Approximation of dynamic boundary condition: The Allen Cahn equation

Σχετικά έγγραφα
Phase-Field Force Convergence

Example Sheet 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Local Approximation with Kernels

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Areas and Lengths in Polar Coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Uniform Convergence of Fourier Series Michael Taylor

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Reminders: linear functions

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

The Pohozaev identity for the fractional Laplacian

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

12. Radon-Nikodym Theorem

The Simply Typed Lambda Calculus

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Every set of first-order formulas is equivalent to an independent set

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

ST5224: Advanced Statistical Theory II

Ηλεκτρονικοί Υπολογιστές IV

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Finite Field Problems: Solutions

Lecture 26: Circular domains

Second Order RLC Filters

Variational Wavefunction for the Helium Atom

Solutions to Exercise Sheet 5

Iterated trilinear fourier integrals with arbitrary symbols

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Answer sheet: Third Midterm for Math 2339

1 String with massive end-points

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

On the Galois Group of Linear Difference-Differential Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Forced Pendulum Numerical approach

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Heisenberg Uniqueness pairs

EE512: Error Control Coding

Wavelet based matrix compression for boundary integral equations on complex geometries

The k-α-exponential Function

Limit theorems under sublinear expectations and probabilities

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

Homework 3 Solutions

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Homework 8 Model Solution Section

D Alembert s Solution to the Wave Equation

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Lifting Entry (continued)

Sharp Interface Limit for the Navier Stokes Korteweg Equations

Second Order Partial Differential Equations

Matrices and Determinants

Problem Set 3: Solutions

Section 8.2 Graphs of Polar Equations

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

From the finite to the transfinite: Λµ-terms and streams

Commutative Monoids in Intuitionistic Fuzzy Sets

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Homomorphism in Intuitionistic Fuzzy Automata

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

C.S. 430 Assignment 6, Sample Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Divergence for log concave functions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

NonEquilibrium Thermodynamics of Flowing Systems: 2

New bounds for spherical two-distance sets and equiangular lines

D. BAINOV, YU. DOMSHLAK, AND S. MILUSHEVA

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Srednicki Chapter 55

Fractional Colorings and Zykov Products of graphs

Concrete Mathematics Exercises from 30 September 2016

Space-Time Symmetries

Elements of Information Theory

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Graded Refractive-Index

Transcript:

1 Approximation of dynamic boundary condition: The Allen Cahn equation Matthias Liero I.M.A.T.I. Pavia and Humboldt-Universität zu Berlin 6 th Singular Days 2010 Berlin

Introduction Interfacial dynamics in semiconductor models Schematic cross-section of thin film a-si:h photovoltaic cell Interaction with domain walls in spinodal decomposition Cahn Hilliard equation 2

3 AC Equation with Dynamic Boundary Condition Sprekels and Wu [2010]: Ω R d, d 2, with C 2 boundary t u u + F b (u) = 0, in Ω [0, T ] t φ φ + ν u + φ + F s(φ) = 0, on Ω [0, T ] u = φ, on Ω [0, T ] u(0, ) = u 0, φ(0, ) = φ 0 Laplace Beltrami operator on Ω Cahn Hilliard equation (R. Kenzler et al. [2001]) Caginalp system (R. Chill, E. Fasangova and J. Pruess [2006]) Nonisothermal Allen Cahn equation (C. Gal and M. Grasselli, A. Miranville [2008])

Layer Approximation Ω r b t u a b u + F b (u) = 0, in Ω [0, T ]

4 Layer Approximation Ω ε def = {x R d : (y, η) Ω (0, ε), x = y + ην(y)} Ω ε Ω ε r b t u a b u + F b (u) = 0, in Ω [0, T ]

4 Layer Approximation Ω ε def = {x R d : (y, η) Ω (0, ε), x = y + ην(y)} Ω ε Ω ε r b t u a b u + F b (u) = 0, in Ω [0, T ] r s ε δ t φ a s ε α φ + ε β F s(φ) = 0, in Ω ε [0, T ] u = φ on Ω [0, T ] a b ν u a s ε α ν φ = 0, on Ω [0, T ] a s ε α ν φ = 0, on Ω ε \ Ω [0, T ]

Layer Approximation Ω ε def = {x R d : (y, η) Ω (0, ε), x = y + ην(y)} Ω ε Ω ε r b t u a b u + F b (u) = 0, in Ω [0, T ] r s ε 1 t φ a s ε α φ + ε 1 F s(φ) = 0, in Ω ε [0, T ] u = φ on Ω [0, T ] a b ν u a s ε α ν φ = 0, on Ω [0, T ] a s ε α ν φ = 0, on Ω ε \ Ω [0, T ] Today: δ = 1, β = 1, α (, 1)

