Architecture for Visualization Using Teacher Information based on SOM

Σχετικά έγγραφα
Stabilization of stock price prediction by cross entropy optimization

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

{takasu, Conditional Random Field

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Anomaly Detection with Neighborhood Preservation Principle

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb


HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Applying Markov Decision Processes to Role-playing Game

Bayesian Discriminant Feature Selection

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Simplex Crossover for Real-coded Genetic Algolithms

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

A research on the influence of dummy activity on float in an AOA network and its amendments

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

TΑΞΙΝΟΜΗΣΗ ΣΥΝΟΠΤΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ KAI ΚΑΘΟΡΙΣΜΟΣ ΠΡΟΤΥΠΩΝ ΣΤΟΝ ΕΥΡΩΠΑΪΚΟ ΧΩΡΟ

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

GridFTP-APT: Automatic Parallelism Tuning Mechanism for Data Transfer Protocol GridFTP

High order interpolation function for surface contact problem

Web 論 文. Performance Evaluation and Renewal of Department s Official Web Site. Akira TAKAHASHI and Kenji KAMIMURA

ER-Tree (Extended R*-Tree)

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Ο ΔΕΙΚΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΑΝΑΠΤΥΞΗΣ ΣΤΗΝ ΕΛΛΑΔΑ ΤΟ 1991 & 2001 HUMAN DEVELOPMENT INDEX IN GREECE IN 1991 & 2001

Μιχαήλ Νικητάκης 1, Ανέστης Σίτας 2, Γιώργος Παπαδουράκης Ph.D 1, Θοδωρής Πιτηκάρης 3


Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Προσομοίωση BP με το Bizagi Modeler

Bizagi Modeler: Συνοπτικός Οδηγός

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Η διεπιστημονική ορολογία του τομέα διαχείρισης φυσικών κινδύνων Το παράδειγμα του σεισμικού κινδύνου

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Homomorphism in Intuitionistic Fuzzy Automata

Quick algorithm f or computing core attribute


Buried Markov Model Pairwise

Research on model of early2warning of enterprise crisis based on entropy

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

ΑΞΙΟΠΟΙΗΣΗ ΔΑΣΙΚΟΥ ΟΔΙΚΟΥ ΔΙΚΤΥΟ ΓΙΑ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΙ ΚΑΤΑΣΤΟΛΗ ΔΑΣΙΚΩΝ ΠΥΡΚΑΓΙΩΝ (ΣΕΪΧ-ΣΟΥ)

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

Detection and Recognition of Traffic Signal Using Machine Learning

Liner Shipping Hub Network Design in a Competitive Environment

Μαθαίνοντας µε την Τεχνολογία των Πολυµέσων Υπόσχεση ή Πραγµατικότητα;

Study of urban housing development projects: The general planning of Alexandria City

ΕΥΘΑΛΙΑ ΚΑΜΠΟΥΡΟΠΟΥΛΟΥ

Secure Cyberspace: New Defense Capabilities

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΓΡΟΤΙΚΕΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕ ΕΡΓΑΛΕΙΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Big Data/Business Intelligence

Βυζαντινός Κόσμος και Εννοιολογική Ιστορία

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Metal thin film chip resistor networks

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Arbitrage Analysis of Futures Market with Frictions

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

RUHR. The New Keynesian Phillips Curve with Myopic Agents ECONOMIC PAPERS #281. Andreas Orland Michael W.M. Roos

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Προσδιορισμός Χαρακτηριστικών των Λεκανών Απορροής

Η χρήση του MOODLE από την οπτική γωνία του ιαχειριστή

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Medium Data on Big Data

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

IMES DISCUSSION PAPER SERIES

Transcript:

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 567-47 8-1 NTT 619-237 2-4 52-2194 1-5 E-mail: {k-fukui,numao}@sanken.osaka-u.ac.jp, saito@cslab.kecl.ntt.co.jp, kimura@rins.ryukoku.ac.jp (SOM) SOM 2 Architecture for Visualization Using Teacher Information based on SOM Empirical Studies on Visualizing Time Series of Medical Data Ken-ichi FUKUI, Kazumi SAITO, Masahiro KIMURA, and Masayuki NUMAO The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka, 567-47 NTT Communication Science Laboratories 2-4 Hikaridai, Seika, Kyoto 619-237 Department of Electronics and Informatics, Ryukoku University 1-5 Yokotani,Seta Oe-cho, Otsu, Shiga, 52-2194 E-mail: {k-fukui,numao}@sanken.osaka-u.ac.jp, saito@cslab.kecl.ntt.co.jp, kimura@rins.ryukoku.ac.jp Abstract In this paper, we propose an architecture for visualization that constructs the map suggesting the cluster in a sequence that involves in classification by utilizing the teacher information for the display method of the map, while making the best use of the characteristics of Self-Organizing Maps (SOM) that are to create clusters and to arrange the similar clusters near within the low dimensional map. This proposal method consists of 2 learning phases, firstly the sequence of the winner neurons are obtained by SOM, secondly connectivity weights are obtained by perceptron, finally the map is visualized by reversing the obtained weights into the map. In the experiments using time series of real-world medial data, we evaluate the visualization and classification performance by comparing the display method by the ratio of classes. Key words Data Self-Organizing Maps, Teacher Information, Perceptron, Visual Data Mining, Time Series, Medical 1

