SOFC. (Solid Oxide Fuel Cell, SOFC) Co 0.2 Fe 0.8 O 3- (LSCF) Shao Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- (BSCF). 8,9) . 1) SOFC

Σχετικά έγγραφα
SmBaCo 2 O 5+δ (SBCO) Sm 0.2 Ce 0.8 O 1.9 (SDC) 3:2

Zn BaZr 0.7 Pr 0.1 Y 0.2 O 3 δ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Electronic Supplementary Information (ESI)

Thermophysical Properties of Materials for Solid Oxide Fuel Cells (SOFC)

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Study of Electronic Structures and Thermoelectric Properties of Half Metal

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Capacitors - Capacitance, Charge and Potential Difference

Table of Contents 1 Supplementary Data MCD

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Spin State and Spin Crossover Phenomena of Perovskite-type Cobalt Oxides

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

[1] P Q. Fig. 3.1

Supporting Information. for. Single-molecule magnet behavior in 2,2 -bipyrimidinebridged

Electronic Supplementary Information (ESI)

FP series Anti-Bend (Soft termination) capacitor series

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

Development of New High-Purity Alumina

ΗΛΕΚΤΡΟΧΗΜΙΚΗ ΕΝΙΣΧΥΣΗ ΚΑΙ ΣΥΜΠΑΡΑΓΩΓΗ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ ΧΡΗΣΙΜΩΝ ΧΗΜΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΣΕ ΚΥΨΕΛΙΔΕΣ ΣΤΕΡΕΟΥ ΗΛΕΚΤΡΟΛΥΤΗ

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

N.E.Kiratzis 1, P. Tragias 1, L. Yiamouridis 1 and E. Papastergiadis 2. Department of Food Technology, ATEI of Thessaloniki

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Electronic Supplementary Information (ESI)

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Progress of Gas Diff usion Layer for Proton Exchage Membrane Fuel Cells

Injection Molded Plastic Self-lubricating Bearings

Summary of Thermo-Physical Properties of: Sn and Compounds of Sn. Comparison of Properties of Sn, Sn-Li, Li, and Pb-Li

IV. ANHANG 179. Anhang 178

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

4, Cu( II), Zn( II)

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Multilayer Ceramic Chip Capacitors

Na/K (mole) A/CNK

. (SERS),,. ( 1.2~ 0.9 V),

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

- LiFe y Ti x Mn 2-x-y O 4 (0x, y1)

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Electronic Supplementary Information

16 2 Vol. 16 No ELECTROCHEMISTRY May CO DSC200PC NETZSCH. min min 2. 1

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Thermistor (NTC /PTC)

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Multilayer Ceramic Chip Capacitors

Table of contents. 1. Introduction... 4

Metal Oxide Varistors (MOV) Data Sheet

Metal Oxide Leaded Film Resistor

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

; +302 ; +313; +320,.

Thin Film Chip Resistors

Transient Voltage Suppressor

Σπανό Ιωάννη Α.Μ. 148

the total number of electrons passing through the lamp.

THICK FILM LEAD FREE CHIP RESISTORS

4. Construction. 5. Dimensions Unit mm

Supplementary Information for

NTC Thermistor:TSM type

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supporting Information

ACTA CHIMICA SINICA . :AAO. H 3 PO 4 AAO AAO. Unstable Growth of Anodic Aluminum Oxide Investigated by AFM

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

RF series Ultra High Q & Low ESR capacitor series

Metal Oxide Leaded Film Resistor

DATA SHEET Surface mount NTC thermistors. BCcomponents

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

difluoroboranyls derived from amides carrying donor group Supporting Information

Μελέτη Πρότυπων Καταλυτικών Συστηµάτων. µε Επιφανειακά Ευαίσθητες Τεχνικές

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

ΣΥΓΚΡΙΣΗ ΑΠΟΔΟΣΗΣ ΑΝΤΙΣΤΡΕΠΤΩΝ ΗΛΕΚΤΡΟΔΙΩΝ ΓΙΑ ΑΝΑΓΕΝΝΟΥΜΕΝΕΣ ΚΥΨΕΛΕΣ ΚΑΥΣΙΜΟΥ ΣΤΕΡΕΟΥ ΟΞΕΙΔΙΟΥ ΤΡΟΦΟΔΟΤΟΥΜΕΝΕΣ ΜΕ CO 2. Κ.Μ. Παπαζήση, Σ.

