46 9 ( ) Vol.46 No.9 2015 9 Journal of Central South University (Science and Technology) Sep. 2015 DOI: 10.11817/j.issn.1672-7207.2015.09.050 ( 100083) 5A 13X CO 2 /CH 4 CO 2 /CH 4 13X (4.5 kpa) (300 ) 13X CO 2 3.21 mmol/g CO 2 /CH 4 10 5A CO 2 13X 40% X511 O643.32+2 A 1672 7207(2015)09 3535 05 Adsorption separation performance of different absorbents for biogas decarbonization upgrading WANG Zhixiang, YI Honghong, TANG Xiaolong, ZHAO Shunzheng, ZUO Yanran, GAO Fengyu, ZHANG Bowen (School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China) Abstract: Dynamic adsorption experiments were carried out using coconut shell activated carbon, with 5A and 13X molecular sieves as adsorbents and gas mixtures with different CO 2 /CH 4 volume ratios as methane simulation. Vacuum (4.5 kpa) desorption and thermal desorption (300 ) on fully adsorbed 13X molecular sieve were carried out. The results show that the breakthrough adsorption amount of CO 2 on 13X molecular sieve is 3.21 mmol/g, and the separation factor of CO 2 /CH 4 gas mixtures is up to 10, significantly higher than those of the 5A molecular sieve and coconut shell activated carbon at room temperature and pressure. The breakthrough time becomes smaller, which accompanies the decrease of CO 2 partial pressure, and the decrease rate of adsorption amount is larger than that of partial pressure. The adsorption separation performance of vacuum desorption regeneration of 13X molecular sieve can only be restored to about 40% of the original one, while thermal desorption regeneration can achieve better results. Key words: activated carbon; molecular sieve; adsorption; breakthrough curve; regeneration 2014 11 22 2015 01 30 (Foundation item) (00022402) (06101046) (Project(00022402) supported by the Program for New Century Excellent Talents in Chinese University; Project(06101046) supported by the Fundamental Research Funds for the Central Universities) E-mail: yhhtxl@126.com
3536 ( ) 46 [1] CH 4 55%~65% CO 2 30%~ 40% CO 2 CH 4 CO 2 CH 4 [2 3] [4] [4 5] [6 7] 5A 13X A X [8] CO 2 /CH 4 5%( ) 5%( ) 5%( ) Remy [9] Li-KFI 4 MPa 303 K CO 2 4.8 mmol/g Na-KFI 18 Shang [10] CO 2 /CH 4 (KCHA) 273 K 100 kpa 93 CO 2 /CH 4 5A 13X (CH 4 CO 2 V(CH 4 ):V(CO 2 )=3:2) 1 1.1 250~380 μm 5A 13X ( 3~ 5 mm 250~380 μm) 3 110 12 h 12 h 300 CH 4 CO 2 N 2 ( 99.990% 99.999% 99.999%) 1.2 (TCD) (GC 4000A ) (D08 4E ) (SHB A) (AL204) (101 3AB ) (SX G07123) (AL204) (NS 1) (NS YB05C) ( ) 1.3 1 1 Fig. 1 Flow chart of experimental setup for dynamic adsorption measurements (fix bed) 10 mm 200 mm CH 4 CO 2 ( ) (TCD) (GC) ( 5%) [11]
9 3537 [8] (α ) ( x α ij = ( x A A / xb) / x ) x A x B i j CO 2 CH 4 2 2.1 CH 4 CO 2 3:2 1 g 5A 13X 20 3 2 12 ml/min V(CH 4 )/V(CO 2 )=3:2 1 CH 4, 13X 2 CH 4, 5A 3 CH 4, YAC 4 CO 2, 13X 5 CO 2, 5A 6 CO 2, YAC 2 CO 2 /CH 4 (YAC) 5A 13X Fig. 2 Breakthrough curves of CH 4 /CO 2 gas mixture on coconut shell activated carbon, 5A molecular sieve and 13X molecular sieve 2 3 CO 2 0 CO 2 CH 4 3 CH 4 100% (YAC) 5A 13X CO 2 CH 4 5A B i j 13X YAC 5A 3 CO 2 1 1 CO 2 Table 1 Breakthrough adsorption amount of CO 2 and separation factors of gas mixture on different adsorbents /(mmol g 1 ) YAC 1.07 3.3 5A 1.28 4.0 13X 3.21 10.0 1 13X CO 2 CO 2 /CH 4 5A 13X CO 2 /CH 4 2 1) 2~3 nm 1 nm CO 2 CH 4 0.33 nm 0.38 nm [12 13] CO 2 CO 2 CH 4 [14] 5A 13X 5A 0.4~0.5 nm 13X 0.9~1.0 nm CO 2 CH 4 2) CO 2 CH 4 CO 2 CO 2 [15] CO 2 CO 2 /CH 4 2.2 13X CH 4 CO 2 3:2 9:1 1 g CO 2 /CH 4 13X 20 3 3 CH 4 CO 2 CO 2 CO 2 13X
3538 ( ) 46 12 ml/min 1 CH 4 V(CH 4 ):V(CO 2 )=3:2 2 CH 4 V(CH 4 ):V(CO 2 )=9:1 3 CO 2 V(CH 4 ):V(CO 2 )=3:2 4 CO 2 V(CH 4 ):V(CO 2 )=9:1 3 CO 2 /CH 4 13X Fig. 3 Breakthrough curves of CO 2 /CH 4 gas mixture on 13X molecular sieve 1 CH 4 13X 2 CH 4 13X-TD 3 CH 4 13X-VD 4 CO 2 13X 5 CO 2 13X-TD 6 CO 2 13X-VD 4 CO 2 /CH 4 13X Fig. 4 Breakthrough curves of CO 2 /CH 4 gas mixture on Vacuum desorption 13X and Thermal desorption 13X CO 2 [16 17] [18] 2.3 13X 2 1 g 13X CH 4 CO 2 12 ml/min 3:2 4.5 kpa 13X 13X-VD 13X 5 /min 300 3 h 13X-TD CH 4 CO 2 3:2 1 g (4.5 kpa) 13X 13X-VD (300 ) 13X 13X-TD 4 4 13X 13X [10, 19] 13X CO 2 CH 4 CO 2 CH 4 CO 2 CH 4 4.5 kpa 13X CO 2 CH 4 300 CO 2 CH 4 CO 2 CH 4 3 1) 3 CO 2 CO 2 /CH 4 13X 5A YAC 13X CO 2 3.21 mmol/g CO 2 /CH 4 10 2) CO 2 CO 2 3) (4.5 kpa) (300 ) 2 (300 ) 13X
