1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Σχετικά έγγραφα
1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 236m. 2.1 Electron Capture Transitions. 2.2 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β + Transitions. 2.2 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 Gamma Transitions and Internal Conversion Coefficients

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 β + Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA

Parts Manual. Trio Mobile Surgery Platform. Model 1033

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

Το άτομο του Υδρογόνου

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

RAPPORT CEA-R-6201 MARIE-MARTINE BÉ, CHRISTOPHE DULIEU, VANESSA CHISTÉ. "NUCLÉIDE-LARA - Bibliothèque des émissions alpha, X et gamma"

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

«Βασικές Αρχές της SPECT και PET Απεικόνισης»

!"#$%#&'()$*+$&#'',#-*./&*.&$0-1./& 1'2+#"&3,"4$&(*/(,-&0(#.&56 78 &9:+% 7

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

P ² μ Ê ² ƒ μ²μ Ö μë ± . Œ Ò, μ Ö. 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 É μ Ò É Ì μ²μ, Ê 3 ˆ É ÉÊÉ Ÿ±ÊÉ μ ²³ Š ( ),

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Ó³ Ÿ , º 2(186).. 278Ä292 ˆ ˆˆ 2 ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Derivation of Optical-Bloch Equations

Ó³ Ÿ , º 2(131).. 81Ä ² Ì μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

2.1

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Bookmark and Index Summary

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.


NUCLEAR WALLET CARDS

Electronic Supplementary Information:

Electronic Supplementary Information

ˆ ˆˆ Œˆ C Z =47 50 Œ Œ ˆ ˆ Œ ˆ 23 ŒÔ

ˆŸ ˆ ƒ Š Š ˆˆ ˆ ˆ ƒ Ÿ 250 No

ΤΙΜΟΚΑΤΑΛΟΓΟΣ. ΤΙΜΗ ΡΟΛΟΥ /m2 LZ ΔΙΑΣΤΑΣΕΙΣ ΡΟΛΟΥ. PG 10 SE 5 ΠΛΑΤΟΣ : 1,22 m. ΜΗΚΟΣ : 50m PX 6 TX 1

!"!# ""$ %%"" %$" &" %" "!'! " #$!

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

Fused Bis-Benzothiadiazoles as Electron Acceptors

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

SFERA Winter School Solar Fuels & Materials Page 267

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

PACS: a, L

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

NUCLEAR WALLET CARDS

PACS: Ox, Cw, a, TP

DuPont Suva 95 Refrigerant

ITU-R P (2012/02) &' (

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Πειράµατα Πυρηνικής Φυσικής Χρησιµοποιώντας Πολωµένους Στόχους. He και Πολωµένες Δέσµες Ακτίνων-γ

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Βαθμοί Έτος Πόλη1 Κτγ1

Αλληλεπίδραση ακτίνων-χ με την ύλη

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Περικλέους Σταύρου Χαλκίδα Τ: & F: chalkida@diakrotima.gr W:

! : ;, - "9 <5 =*<

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Utkin Walcott & Zak ¼

Transcript:

1 Decay Scheme Cm decays 1% by alpha transitions to Pu38 and by spontaneous fission with branching fraction of 6.36 (14) E6 %. Le curium se désintègre à 1% par transition alpha vers le plutonium 38 et par fission spontanée pour 6,36 (14) E6 %. Nuclear Data T 1/ ( Cm ) : 16,86 (8) d T 1/ ( 38 Pu ) : 87,74 (3) a Q α ( Cm ) : 615,56 (8).1 α Transitions Probability F 1 α,15 4951,7 (4),5 (14) 6 α,14 4986,87 (4),55 (15) 1 α,13 589,77 (19),31 (1) 88 α,1 5186,94 (1),37 (1) 3 α,11 5197, (3), 7 α,1 53,56 (1),17 (5) 137 α,9 55,84 (11),113 (1) 78 α,8 574,13 (1),35 (7) 1 α,7 545,34 (15), 4 α,6 5554,8 (14),13 (3) 17 α,5 561,48 (11),5 (5) 183 α,4 571,94 (18), 75 α,3 591,14 (11),46 (5) 458 α, 669,56 (1),34 () 39 α,1 6171,48 (9) 5,94 (7) 1,733 α, 615,56 (8) 74,6 (7) 1 KRI /V. P. Chechev 1 1//5 3/1/1