Multilayer Chip Inductor

Transcript:

(Solid Oxide Fuel Cell, SOFC). 1) SOFC 800. 1,2,3-5) SOFC SOFC. (Intermediate Temperature-operating Solid Oxide Fuel Cell, IT-SOFC) 700. SOFC Fig. 1 ABO 3 SOFC. SOFC simple perovskite A B-site (A-site : lanthanide Sr, B-site : transition metal),. 6,7) IT - SOFC Steele Bae La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3- (LSCF) Shao Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3- (BSCF). 8,9) (mixed ionic and electronic conductor, MIEC) IT-SOFC. 8,9) Complex perovskite IT-SOFC (disordering) (coulomb potential), (elastic potential) (mobility). 10) Imperial college John Killer GdBaCo 2 O 5+ layered perovskite IT-SOFC. 11) oxygen deficient complex perovksite layered perovskite. 24

2.1. Complex perovskite layered perovskite Fig. 1 ABO 3 Spinel, complex perovskite layered perovskite. ABO 3 simple perovskite cubic A-site,,,. A-site 12 (Coordination Number, CN) B-site Co Fe 8. 6.. simple perovskite A-site B-site complex perovskite A-site Sr (BO 6 ) 8. ABO 3 perovskite 90% A-site B-site perovskite simple perovskite A-site La Sr complex perovskite. La 1- xsr x CoO 3 A-site +3 +2 Co +3 +4 3d. LSCF A-site La Sr B-site Co Fe complex perovskite. perovskite Sr Co. La 1-x Sr x Co 0.2 Fe 0.8 O 3- Sr 20 mol% orthorhombic La Sr rhombohedral cubic. 13) LSCF Sr rhombohedral 400 500 rhombohedral cubic. 14) A / A // B 2 O 5+ (colossal magneto resistance, CMR). oxy-. 12) La 1-x Sr x CoO 3 (LSC) La 1-x Sr x Co 1-y Fe y O 3- (LSCF). LSC Fig. 1. Various cathode materials for SOFC. Fig. 2. Ordering of lanthanide A / and alkali-earth A // ions in the A-site sublattice of half-doped perovskites. (a) A simple cubic perovskite A / 0.5A // 0.5BO 3 (B is transition metal) with random occupation of A-sites is transformed into (b) a layered crystal A / A // B 2 O 6 by doubling the unit cell, provided the difference in ionic radii of A / and A // ions is sufficiently large. (c) Oxygen atoms can be partially or completely removed from lanthanide planes, providing a variability of the oxygen content in A / A // B2O5+, where 0< <1. 10) 25

gen ion diffusivity surface exchange coefficient SOFC IT-SOFC 11, 15-20). A / A // B 2 O 5+ layered perovkite double layered perovskite A-site ordering. ABO 3 A-site oxygen disordering. layered perovskite Taskin GdBaMnO 5+ (cation sublattice) ordering oxygen transport oxygen uptake. 10,16) Fig. 2. 10) Fig. 2 A / 0.5A // 0.5BO 3 Fig. 2(a) simple cubic perovskite Fig. 2(b) A / A // B 2 O 6 layered perovskite. Fig. 2(c) A / A // B 2 O 6 Ln A / A // B 2 O 5+ layered perovskite. B-site. B-site Mn A- site ordering disordering. B-site Co Mn ordering. Table 2. The Relation of Oxygen Content and Physical-chemical in LnBaCo 2 O 5+ Oxygen Charge Distribution The ionic content state of of various State radii of Co-O bond distance Cell volume ( ) Co Co state Co 0 2.5+ Co 2+ :50% Co 3+ :50% -Charge ordering of Co 3+ and Co 2 24,27) 0.5 3+ Co 3+ :100% -MIT (Metal-Insulation Transition) 1)Different Ln 23) 2)Spin-state transition of Co in octahedral place 28,29) layered perovskite LnBaCo 2 O 5+ Ln Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho Y lanthanide. 11,21-26) LnBaCo 2 O 5+ layered perovskite lanthanide tetragonal orthorhombic. Table 1 Tb, Dy Ho Pr Nd 2.2. Layered perovskite Table 1. The Relation of Compositions and their Structures with Respect to the Various Types of Lanthanides Structure PrBaCo 2 O 5+ Tetragonal NdBaCo 2 O 5+ Tetragonal SmBaCo 2 O 5+ Orthorhombic GdBaCo 2 O 5+ Orthorhombic Fig. 3. