 2 (57) (57) DS 4 12 J/mol K (57) DH DG DGDHTDS DS DGDH C 2 H 5 i-c 4 H 10 C 2 H 6 t-c 4 H 9 DH 56 DH f DH (kj/mol) [DH f (C 2 H 6 ) DH f (t-c 4 H 9 )] [DH f (C 2 H 5 ) DH f (t-c 4 H 10 )] [( 84) (693)] [(901) ( 134)]158 kj/mol 103

K. Hiraoka DH C 2 H 5 i-c 4 H 10 t-c 4 H 9 C 2 H 5 (2) CH 5 C 2 H 5 (1) (2) PA (543.5 J/mol) PA (625.7 kj/mol) CH 5 C 3 H 8 CH 4 C 3 H 9 C 3 H 9 i-c 3 H 7 H 2 PA (680.5 kj/mol) PA (625.7 kj/mol) C 2 H 5 C 3 H 8 C 2 H 5 i-c 3 H 7 C 2 H 5 C 3 H 8 C 2 H 6 i-c 3 H 7 i-c 3 H 7 3.6 3 (20), (21), (22) 3 mtorr CI Torr (58) A S M A S M (58) A S n 1 S M A S n M (59) A S n B A S n 1 B S (60) M: 3 S: (60) S B 3 (60) A S n 1 B S A S n Table 5 ( DH (kj/mol)), ( DS (J/mol K)) (URL: http://webbook.nist.gov/chemistry/ ) (a) H 3,CH 5,C 2 H 5 3 2 (b) H 3 H 2 H 3 (H 2 ) n H 3 (H 2 ) 3 (H 2 ) 3 (H 2 ) 2 (shell) H 3 6 H 2 H 3 H 2 (c) N 2 N 2 (N 2 ) 2 (N 2 ) n N 4 D 2h (d) O 2 O 2 O 2 (O 2 ) 3 (O 2 ) n (O 2 ) 2 (O 2 ) n (e) O 2 N 2 O 2 (N 2 ) 4 (N 2 ) n N 2 O 2 p lobe (f) Rg (Rg 3 ) (Rg) n Rg Rg 3 (g) NO (NO) n n n NO n NO (NO) n (h) H 2 O H H (S) n n H n 2 S H S H 3 C C N H N C CH 3 n 3 (i) F (CO 2 ) n n 1 FCOO n 2 Cl (CO 2 ) n n 1 2 1 104

DS 80 120 (J/mol K) (Table 5) DS 120 (J/mol K) DS 80 (J/mol K) 58), 59) H 2 O H 2 O PA H 2 O PA H 3 O H H 2 O PA Table 3 H H 3 O H 2 O H 3 O (H 2 O) n n n Table 5 C 2 H 5 OH 2 DH n 1, n n 4 n 4 5 n 4 5 C 2 H 5 OH 2 (H 2 O) n H 3 O (H 2 O) n 1 (C 2 H 5 OH), n n C 2 H 5 OH 2 H 3 O t-c 4 H 9 t-c 4 H 9 H 2 O t-c 4 H 9 OH 2 t-c 4 H 9 OH t- Table 5 n 1 2 t-c 4 H 9 OH 2 H 2 O H 3 O (t-c 4 H 9 OH), t-c 4 H 9 OH H 3 O (H 2 O) n i-c 4 H 8 CI A (S) n H 2 O NH 3 H 3 O (H 2 O) n NH 4 (NH 3 ) n H 3 O NH 4 CI Table 5 H 3 O (H 2 O) n n DH n 1, n 1 PA 691 kj/mol (Table 3) n 1, 2, 3, PA 837, 922, 997 kj/mol (Table 5) n 1 837 kj/mol NH 3 PA 854 kj/mol H 3 O (H 2 O) (Table 3). (60) H 3 O (H 2 O) (CH 3 ) 2 CO [(CH 3 ) 2 CO H 2 O H] H 2 O M w m/z M w CI CI Torr 1 mtorr H 3 O (H 2 O) n n 100 300 100 (373 K) H 3 O H 3 O (H 2 O) Table 5 H 3 O H 2 O H 3 O (H 2 O), DH DS 146.3 kj/mol 126.2 J/mol K DG DHTDS146,300 373 126.2 99,227 J/mol RT ln K 8.31 373 ln K K 8.0 10 13 K (atm) atm K 1 mtorr P(H 2 O) 10 3 /760 K {I[H 3 O ]/ I[H 3 O (H 2 O)]}/P(H 2 O) P(H 2 O) I[H 3 O ]:I[H 3 O (H 2 O) 1 ] 1 :1.1 10 8 H 3 O (H 2 O) n n H 3 O : H 3 O (H 2 O) : H 3 O (H 2 O) 2 :H 3 O (H 2 O) 3 :H 3 O (H 2 O) 4 1: 1.1 10 8 :3.4 10 13 :8.5 10 11 :2.4 10 8 100 H 3 O (H 2 O) 2 300 (573 K) H 3 O :H 3 O (H 2 O) : H 3 O (H 2 O) 2 :H 3 O (H 2 O) 3 :H 3 O (H 2 O) 4 1 : 7.4 : 3.41 10 3 : 1.9 10 8 :4.6 10 14 100 300 105

K. Hiraoka H 3 O (H 2 O) n H 3 O H 3 O (H 2 O) CI (61) 163 kj/mol H 3 O NH 3 NH 4 H 2 O (61) 163 kj/mol H 2 O 1.84 NH 4 NH 4 (H 2 O) CI Cl 76) NO 30), 31) H 3 O (H 2 O) n n 10 K Laval Table 5 n 1 Li F Li M Li M 77), 78) Li M Li M CI CI Li M Li M M M 4. C I 4.1 CI 1ppm PA AH B A BH, A/B 10 6,[BH ]/[AH ] 0.01 AH 1 BH 200 DGRT ln K 8.31 473 ln10 2 10 6 36.2 kj/mol DS0 J/ mol K DGDH 1ppm PA 36 kj/mol 4.2 CI (42) B 2 H (45) A 1 H B 1 H B 2 B 1 B 2 H (42) A 1 A 2 H A 1 H A 2 (45) H Hunt 79), In 106

the case of an exothermic gas phase proton transfer reaction proceeding through a short-lived ion molecule complex, the energy liberated remains largely in the product containing the newly formed bond. (42) B 2 H B 2 H (45) A 1 H A 2 CI OH A 2 4.3 n 1 k (cm 3 / molecule s) n (cm 3 ) n k n (s 1 ) (62) n (cm 3 ) n (cm 3 ) 9.659 10 18 P (Torr)/T (K) (63) (42) (45) 1 1 t (s) (64) t ln 2/k n 0.693/k n (s) (64) t (s) 2 1 1ppm 5 Torr, 760 Torr 1 t (s) 4 10 3 s 3 10 5 s 5 Torr CI ms 1ppm APCI ms 1 APCI CI ppb ppt / / / Torr CI CI ( 10 5 Torr) (EI) EI EI EI CI EI EI CI, APCI 1 1 10 10 ppt PA EA PA EA 4.4 (l D ) l D l D (cm) 5/P (mtorr) (65) 1 1 Torr, 10 3 Torr l D 6 10 6 cm, 5 10 3 cm, 5 cm 1 mtorr 5cm 400 m/s 1 10 10,10 7,10 4 E 107

K. Hiraoka v d (drift velocity) E v d E v d me (66) (66) m (cm/s)/(v/cm), m (cm 2 /V s) 1 V/cm (cm/s) P (Torr) T (K) m m 0 (67) m 0 m(p/760) (273/T) (67) 0, 1 (760 Torr) v d P (Torr) T (K) (cm 2 /V s) 0, 1 He (He) : 10.8, Ne (Ne) : 4.4, Ar (Ar) : 1.63, Kr (Kr) : 0.93, Xe (Xe) : 0.63 Ar 1 V/cm 0, 1 Ar 1.63 cm/s KE ion v d Wannier 80), 81) KE ion (1/2)mv 2 d (1/2)M b v 2 d (3/2)kT (68) m M b k Boltzmann T (68) v d 2 (3/2)kT, (1/2)mv d (1/2)M b v 2 d 1 1,000 V/cm Ar (66) 1,800 cm/s APCI 1cm 1/v d 5.6 10 4 s Ar Ar t 5.6 10 4 s 10 9 cm 3 /molecule s (64) n n 1.3 10 12 cm 3 760 Torr 50 ppb 1,000 V/cm ppt APCI 1,000 V/cm (68) m M b 40 10 3 /6.02 10 23 kg, v d 18 m/s, k 1.38 10 23 J/K, T 300 K, (68) KE ion (1.1 1.1 621) 10 23 J 301 K, 1,000 V/cm 760 Torr 1K 1 Torr 10 V/cm v d 1.4 10 4 cm/s 7.35 10 5 s n n 9.4 10 12 cm 3 1 Torr 300 ppm APCI APCI (62 62 621) 10 23 J 300 K 360 K, 1 Torr 10 V/cm 60 K (65) CI (collision-induced dissociation: CID) N 2 CID CID 5. (1), (2) 1950 CI APCI MALDI, surface-assisted laser desorption/ionization (SALDI), SIMS, 10 3 Torr 108