. Gamma Transitions and Internal Conversion Coefficients P γce Multipolarity α K α L α M α T 1 γ 1,(Pu) 44,8 (3) 6, (8) E 57 (1) 159,4 (3) 787 (16) γ,1(pu) 11,9 (4),388 () E 1,48 (1),94 (6) 14,45 (1) γ 3,(Pu) 157,4 (9),46 (5) [E],193 (4) 1,45 (9),45 (8),19 (4) γ 4,3(Pu) 1, (14),5 E,14 (3),415 (8),115 (),71 (14) γ 8,5(Pu) 336,36 (15),7 (31) [E1],57 (5),5 (1),1 (),33 (6) γ 9,5(Pu) 357,64 (7),55 (11) M1E,133 (1),599 (17),158 (4),14 (15) γ 7,3(Pu) 459,8 (),6 (3) γ 6,(Pu) 515,5 (19),46 (1) E1M,175 (1),37 (6),9 (14), (3) γ 5,1(Pu) 561, (1),15 (4) E1,99 (18),169 (3),47 (8),1153 (3) γ 5,(Pu) 65,4 (1),16 (3) E1,86 (16),146 (3),35 (7),999 () γ 6,1(Pu) 617, (1),79 (1) E1M,95 (9),185 (),45 (6),1 (1) γ 7,(Pu) 617, (13),16 γ 1,(Pu) 837,1 (15),19 (6) [E],15 (5),366 (7),93 (19),174 (3) γ 1,(Pu) 88,63 (3),68 (15) (E),1141 (3),31 (6),811 (16),157 (3) γ 8,1(Pu) 897,33 (1), (6) (E),118 (),38 (6),778 (15),15 (3) γ 9,1(Pu) 918,7 (),54 (15) E1,38 (8),663 (13),158 (3),469 (9) γ 1,1(Pu) 938,91 (1),97 (33) EE 4,4 (4) γ 8,(Pu) 941,5 () E γ 9,(Pu) 96,8 (),53 (15) E1,35 (7),69 (1),145 (9),43 (8) γ 11,1(Pu) 974,5 (3), γ 13,(Pu) 979,8 (),6 (8) γ 1,(Pu) 983, (3),51 (18) [E],946 (18),46 (5),619 (1),176 (5) γ 1,1(Pu) 984,5 (1), (6) M1E,949 (19),47 (5),619 (1),179 (6) γ 1,(Pu) 18,5 (),16 (5) E,875 (17),1 (4),554 (11),1171 (3) γ 13,1(Pu) 181,7 (3),5 () γ 15,(Pu) 1118,3 (3),17 (9) [E],757 (15),18 (3),454 (9),11 () γ 14,1(Pu) 1184,6 (3),5 (15) E,685 (14),16 (3),397 (8),899 (18) γ 15,1(Pu) 1, (3),35 (11) EE(M1),6 (3) γ 14,(Pu) 18,7 (3) E 3 Atomic Data 3.1 ω K :,971 (4) ω L :,51 () n KL :,79 (5) KRI /V. P. Chechev 1//5 3/1/1

3.1.1 X Radiations Relative probability K Kα 99,55 63,17 Kα 1 13,734 1 Kβ 3 116,44 } Kβ 1 117,8 } Kβ 5 117,918 } 36,36 Kβ 1,54 } Kβ 4 1,969 } 1,61 KO,3 11,543 } L Ll 1,1 Lα 14,87 14,8 Lη 16,333 Lβ 16,5 19,33 Lγ,71 3,7 3.1. Auger Electrons Relative probability Auger K KLL 75, 85,3 1 KLX 9,6 13,6 6,6 KXY 19,8 11,5 9, Auger L 6,1,9 4 α Emissions Probability 1 α,15 4869,43 (3),5 (14) α,14 494,44 (3),55 (15) α,13 55,64 (19),31 (1) α,1 511,1 (1),37 (1) α,11 5111,1 (3), α,1 5146,7 (1),17 (5) KRI /V. P. Chechev 3 1//5 3/1/1