Setting r b t u a b u + F b r (u) = 0, s ε t φ a s ε α φ + 1 ε F s(φ) = 0 Spaces Ṽ ε = { (u, φ) H 1 (Ω) H 1 (Ω ε ) : u Ω = φ Ω } H ε = L 2 (Ω) L 2 (Ω ε ) Energy functionals a b a s ε Ẽ ε (u, φ) = 2 u 2 +F b (u)dx+ Ωε α 2 φ 2 + 1 ε F s(φ)dx Ω Dissipation functionals R ε ( u, φ) = Ω r b 2 u 2 dx + 1 ε Ω ε r s 2 φ 2 dx 5

6 Setting In this setting r b t u a b u + F b r (u) = 0, s ε t φ a s ε α φ + 1 ε F s(φ) = 0 is formally equivalent to 0 = D R ε ( u, φ) + D Ẽ ε (u, φ) (Force balance) Basic existence theory yields solutions (u ε, φ ε ) L (0, T ; Ṽε) H 1 (0, T ; H ε )

Transformation Ω Ω Ω ε Change of coordinates x = y + ην(y) y ην(y) x x (y, η) Ω (0, ε) Scaling η = εη, η (0, 1) Mapping L 2 (Ω ε ) L 2 ( Ω (0, 1)) Spaces Ṽ ε V = {(u, φ) H 1 (Ω) H 1 ( Ω (0, 1)) : u Ω = φ η=0 } H ε H = L 2 (Ω) L 2 ( Ω (0, 1))

8 Transformation Energy functionals a b E ε (u, φ) = Ω 2 u 2 + F b (u)dx 1 [ ] + asε α+1 2 ( B ε φ 2 + 1 ε 2 η φ 2 ) + F s (φ) J ε dηda Ω 0 Dissipation functionals R ε ( u, φ) = Ω r b2 u 2 dx + Ω 1 0 r s 2 φ 2 J ε dηda Transformed solutions solve DE ε (u ε, φ ε ) + DR ε ( u ε, φ ε ) = 0

8 Transformation Energy functionals E ε (u, φ) = + Ω 1 0 E b (u) [ ] asε α+1 2 ( B ε φ 2 + 1 ε 2 η φ 2 ) + F s (φ) J ε dηda Dissipation functionals R ε ( u, φ) = Ω r b2 u 2 dx + Ω 1 0 r s 2 φ 2 J ε dηda Transformed solutions solve DE ε (u ε, φ ε ) + DR ε ( u ε, φ ε ) = 0

9 A priori estimates E ε (u ε (t), φ ε (t)) + t 0 R ε( u ε, φ ε )dτ E ε (u ε (0), φ ε (0)) Case α 1: Case α ( 1, 1): (u ε, φ ε ) L (0,T ;V ) C (u ε, φ ε ) L (0,T ;V ) C with V := {(u, φ) H 1 (Ω) L 2 ( Ω (0, 1)) : η φ L 2 ( Ω (0, 1)), u Ω = φ η=0 } Bounded dissipation functional ( u ε, φ ε ) L 2 (0,T ;H) C

10 Convergent subsequence We have (u ε, φ ε ) (u, φ) in L (0, T ; V ) (resp. in L (0, T ; V )) (u ε, φ ε ) (u, φ) in H 1 (0, T ; H) In particular = t [0, T ] : z ε (t) z(t) in H Moreover, z ε C w ([0, T ], V ) = t [0, T ] : z ε (t) z(t) in V with V = V for α 1 or Ṽ = V for α ( 1, 1)

with G ε = DR ε 11 λ-convexity F b and F s are λ-convex, i.e., λ R u F b (u) + λ u 2, φ F s (φ) + λ φ 2 are convex, e.g. C 1,1 -perturbation of a convex function, double well potential W(u) = 1 4 (1 u2 ) 2 F b (u v) F b (u) F b (u)v λ v 2, u, v R Consequence: For z ε = (u ε, φ ε ) E ε (z ε ẑ ε ) + λ ẑ ε 2 H E ε (z ε ) DE ε (z ε ), ẑ ε, ẑ ε V Hence force balance equivalent to E ε (z ε (t) ẑ ε ) + λ ẑ ε 2 H E ε (z ε (t)) + G ε ż ε (t), ẑ ε, ẑ ε V

12 Γ-convergence Definition: (Attouch [1984], Braides [2002], Dal Maso [1993]) I 0 : Y R Γ-limit of sequence (I ε ) ε>0 w.r.t. topology τ iff (i) liminf estimate: τ y ε y = I0 (y) lim inf I ε (y ε ) ε 0 (ii) limsup estimate (existence of recovery sequence): τ y Y (ŷ ε ) ε>0 : y ε y and I0 (y) lim sup I ε (ŷ ε ). ε 0 Theorem: (I ε ) ε>0 equi-coercive ( ε>0 {I ε E} precompact) and Γ I ε I 0 ; then min I 0 = lim min I Y ε 0 ε. Y (y ε ) ε>0 minimizers of I ε = cluster points y are minimizers of I 0

