Lecture 27. Relativity of transverse waves and 4-vectors

Σχετικά έγγραφα
Space-Time Symmetries

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.4 Superposition of Linear Plane Progressive Waves

1 String with massive end-points

Geodesic Equations for the Wormhole Metric

4.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Section 9.2 Polar Equations and Graphs

Parametrized Surfaces

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

is like multiplying by the conversion factor of. Dividing by 2π gives you the

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Rectangular Polar Parametric

Spherical Coordinates

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

CURVILINEAR COORDINATES

Lecture 21: Scattering and FGR

Section 8.3 Trigonometric Equations

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

What happens when two or more waves overlap in a certain region of space at the same time?

1 Lorentz transformation of the Maxwell equations

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

CRASH COURSE IN PRECALCULUS

Reminders: linear functions

Cosmological Space-Times

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Trigonometric Formula Sheet

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Relativistic particle dynamics and deformed symmetry

Numerical Analysis FMN011

EE512: Error Control Coding

10.7 Performance of Second-Order System (Unit Step Response)

SPECIAL FUNCTIONS and POLYNOMIALS

Second Order RLC Filters

Orbital angular momentum and the spherical harmonics

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order Partial Differential Equations

C.S. 430 Assignment 6, Sample Solutions

Matrices and Determinants

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

PhysicsAndMathsTutor.com

Srednicki Chapter 55

Example Sheet 3 Solutions

Homework 8 Model Solution Section

Approximation of distance between locations on earth given by latitude and longitude

Derivation of Optical-Bloch Equations

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.


Answer sheet: Third Midterm for Math 2339

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Symmetric Stress-Energy Tensor

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Variational Wavefunction for the Helium Atom

Lecture 15 - Root System Axiomatics

Calculating the propagation delay of coaxial cable

Derivations of Useful Trigonometric Identities

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Tridiagonal matrices. Gérard MEURANT. October, 2008

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CORDIC Background (2A)

EE101: Resonance in RLC circuits

Graded Refractive-Index

Solutions to Exercise Sheet 5

Instruction Execution Times

Differential equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

D Alembert s Solution to the Wave Equation

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

For a wave characterized by the electric field

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Notes on the Open Economy

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

( ) 2 and compare to M.

w o = R 1 p. (1) R = p =. = 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Differentiation exercise show differential equation

Example of the Baum-Welch Algorithm

Uniform Convergence of Fourier Series Michael Taylor

Every set of first-order formulas is equivalent to an independent set

Σχετικότητα. Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο. Παπαδημητρίου X. Γιώργος. Ναύπακτος 2012 A B.

Transcript:

Lecture 27. Relativity of transverse waves and 4-vectors (Ch. 2-5 of Unit 2 4.5.12) Introducing per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation Reviewing the stellar aberration angle σ vs. rapidity ρ in Epstein s cosmic speedometer Reviewing Sin-Tan Rosetta geometry Reviewing relativistic quantum Lagrangian-Hamiltonian contact relations Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Time contraction-dilation revisited Length contraction-dilation revisited Twin-paradox revisited Velocity addition revisited Lorentz symmetry effects How it makes momentum and energy be conserved Lewis Carroll Epstein, Relativity Visualized Insight Press, San Francisco, CA 9417 See also: L. C. Epstein, Thinking Physics Press, Insight Press, San Francisco, CA 9417 1

Reviewing the stellar aberration angle σ vs. rapidity ρ Together, rapidity ρ=ln b and stellar aberration angle σ are parameters of relative velocity The rapidity ρ=ln b is based on The stellar aberration angle σ is based on the longitudinal wave Doppler shift b=e ρ transverse wave rotation R=e iσ defined by u/c=tanh(ρ). defined by u/c=sin(σ). At low speed: u/c~ρ. At low speed: u/c~ σ. (a) Fixed Observer x (b) Moving Observer S S u=c sin σ c δδ c 1-u 2 /c 2 =c/cosh ρ σ c k( ) k( ) z Fig. 5.6 Epstein s cosmic speedometer with aberration angle σ and transverse Doppler shift coshυz. 2

Reviewing the Sin-Tan Rosetta geometry NOTE: Angle φ is now called stellar aberration angle σ Fig. C.2-3 and Fig. 5.4 in Unit 2 https://www.uark.edu/ua/pirelli/php/hyper_constrct.php 3