Probability 1 α,9 5165,95 (16),113 (1) α,8 5186,95 (1),35 (7) α,7 5366, (15), α,6 546,47 (14),13 (3) α,5 5517,75 (11),5 (5) α,4 567,76 (16), α,3 5816,39 (11),46 (5) α, 5969,4 (9),34 () α,1 669,37 (9) 5,94 (7) α, 611,7 (8) 74,6 (7) 5 Electron Emissions Electrons per 1 disint. e AL (Pu) 6,1,9 8,99 (1) e AK (Pu),8 (15) KLL 75, 85,3 } KLX 9,6 13,6 } KXY 19,8 11,5 } ec 1, L (Pu),98 6, 18,8 (6) ec 1, M (Pu) 38,15 4,31 5,5 (15) ec,1 L (Pu) 78,8 83,86,63 (16) ec,1 M (Pu) 95,99 98,15,74 (4) ec 3, K (Pu) 5,63 (5),7 (3) ec 3, L (Pu) 134,3 139,36,1 (4) ec 3, M (Pu) 151,49 153,65,59 (7) 6 Photon Emissions 6.1 XRay Emissions Photons per 1 disint. XL (Pu) 1,1 3,7 9,9 (3) XKα (Pu) 99,55,8 (9) } Kα XKα 1 (Pu) 13,734,13 (15) } KRI /V. P. Chechev 4 1//5 3/1/1

Photons per 1 disint. XKβ 3 (Pu) 116,44 } XKβ 1 (Pu) 117,8 },48 (6) K β 1 XKβ 5 (Pu) 117,918 } XKβ (Pu) 1,54 } XKβ 4 (Pu) 1,969 },165 (19) K β XKO,3 (Pu) 11,543 } 6. Gamma Emissions Photons per 1 disint. γ 1, (Pu) 44,8 (3),33 (7) γ,1 (Pu) 11,9 (4),51 (14) γ 3, (Pu) 157,4 (9),145 (16) γ 4,3 (Pu) 1, (14),1 γ 8,5 (Pu) 336,36 (15),7 (3) γ 9,5 (Pu) 357,64 (7),45 (9) γ 7,3 (Pu) 459,8 (),6 (3) γ 6, (Pu) 515,5 (19),45 (1) γ 5,1 (Pu) 561, (1),15 (4) γ 5, (Pu) 65,4 (1),15 (3) γ 6,1 (Pu) 617, (1),79 (1) γ 7, (Pu) 617, (13),16 γ 1, (Pu) 837,1 (15),19 (6) γ 1, (Pu) 88,63 (3),67 (15) γ 8,1 (Pu) 897,33 (1), (6) γ 9,1 (Pu) 918,7 (),54 (15) γ 1,1 (Pu) 938,91 (1),18 (6) γ 9, (Pu) 96,8 (),53 (15) γ 11,1 (Pu) 974,5 (3), γ 13, (Pu) 979,8 (),6 (8) γ 1, (Pu) 983, (3),5 (18) γ 1,1 (Pu) 984,5 (1), (6) γ 1, (Pu) 18,5 (),16 (5) γ 13,1 (Pu) 181,7 (3),5 () γ 15, (Pu) 1118,3 (3),17 (9) γ 14,1 (Pu) 1184,6 (3),5 (15) γ 15,1 (Pu) 1, (3),8 (9) 7 Main Production Modes Am 41(n,γ)Am KRI /V. P. Chechev 5 1//5 3/1/1