13 Γ-convergence Minimization problems: Homogenization, Two-scale convergence Singular limits (Cahn Hilliard Sharp interface) Young measure relaxation, penalization Rate independent systems (Mielke, Roubíček, Stefanelli [2008]) Two-scale Homogenization (Mielke & Timofte [2007], Hanke [2009]) Damage to Delamination (Mielke, Thomas, Roubíček in preparation) Dimension reduction in linearized elastoplasticity (Mielke & L. in preparation) Hamiltonian systems (Mielke [2008]) Gradient flows (Sandier & Serfaty [2004])

Γ-convergence of the Energies E ε (u, φ) = E b (u)+ Ω 1 0 [ ] asε α+1 2 ( B ε φ 2 + 1 ε 2 η φ 2 ) + F s (φ) J ε dηda (i) Case α = 1 V { R, E 0 : E b (u) + a s (u, φ) Ω 2 φ 2 +F s (φ)da η φ = 0, otherwise (ii) Case α < 1 V R {, E 0 : E b (u) + H d 1 ( Ω)F s (φ)da (u, φ) φ constant, otherwise

Γ-convergence of the Energies E ε (u, φ) = E b (u)+ Ω 1 0 [ ] asε α+1 2 ( B ε φ 2 + 1 ε 2 η φ 2 ) + F s (φ) J ε dηda (i) Case α = 1 V { R, E 0 : E b (u) + a s (u, φ) Ω 2 φ 2 +F s (φ)da (u, φ) V, otherwise (ii) Case α < 1 V R {, E 0 : E b (u) + H d 1 ( Ω)F s (φ)da (u, φ) φ constant, otherwise

Γ-convergence of the Energies E ε (u, φ) = E b (u)+ Ω 1 0 [ ] asε α+1 2 ( B ε φ 2 + 1 ε 2 η φ 2 ) + F s (φ) J ε dηda (i) Case α = 1 V { R, E 0 : E b (u) + a s (u, φ) Ω 2 φ 2 +F s (φ)da (u, φ) V, otherwise (ii) Case α < 1 V R {, E 0 : E b (u) + H d 1 ( Ω)F s (φ)da (u, φ) V c, (u, φ) otherwise

15 Γ-convergence of the Energies (iii) Case α ( 1, 1) V := {(u, φ) H 1 (Ω) L 2 ( Ω (0, 1)) : η φ L 2 ( Ω (0, 1)), u Ω = φ η=0 } V R {, E 0 : E b (u) + (u, φ) Ω F s (φ)da η φ = 0, otherwise In the following: F s convex

15 Γ-convergence of the Energies (iii) Case α ( 1, 1) V := {(u, φ) H 1 (Ω) L 2 ( Ω (0, 1)) : η φ L 2 ( Ω (0, 1)), u Ω = φ η=0 } V R {, E 0 : E b (u) + (u, φ) Ω F s (φ)da (u, φ) V, otherwise In the following: F s convex

16 Main Result Theorem Let z ε = (u ε, φ ε ) be solutions w.r.t. (E ε, R ε ) with (u ε, φ ε ) (u, φ) in L (0, T ; V ) (resp. in L (0, T ; V )) (u ε, φ ε ) (u, φ) in H 1 (0, T ; H) then z = (u, φ) is a solution w.r.t. (E 0, R 0 ), i.e. E 0 (z(t) ẑ)+λ ẑ 2 H E 0 (z(t))+ G 0 ż(t), ẑ, ẑ ε V (resp. V ) with G 0 = DR 0. In particular, z solves G 0 (ż) + DE 0 (u, φ) = 0

17 The limit equations Formally equivalent to r b t u a b u + F b (u) = 0, in Ω [0, T ] Case α = 1 r s t φ a b φ + F s(φ) + a b ν u = 0, on Ω [0, T ] Case α < 1 r s t φ + a b [ ν u] + F s(φ) = 0, in [0, T ] u = φ = const, on Ω [0, T ] α ( 1, 1) r s t φ + a b ν u + F s(φ) = 0, on Ω [0, T ]

18 Sketch of proof Set ẑ ε = z ε z ε, with z ε (t) recovery sequence for z(t) z(t). T 0 E ε(z ε ) + λ z ε z ε 2 H dt T 0 E ε(z ε ) + G ε ż ε, z ε z ε dt 2. Integration by parts T 0 G εż ε, z ε z ε dt = T 0 G εz ε, z ε dt + R ε (z ε (T )) R ε (z ε (0)) 3. Passing to the limit + Integration by parts T 0 E 0(z) + λ z z 2 H dt T 0 E 0(z) G 0 ż, z z dt 4. Sequence z δ z ẑ in L 2 (0, T ; V 0 ). By arbitrariness of ẑ E 0 (z(t) ẑ) + λ ẑ 2 H E 0 (z(t)) + G 0 ż(t), ẑ, ẑ V/V

19 Outlook Different scalings in dissipation potential More complex dissipation potentials (Heat equation with entropy as driving potential) Interfaces

19 Outlook Different scalings in dissipation potential More complex dissipation potentials (Heat equation with entropy as driving potential) Interfaces Thank You