(a) Geometry of relativistic transformation and wave based mechanics H=E (b) Tangent geometry (u/c=3/5) Velocity aberration angle φ 4 H ρ 3 -L B p-circle g-circle 2 b-circle 1 B sech ρ B B cosh ρ Rest Energy B =Mc 2 -Lagrangian -L =B sech ρ -2-1 B e -ρ Red shift 1 2 B e +ρ Blue shift (c) Basic construction given u/c=45/53 3 cp 4 Hamiltonian =H =B cosh ρ (d) u/c=3/5 ρ H =53/28 H =5/4 1 1 -L =4/5 u/c =3/5 u/c =1 -L=28/45 e -ρ =2/7 1 cp =45/28 e -ρ =1/2 cp =3/4 1 4

Reviewing classical quantum Lagrangian-Hamiltonian relations (a) Lagrangian plot L(v)= v p - H(p) Hamiltonian plot (b) H(p)=p v-l(v) Unit 1 Fig. 12.3 L(v) H(p) +2 1.6 velocity v is p-slope +2 +1 velocity v = 1. v-slope=p dl/dv =+1.6 1 Lagrangian L(v) = 1. v-slope is momentum p -1 v-slope +1-1 intercept velocity -H = -.6 p-slope v intercept -L = -1. -1 Lagrangian L(v) is -p-slope intercept -v-slope intercept is Hamiltonian H(p) +1 Hamiltonian H(p) =.6 p-slope=v dh/dp=+1. +1 1-1 momentum p = 1.6 1. momentum p 5

Reviewing relativistic quantum Lagrangian-Hamiltonian relations Start with phase Φ and set k= to get product of proper frequency µ = Mc2 / and proper time τ dφ = kdx ω dt= µ dτ = -(Mc 2 / ) dτ. (a) Hamiltonian slope: H p = q = u H H H -L -L -L ds = Ldt = p dx H dt = k dx ω dt = dφ Differential action: is Planck scale times differential phase: ds = dφ O H(q,p) P H P H P H Light cone u=1=c has infinite H and zero L Momentum p dτ = dt (1-u 2 /c 2 )=dt sech ρ For constant u the Lagrangian is: L = µτ = -Mc 2 (1-u 2 /c 2 )= -Mc 2 sech ρ = -Mc 2 cos σ...with Poincare invariant: L= p x H = p u H (b) Lagrangian radius = Mc 2 L L L -H -H -H O L(q,q) Fig. 5.1. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian Q Velocity u=q Q slope: Q L q = p 6

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors e ρ k( ) sinh ρ z e ρ =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck y ω of k( ) z-axis South 7

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors k( ) e ρ k( ) West k( ) ( e ρ ) =,,, along -z-axis : ω,ck x,ck y,ck z sinh ρ z =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω of k( ) z-axis South 8

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship =,+,, k( ) ω coshρ up +x-axis : ω,ck x,ck y,ck z of k( ) x-axis North k( ) k( ) k( ) CW Laser-pair wavevectors k( ) e ρ k( ) West along -z-axis : ω,ck x,ck y,ck z sinh ρ z k( ) ( e ρ ) =,,, =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω of k( ) z-axis South 9

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) (Lighthouse frame) k( ) CW Laser-pair wavevectors (b) z-( Moving) ship =,+,, k( ) k( ) e ρ k( ) ω coshρ up +x-axis : ω,ck x,ck y,ck z sinh ρ z k( ) =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z of k( ) =,,,+ along +z-axis : ω,ck x,ck y,ck z West along -z-axis : ω,ck x,ck y,ck z ( e ρ ) =,,, ω of k( ) x-axis z-axis South North East 1

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors e ρ k( ) sinh ρ z Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z +ρ z -rapidity ship frame sees starlight Lorentz transformed to : e ρ ω of k( ) z-axis =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z 11

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ω c k x c k y c k z = CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z ω ck x ck y ck z e ρ k( ) = sinh ρ z e ρ ω =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z of k( ) = z-axis sinh ρ z 12

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) ω coshρ of k( ) x-axis k( ) k( ) Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω c k x c k y c k z = k( ) CW Laser-pair wavevectors +ρ z -rapidity ship frame sees starlight Lorentz transformed to : sinh ρ z 1 1 sinh ρ z k( ) ω ck x ck y ck z e ρ k( ) = sinh ρ z =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) e ρ After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) ω of k( ) = z-axis sinh ρ z sinh ρ z 13