1) J. J. Thomson, Phil. Mag., 24, 209 (1912). 2) G. S. Handler and J. R. Arnold, J. Chem. Phys., 27, 144 (1957). 3) V. L. Tal rose and A. K. Lyubimova, Dokl. Akad. Nauk. SSSR, 88, 909 (1952). 4) D. P. Stevenson and D. O. Schissler, J. Chem. Phys., 23, 1353 (1955). 5) M. S. B. Munson and F. H. Field, J. Am. Chem. Soc., 87, 3294 (1965). 6) M. S. B. Munson and F. H. Field, J. Am. Chem. Soc., 88, 2621 (1966). 7) J. H. (2009). 8) 28, 185 (1980). 9) P. Kebarle, Ann. Rev. Phys. Chem., 28, 445 (1977). 10) P. Langevin, Ann. Chim. Phys., 5, 276 (1905). 11) G. G. Gioumousis and D. P. Stevenson, J. Chem. Phys., 29, 294 (1958). 12) T. Su and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys., 12, 347 (1973). 13) L. Bass, T. Su, W. J. Chesnavich, and M. T. Bowers, Chem. Phys. Lett., 34, 119 (1975). 14) E. W. Rothe and R. B. Bernstein, J. Chem. Phys., 31, 1619 (1959). 15) R. J. W. LeFevre, Adv. Phys. Org. Chem., 3, 1 (1959). 16) R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, NSRDS-NBS 10, (1967); URL: http://www. nist. gov/ srd/nsrds/nsrds-nbs-10. pdf. 17) A. L. McClellan, Tables of Experimental Dipole Moment, W. H. Freemen, San Francisco, Calif. (1963). 18) T. Su and M. T. Bowers, J. Chem. Phys., 58, 3027 (1973). 19) T. Su and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys., 17, 309 (1975). 20) W. E. Farneth and J. I. Brauman, J. Am. Chem. Soc., 98, 7891 (1976). 21) E. Lindholm, Ion Molecule Reactions, Vol. 2, ed. by J. L. Franklin, Plenum Press, New York (1972), p. 457. 22) M. Chau and M. T. Bowers, Int. J. Mass Spectrom. Ion Phys., 24, 191 (1977). 23) E. C. Horning, M. G. Horning, D. I. Carroll, I. Dzidic, and R. N. Stillwell, Anal. Chem., 45, 936 (1973). 24) E. C. Horning, M. G. Horning, D. I. Carroll, R. N. Stillwell, and I. Dzidic, Life Science, 13, 1331 (1973). 25) B. Munson, Anal. Chem., 49, 772A (1977). 26) N. Einolf and B. Munson, Int. J. Mass Spectrom. Ion Phys., 9, 141 (1972). 27) D. F. Hunter and J. F. Ryan, J. Chem. Soc., Chem. Commun., 620 (1972). 28) B. L. Jelus, B. Munson, and C. Fenselau, Biomed. Mass Spectrom., 1, 96 (1974). 29) D. F. Hunt, C. N. McEwen, and T. M. Harvey, Anal. Chem., 47, 1730 (1975). 30) D. F. Hunt and T. M. Harvey, Anal. Chem., 47, 1965 (1975). 31) D. F. Hunt and T. M. Harvey, Anal. Chem., 47, 2136 (1975). 32) M. Meot-Ner and F. H. Field, J. Am. Chem. Soc., 97, 2014 (1975). 33) 31, 1054 (1971). 34) G. A. Olah, Carbocations and Electrophilic Reactions, John Wiley, New York (1973). 35) M. Meot-Ner and F. H. Field, J. Chem. Phys., 64, 277 (1976). 36) M. Meot-Ner and F. H. Fioeld, J. Am. Chem. Soc., 100, 1356 (1978). 37) A. J. Cunninghum, J. D. Payzant, and P. Kebarle, J. Am. Chem. Soc., 94, 7627 (1972). 38) Y. K. Lau, S. Ikuta, and P. Kebarle, J. Am. Chem. Soc., 104, 1462 (1982). 39) A. G. Harrison, Interactions between Ions and Molecules, ed. by P. Ausloos, Plenum Press, New York (1975), p. 263. 40) A. Good, Chem. Rev., 75, 561 (1975). 41) D. K. Bohme, D. B. Dunkin, F. C. Fehsenfeld, and E. E. Ferguson, J. Chem. Phys., 49, 5201 (1968). 42) M. Meot-Ner and F. H. Field, J. Am. Chem. Soc., 97, 5339 (1975). 43) W. N. Olmstead, M. Lev-On, D. M. Golden, and J. I. Brauman, J. Am. Chem. Soc., 99, 992 (1977). 44) P. V. Neilson, M. T. Bowers, M. Chau, W. R. Davidson, and D. H. Aue, J. Am. Chem. Soc., 100, 3649 (1978). 45) Y. Hatano, Electronic and Atomic Collisions, ed. by D. C. Lorents, W. E. Meyerhof, and J. R. Peterson, Elsevier Science Pub., Amsterdam (1986), p. 153. 46) L. G. Christophorou, Atomic and Molecular Radiation Physics, John Wiley & Sons, London (1971), p. 491. 47) B. M. Smirnov, Negative Ions, McGraw-Hill, New York (1982). 48) D. K. Bohme, G. I. Mackay, and J. D. Payzant, J. Am. Chem. Soc., 96, 4027 (1974). 49) J. D. Payzant, K. Tanaka, L. D. Betowsky, and D. K. Bohme, J. Am. Chem. Soc., 98, 894 (1976). 50) W. N. Olmstead and J. I. Brauman, J. Am. Chem. Soc., 99, 4219 (1977). 51) S. G. Lias and P. Ausloos, Ion Molecule Reactions, Am. Chem. Soc., Washington, D.C. (1975). 52) E. E. Ferguson, Atom. Data & Nucl. Data Tables, 12, 159 (1973). 53) L. W. Sieck and S. G. Lias, J. Phys. Chem. Ref. Data, 5, 1123 (1976). 54) D. L. Albritton, Atom. Data & Nucl. Data Tables, 22, 1 (1978). 55) Y. Ikezoe, S. Matsuoka, M. Takebe, and A. Viggiano, Gas Phase Ion Molecule Reaction Rate Constants through 1986, Maruzen, Tokyo (1987). 56) S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and G. Mallard, J. Phys. Chem. Ref. Data, 17, (1988), Supplement No. 1. 57) P. Kebarle, Techniques for the Study of Ion Molecule Reactions Techniques of Chemistry Volume XX, ed. by J. M. Farrar and W. H. Saunders, Jr., John Wiley & Sons, New York (1988), Chap. V, p. 221. 58) (1992), 7 p. 153. 59) K. Hiraoka and S. Yamabe, Dynamics of Excited Molecules, ed. by K. Kuchitsu, Elsevier, Amsterdam (1994), 109