{ Am (β )Cm Possible impurities : Am 41,Cm 43,Cm 44 8 References G.C. Hanna, B.G. Harvey and N. Moss. Phys. Rev. 78 (195) 617 G.C. Hanna, B.G. Harvey, N. Moss and P.R. Tunnicliffe. Phys. Rev. 81 (1951) 466 (SF halflife) D.C. Dunlavey, G.T. Seaborg. Phys. Rev. 87 (195) 165 (Conversion electron measurements, gammaray multipolarities.) F. Asaro, S.G. Thompson and I. Perlman. Phys. Rev. 9 (1953) 694 (Alpha emission energies and probabilities.) K.M. Glover, J. Milsted. Nature 173 (1954) 138 W.P. Hutchinson, A.G. White. Nature 173 (1954) 138 S.A. Baranov, K.N. Shlyagin. J. Nuclear 3 (1956) 13 (Conversion electron measurements, gammaray multipolarities.) W.G. Smith, J.M. Hollander. Phys. Rev. 11 (1956) 746 (Gammaray energies and multipolarities.) L.N. Treiman, R.A. Penneman and B. Bevan. unpublished, cited in Ref.: J. Inorg. Nucl. Chem. 5 (1957) 6 L.N. Kondratev, V.B. Dedov and L.L. Goldin. Izvest. Akad. Nauk SSSR, Ser. Fiz. (1958) 99 (Alpha emission energies and probabilities) F. Asaro, I. Perlman. UCRL9566 (196) 5 (Conversion electron measurements, gammaray multipolarities.) C.M. Lederer. UCRL118 (1963) (Absolute gammaray emission probabilities.) B.S. Dzhelepov, R.B. Ivanov, V.G. Nedovesov and V.P. Chechev. Soviet Phys. JETP 18 (1964) 937 (Alpha emission energies and probabilities.) G.G. Akalaev, N.A. Vartanov and P.S. Samoilov. NP14688 (1965) (Conversion electron measurements, gammaray multipolarities.) K.F. Flynn, L.E. Glendenin and E.P. Steinberg. Nucl. Sci. Eng. (1965) 416 S.A. Baranov, Y.F. Rodionov, V.M. Kulakov and V.M. Shatinskii. Soviet J. Nucl. Phys. 4 (1967) 798 (Alpha emission energies and probabilities.) R.J. Armani, R. Gold. Proc. Symp. Standardization of Radionuclides, Intern. At. Agency, Vienna (1967) 61 J.A. Bearden. Rev. Mod. Phys. 39 (1967) 78 (Xray energies.) J. Byrne, R.J.D. Beattie, S. Benda and I. Collingwood. J. Phys. B3 (197) 1166 (Experimental LXray absolute emission probability.) B. Grennberg, A. Rytz. Metrologia 7 (1971) 65 (Alpha emission energies.) J.C. Post, A.H.W. Aten Jr.. Radiochim. Acta 15 (1971) 5 (Gammaray energies.) K.L. Swinth. IEEE Trans. Nucl. Sci. 18 (1971) 15 (Experimental LXray absolute emission probability) W.J.B. Winter, A.H. Wapstra, P.F.A. Goudsmit and J. Konijn. Nucl. Phys. A197 (197) 417 (Gammaray energies.) I. Ahmad, R.K. Sjoblom, R.F. Barnes, F. Wagner Jr. and P.R. Fields. Nucl. Phys. A186 (197) 6 (Gammaray energies.) S.A. Baranov, V.M. Shatinskii and V.M. Kulakov. Sov. J. Nucl. Phys. 14 (197) 614 (Alpha emission energies.) KRI /V. P. Chechev 6 1//5 3/1/1