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) ω c k x c k y c k z = (Lighthouse frame) k( ) CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z (b) z-( Moving) ship Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω k( ) k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ck x ck y ck z e ρ k( ) = ω coshρ =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) σ sinh ρ z e ρ ω of k( ) of k( ) x-axis = z-axis sinh ρ z = secσ = sinσ σ sinh ρ z = tanσ secσ tanσ cosσ σ 14

Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) ω c k x c k y c k z = (Lighthouse frame) k( ) CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z (b) z-( Moving) ship Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω k( ) k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ck x ck y ck z e ρ k( ) = ω coshρ =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) e ρ of k( ) of k( ) After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) = sinh ρ z Recall hyperbolic invariant to Lorentz transform: ω 2 -c 2 k 2 =ω 2 -c 2 k 2 (= for 1-CW light) The 4-vector form of this is: ω 2 -c 2 k k=ω 2 -c 2 k k (= ) σ sinh ρ z ω x-axis z-axis = secσ = sinσ σ sinh ρ z = tanσ secσ tanσ cosσ σ 15

Fig. 5.1 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves. 16

Fig. 5.1 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves. If starlight is horizontal right-moving k wave then ship going u along z-axis sees : ω sinh ρ z ω c k x cosh ρ z sinh ρ z ω e ρ z 1 = = ω c k y 1 = c k z sinh ρ z + sinh ρ z + e ρ z If starlight is horizontal left-moving k wave then ship going u along z-axis sees : ω + sinh ρ z e +ρ z c k x c k y c k z = sinh ρ z 1 1 sinh ρ z The usual longitudinal Doppler blue shifts e +ρ z or Doppler red shifts e ρ z appear on both k-vector and frequency ω. = ω sinh ρ z = e +ρ z 17

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Time contraction-dilation revisited This is also proportional to Lagrangian L= -Mc 2 (1-u 2 /c 2 ) cτ (Age) Proper time cτ= (ct) 2 -x 2 ο Coordinate x=(u/c) ct P σ Coordinate time ct= (cτ) 2 +x 2 Light (never ages) x=ct Particle going u in (x,ct) is going speed c in (x, cτ) γ x (Distance) Fig. 5.8 Space-proper-time plot makes all objects move at speed c along their cosmic speedometer. 18

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Length contraction-dilation revisited A cute Epstein feature is that Lorentz-Fitzgerald contraction of a proper length L to L=L 1-u 2 /c 2 is simply rotational projection onto the x-axis of a length L rotated by σ. cτ Proper time cτ= (ct) 2 -x 2 ο Coordinate x=(u/c) ct P σ σ ct Proper length L Contracted length L=L 1-u 2 /c 2 Particle P going u in (x,ct) is going speed c in (x, cτ) L Comoving particle P ct P x 19

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Twin-paradox revisited τ B way older than A τ B stationary A inbound B older than A A outbound B stationary A outbound x B x B 2

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Twin-paradox revisited τ B way older than A τ τ B way older than A B stationary A inbound B older than A B younger than A A outbound B stationary A outbound x B x B x A 21

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v σ u σ v u/c=1/2=tanhρ u =sinσ u u/c=1/2=tanhρ u =sinσ u v/c=2/3=tanhρ v =sinσ v unit circle x-axis 22

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis ship1 Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v ship2 ship1 2/ 5=sinhρ v =tanσ v 3/ 5=coshρ v =secσ v 1/ 3=sinhρ u =tanσ u σ u 2/ 3=coshρ u =secσ u σ v ship2 1 u/c=1/2=tanhρ u =sinσ u 3 2 u/c=1/2=tanhρ u =sinσ u v/c=2/3=tanhρ v =sinσ v 3/2=sechρ u =1/coshρ u unit circle In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 1 x-axis In frame where ships go v=2c/3: Bullet going Vu(+)v=?? from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 23

Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v 2/ 5=sinhρ v =tanσ v 3/ 5=coshρ v =secσ v 1/ 3=sinhρ u =tanσ u σ u σ v σ uv 2/ 3=coshρ u =secσ u tanhρ u sinhρ u =sinσ u tanσ u tanhρ u =sinσ u 1 u/c=1/2=tanhρ u =sinσ u tanhρ u coshρ u =sinσ u secσ u 3 2 u/c=1/2=tanhρ u =sinσ u sechρ u =1/coshρ u v/c=2/3=tanhρ v =sinσ v unit circle V/c=7/8=tanh(ρ uv )=sinσ uv =tanh(ρ u +ρ v ) In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 1 x-axis In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 24

sinh(ρ u +ρ v ) Velocity addition revisited cosh(ρ u +ρ v ) cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v 2/ 5=sinhρ v =tanσ v 1/ 3=sinhρ u =tanφ u 3/ 5=coshρ v =secσ v tanhρ u sinhρ u =sinσ u tanσ u σ u σ v σ uv 2/ 3=coshρ u =secφ u tanhρ u =sinσ u 1 u/c=1/2=tanhρ u =sinσ u tanhρ u coshρ u =sinσ u secσ u 3 2 u/c=1/2=tanhρ u =sinσ u sechρ u =1/coshρ u v/c=2/3=tanhρ v =sinσ v unit circle V/c=7/8=tanh(ρ uv )=sinσ uv =tanh(ρ u +ρ v ) 1/2+2/3 1+(1/2)(2/3) =7/8 In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u coshρ u sinhρ v +sinhρ v coshρ v =sinh(ρ u +ρ v )=7/ 15 1 x-axis (coshρ v +tanhρ u sinhρ v ) (coshρ v +tanhρ u sinhρ v )coshρ u =coshρ u coshρ v +sinhρ v sinhρ v =cosh(ρ u +ρ v )=8/ 15 In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 25

tanhρ u =u/c=1/2=sinφ u tanhρ v =v/c=2/3=sinφ u tanhρ uv =u/c=7/8=sinφ uv φ u =sin -1 (tanhρ u )=.5236=3 φ v =sin -1 (tanhρ)=.7297=41.8 φ uv =sin -1 (tanhρ uv )=1.6543=61.4 sinh(ρ u +ρ v ) cosh(ρ u +ρ v ) ρ u =tanh -1 (1/2)=.5493 ρ v =tanh(2/3)=.8472 ρ uv =tanh(7/8)= 1.3542=ρ u +ρ v cτ-axis 2/ 5=sinhρ v =tanφ v 3/ 5=coshρ v =secφ v 1/ 3=sinhρ u =tanφ u φ u φ v φ uv 2/ 3=coshρ u =secφ u tanhρ u sinhρ u =sinφ u tanφ u tanhρ u =sinφ u 1 u/c=1/2=tanhρ u =sinφ u tanhρ u coshρ u =sinφ u secφ u 3 2 u/c=1/2=tanhρ u =sinφ u 5 3 v/c=2/3=tanhρ v =sinφ v 1 2 3 unit circle 3/2=sechρ u =1/coshρ u 4 V/c=7/8=tanh(ρ uv )=sinφ uv 5 =tanh(ρ u +ρ v ) 6 7 8 9 In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u coshρ u sinhρ v +sinhρ v coshρ v =sinh(ρ u +ρ v )=7/ 15 1 x-axis (coshρ v +tanhρ u sinhρ v ) (coshρ v +tanhρ u sinhρ v )coshρ u =coshρ u coshρ v +sinhρ v sinhρ v =cosh(ρ u +ρ v )=8/ 15 In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 26

Lorentz symmetry effects How it makes momentum and energy be conserved A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles due to the Lorentz-Poincare isotropy of space-time (invariance to space-time translation T(δ,τ ) in the vacuum). T ψ k,ω = Ae i(kx ω t) e Operator has plane wave eigenfunctions with roots-of-unity eigenvalues. ψ k,ω T i(k δ ω τ ) = ψ k,ω e (5.18a) T ψ k,ω = e i(k δ ω τ ) ψ k,ω i(k δ ω τ ) (5.18b) This also applies to 2-part or 2-particle product states Ψ K,Ω = ψ k1,ω 1 ψ k2,ω 2 where exponents add (k,ω)-values of each constituent to K=k1+k2 and Ω=ω1+ω2, and -eigenvalues also have that form. Ψ K, T(δ,τ ) e i(k δ Ω τ ) Matrix Ω U Ψ K,Ω of T-symmetric evolution U is zero unless K = k 1 + k 2 = K and Ω = ω 1 + ω 2 = Ω. Ψ K, Ω U Ψ K,Ω = Ψ K, Ω T (δ,τ )UT(δ,τ ) Ψ K,Ω (if UT = TU for all δ and τ ) = e i( K δ Ω τ ) e i(k δ Ω τ ) Ψ K, Ω U Ψ K,Ω = unless: K = K and: Ω = Ω That s momentum (P=hK) and energy (E=hW) conservation! 27