1. 2. Kohonen SOM(Self-Organizing Maps) 2. 1 SOM [1] Kohonen SOM(Self-Organizing SOM Maps) SOM (unsu- pervised) N V x n = (x n,1,, x n,v ), (n = 1,, N) SOM 2 ( ) ( 2 3 ) m j SOM m new j = m j + h c(x),j [x m j]. (1) [2] Sammon s Mapping [3] c(x) = arg min x m i. (2) h c(x),j c(x) (2) h c(x),j SOM h c(x),j = α exp ( r j r c(x) 2 ). (3) 2σ 2 SOM Kohonen LVQ-SOM [1] [4][6] r j 2 j α σ SOM [9] M M E SOM = h i,j x n m j 2. (4) SOM M SOM ( ) C i c(x) = i SOM 2. 2 SBSOM SOM [7] SOM [6], [8] SOM Seqence-Based SOM(SBSOM) [8]. SOM SBSOM 2 SBSOM SBSOM (x n, t n) (m j, s j ) t n s j ( ) c(x) = arg min δ(t n, s j ) x n m j. (5) j { 1 if t n = s j, δ(t n, s j) = (6) otherise. i i=1 x n C i j=1 2

5 4 3 2-35 -3-25 -2-15 - -5 2 GOT IFN ( ) 1 ( ) 2 Weight Decay 1 [1] β Weight Decay SBSOM SOM S3. w j 2. 3 1 2 K SOM k k n(k) k ) : r = 1,, k} K k=1 {(x (k) n(r), t(k) n(r) n(k) = N 3. 3. S1. r, k (x (k) n(r), t(k) n(r) ) (SB)SOM 3. 1 (1 ) C 137 1 S2. GOT,GPT,TP,ALB,T- BIL,D-BIL,I-BIL,TTT,ZTT,CHE,T-CHO 11 k i( ) (i = 1,, M) 1 2 GOT { 1/n(k) if r c(x (k) n(r) y k,j = ) C j, ( ) IFN (7) otherwise. 3. 2 w = (w 1,, w M ) (IFN) ẑ k = w y k z k = IFN { 1, 1}, (k = 1,, K) K M E pct = (z k ẑ k ) 2 + β wj 2. (8) k=1 j=1 1 2 3

2 15 5-4 -35-3 -25-2 -15 - -5 6 normalized 5.5 interpolated 5 4.5 4 3.5 3 2.5 Original Data 2-4 -35-3 -25-2 -15 - -5 3 : 3% 2.5 IFN IFN HCV-RNA 1 1-fold cross validation 3 IFN (55 ) (82 2 47.53% IFN ( ) % 64.29% (8) β 3. 3 1 β = SOM ( ) [11] 3 79.78 4.78 99.6.4 1 6 47.53 16.76 64.29 21.43 1 1 1-fold cross validation (3) 3. 4 SBSOM(15 52 ) ( ) (ILP) [11] ( )/( ) (4) 67.2% 2 http://www.e-chiken.com/shikkan/c-kanen.htm (5) IFN SOM ( ) 3 1 2 1 3. 5 (MDL) [12] 3 C PCR 73.3% 4

4 ( ) 5 6 8 6 4 2 Ratio Perceptron 1 2 3 4 5 6 7 8 9 2 4 6 8 3. 6 ) 6 2 45 ( ) ( ) 4. SOM SOM ( ) ( ) 6 ( 5

3 ( ) ( ) ( ) (Maximum Entropy Method) [1] T. Kohonen: Self-Organizing Maps, Springer-Verlag, Heidelberg (1995). [2] J. B. Kruskal and M. Wish: Multidimensional scaling, Number 7-11 in Paper Series on Quantitative Applications in the Social Sciences (1978). [3] J. Sammon: A nonlinear mapping for data structure analysis, IEEE Transactions on Computers, c-18, pp. 41 9 (1969). [4] R. Hecht-Nielsen: Counterpropagaton networks, IEEE Frist international Conference on Neural Networks, pp. 19 32 (1987). [5] B. Fritzke: Growing cell structures: A selforganizing networks for unsupervised and supervised learning, Neural Networks, 7, pp. 1441 146 (1994). [6],,, som, Technical Report NC23142, (24). [7] T. Kohonen, S. Kaski, K. Lagus, J. Salojrvi, J. Honkela, V. Paatero and A. Saarela: Self organization of a massive document collection, IEEE Transaction on Neural Networks, 11(3), pp. 574 585 (2). [8] K. Fukui, K. Saito, M. Kimura and M. Numao: Sbsom: Self-organizing map for visualizing structure in the time series of hot topics, Proc. Joint Workshop of Vietnamese Society of AI, SIGKBS-JSAI, ICS-IPSJ, and IEICE-SIGAI on Active Mining, pp. 19 24 (24). [9] T. Kohonen: Comparison of som point densities based on different criteria, Neural Computation, 11, pp. 281 295 (1999). [1] S. Hanson and L. Pratt: Comparing biases for minimal network construction with back-propagation, Advances in Neural Information Processing Systems 1, pp. 177 185 (1989). [11] Ilp, (25). [12],,, SIG-KBS-A45-5, pp. 27 32 (25). 6