9 3539 [1]. [EB/OL]. [2012 12 28]. http://www.gov.cn/zwgk/2012-12/28/content_ 2301176.htm. The National Energy of Bureau. Biomass energy development in the twelfth five year plan[eb/ol]. [2012 12 28]. http://www.gov.cn/zwgk/2012-12/28/content_2301176.htm. [2]. / [D]. :, 2005: 5 6. LI Xi. Experimental study on the adsorbents for the CO 2 /CH 4 mixture[d]. Tianjin: Tianjin University. School of Chemical Engineering and Technology, 2005: 5 6. [3] Morishige K. Adsorption and separation of CO 2 /CH 4 on amorphous silica molecular sieve[j]. The Journal of Physical Chemistry C, 2011, 115(19): 9713 9718. [4]. [M]. :, 2012: 6 10. LIU Peisheng. The introduction of porous materials[m]. Beijing: Tsinghua University Press, 2012: 6 10. [5] MU Bin, Walton K S. High-pressure adsorption equilibrium of CO 2, CH 4, and CO on an impregnated activated carbon[j]. Journal of Chemical & Engineering Data. 2011, 56(3): 390 397. [6] Silva J A C, Schumann K, Rodrigues A E. Sorption and kinetics of CO 2 and CH 4 in binderless beads of 13X zeolite[j]. Microporous and Mesoporous Materials, 2012, 158: 219 228. [7] Alonso-Vicario A, Ochoa-Gómez J R, Gil-Río S. et al. Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites[j]. Microporous and Mesoporous Materials, 2010, 134(1): 100 107. [8],,,. CO 2 /CH 4 [J]., 2011, 36(12): 2012 2017. LI Tong, LUO Shizhong, WU Yongyong, et al. Study of the modifying of activated carbon and its adsorption properties of CO 2 /CH 4 mixture[j]. Journal of China Coal Society, 2011, 36(12): 2012 2017. [9] Remy T, Peter S A, Denayer J F M, et al. Adsorption and separation of CO 2 on KFI zeolites: Effect of cation type and Si/Al ratio on equilibrium and kinetic properties[j]. Langmuir, 2013, 29(16): 4998 5012. [10] Shang J, Li G, Webley P A, et al. Discriminative separation of gases by a Molecular Trapdoor mechanism in chabazite zeolites[j]. Journal of the American Chemical Society, 2012, 134(46): 19246 19253. [11],,. CH 4 /CO 2 CH 4 [J]., 2013, 44(5): 154 157. YANG Haiyan, LI Wenzhe, GAO Haiyun. Purification of CH 4 from CH 4 /CO 2 mixture using carbon-based adsorbents[j]. Journal of China Agricultural Machinery, 2013, 44(5): 154 157. [12] Yang R T. Adsorbents: Fundamentals and applications[m]. Hoboken: John Wiley and Sons, 2003: 8 16. [13],,,. CO 2 /CH 4 [J]., 2012, 31(5): 974 980. LI Yundong, YI Honghong, TANG Xiaolong, et al. Impact of the characteristics of adsorbents on the adsorption and separation of CO 2 /CH 4 binary system[j]. Chemical Industry and Engineering Progress, 2012, 31(5): 974 980. [14] Huang Q L, Eić M. Commercial adsorbents as benchmark materials for separation of carbon dioxide and nitrogen by vacuum swing adsorption process[j]. Separation and Purification Technology, 2013, 103: 203 215. [15] Seung-Tae Y, Kim J, Wha-Seung A. CO 2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions[j]. Microporous and Mesoporous Materials, 2010, 135(1): 90 94. [16] Walton K S, Abney M B, LeVan M D. CO 2 adsorption in Y and X zeolites modified by alkali metal cation exchange[j]. Microporous and Mesoporous Materials, 2006, 91(1): 78 84. [17] Liang Z, Marshall M, Chaffee A L. CO 2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X)[J]. Energy & Fuels, 2009, 23(5): 2785 2789. [18] Remy T, Peter S A, van der Perre S, et al. Selective dynamic CO 2 separations on Mg-MOF-74 at low pressures: a detailed comparison with 13X[J]. The Journal of Physical Chemistry C, 2013, 117(18): 9301 9310. [19] Pham T D, Liu Q L, Lobo R F. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites[j]. Langmuir, 2013, 29(2): 832 839. ( )