W.J. Kerrigan, C.J. Banick. J. Inorg. Nucl. Chem. 37 (1975) 641 H. Diamond, W.C. Bentley, A.H. Jaffey and K.F. Flynn. Phys. Rev. C15 (1977) 134 HuanQiao Chang, JinCheng Xu and TongQing Wen. Chin. J. Nucl. Phys. 1 (1979) 1 J.K. Dickens, J.W. McConnell. Phys. Rev. C (198) 1344 (Experimental Xray energies.) A.V. Jadhav, K.A.Mathew, K. Raghuraman and C.K. Sivaramakrishnan. Proc. of the Nucl. Chem. and Radiochem. Symp., Waltair (198) 184 C.M.Lederer. Phys. Rev. C4 (1981) 1175 (Gammaray energies and probabilities.) S. Usuda, H. Umezawa. J. Inorg. Nucl. Chem. 43 (1981) 381 S.K. Aggarwal, A. V. Jadhav, S. A. Chitambar. Radiochem. Radioanal. Lett. 54 (198) 99 G. Barreau, H.G. Borner, T. von Egidy and R.W. Hoff. Z. Physik A38 (198) 9 (Experimental Xray energies.) K. Raghuraman, N.K. Chaudhuri, A.V. Jadhav, C.K. Sivaramakrishnan and R.H. Iyer. Radiochem. Radioanal. Lett. 55 (198) 1 H. Umezawa. INDC(NDS)138/GE (198) 3 R.A.P. Wiltshire. Nucl. Instrum. Methods 3 (1984) 535 (Halflife) A. Lorenz. IAEA Tech. Rept. Ser. 61 (1986) (Halflife evaluation.) A.G. Zelenkov, V.A. Pchelin, Yu. F. Rodionov, L.V. Chistyakov, V.S. Shiryaev and V.M. Shubko. Sov. At. Engergy 6 (1986) 49 S. Usuda, H. Umezawa. Int. J. Radiat. Appl. Instr. D16 (1989) 47 Yu.S. Popov, I.B. Makarov, D.Kh. Srurov and E.A. Erin. Sov. J. Radiochemistry 3 (199) 45 (Experimental relative LXray emission probabilities.) A. Rytz. At. Data. Nucl. Data Tables 47 (1991) 5 (Alphaemission energies.) P.N. Johnston, P.A. Burns. Nucl. Instrum. Methods Phys. Res. A361 (1995) 9 (Experimental relative LXray emission probabilities.) E. Schönfeld, H. Janssen. Nucl. Instrum. Methods Phys. Res. A369 (1996) 57 (Atomic data.) J. Yang, J. Nir. Nucl. Instrum. Methods Phys. Res. A413 (1998) 39 (Alphatransition probabilities.) E. Schönfeld, G. Rodloff. PTB6.11199919991, Braunschweig, February 1999 (1999) (KXray energies and relative emission probabilities.) N.E. Holden, D.C. Hoffman. Pure Appl. Chem. 7 () 155 (SF halflife) E. Schönfeld, H. Janssen. Appl. Rad. Isot. 5 () 595 (Xray and Auger electron emission probabilities, EMISSION code) F.E. Chukreev, V.E. Makarenko and M.J. Martin. Nucl. Data Sheets 97 () 19 (Nuclear data evaluation for A=38.) G. Audi, A.H. Wapstra and C. Thibault. Nucl. Phys. A79 (3) 337 (Q value.) V.P. Chechev. Phys. Atomic Nuclei 69 (6) 1188 (Cm decay data evaluation5) Kibedi, T.W. Burrows,, M.B. Trzhaskovskaya, P.M. Davidson, and C.W.Nestor, Jr.. Nucl. Instrum. Methods Phys. Res. A589 (8) (Theoretical ICC) KRI /V. P. Chechev 7 1//5 3/1/1

LNELNHB/CEA Table de Radionucléides Emission intensities per 1 disintegrations Cm 96 146 ; 96Cm146 16,86 (8) d 7 8 15 14 13 1 11 1 9 8 1,, 5, 6 5,, 6 7 16 9 8,,, 4 5 4 3, 1 1 5,,, 5 5,,, 7,, ; 164,9 ; 18,69 (4) ; 115,79 ; 18,6 1 ; 118,6 ; 983 1 ; 96,7 ; 941,44,5,55,31,37,,17,113,35 7 6 1 6,, 5 9 5 ; 763,, 6 5 4 7,, 15 15,, 3 ; 661,8 1 ; 65,8,13,5,46 3 6 ; 33,4,34 4 ; 146 177 ps 87,74 (3) a 1 38 Pu 94 144 Q = 615,56 % = 1 ; 44,8 KRI / V. P. Chechev Scheme page : 1/ 1//5 15/1/9 ; 5,94 74,6

LNELNHB/CEA Table de Radionucléides 96Cm146 Emission intensities per 1 disintegrations Cm 96 146 ; 16,86 (8) d 4, 1 8 ; 513,6, 177 ps 87,74 (3) a 3 1, 1 45, 5 1 3,3 38 Pu 94 144 Q = 615,56 % = 1 6 ; 33,4 4 ; 146 ; 44,8 ;,46,34 5,94 74,6 KRI / V. P. Chechev Scheme page : / 1//5 15/1/9