K. Hiraoka Chap. 11, p. 399. 60) Y. K. Lau and P. Kebarle, J. Am. Chem. Soc., 98, 7452 (1976). 61) E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 27, 413 (1998). 62) R. Yamdagni and P. Kebarle, J. Am. Chem. Soc., 95, 4050 (1973). 63) K. Hiraoka, R. Yamdagni, and P. Kebarle, J. Am. Chem. Soc., 95, 6833 (1973). 64) T. B. McMahon and P. Kebarle, J. Am. Chem. Soc., 96, 5940 (1974). 65) T. B. McMahon and P. Kebarle, J. Am. Chem. Soc., 98, 3399 (1976). 66) T. B. McMahon and P. Kebarle, J. Am. Chem. Soc., 96, 4035 (1974). 67) T. B. McMahon and P. Kebarle, J. Am. Chem. Soc., 99, 2222 (1977). 68) J. B. Cumming and P. Kebarle, Can. J. Chem., 55, 3474 (1977). 69) R. Yamdagni and P. Kebarle, Can. J. Chem., 52, 861 (1974). 70) R. T. McIver, Jr. and J. T. Silvers, J. Am. Chem. Soc., 95, 8462 (1973). 71) R. T. McIver, Jr. and J. S. Miller, J. Am. Chem. Soc., 96, 4323 (1974). 72) E. M. Arnett, R. T. Small, R. T. McIver, Jr., and J. S. Miller, J. Am. Chem. Soc., 96, 5640 (1974). 73) A. L. C. Smit and F. H. Field, J. Am. Chem. Soc., 99, 6471 (1977). 74) D. F. Hunt and F. W. Crow, Anal. Chem., 50, 1781 (1978). 75) T. A. Roy, F. H. Field, Y. Y. Lin, and L. L. Smith, Anal. Chem., 51, 272 (1979). 76) H. P. Tannenbaum, J. D. Roberts, and R. C. Dougherty, Anal. Chem., 47, 49 (1975). 77) 53, 475 (2004). 78) 50, 234 (2007). 79) D. F. Hunt, G. C. Sta#ord, Jr., F. W. Crow, and J. W. Russel, Anal. Chem., 48, 49(1976). 80) G. H. Wannier, Bull. Syst. Tech. J., 32, 170 (1953). 81) M. McFarland, D. I. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf, J. Chem. Phys., 59, 6620 (1973). Keywords: Ion/molecule reaction, Proton transfer reaction, Charge transfer reaction, Cluster ion, Negative ion 110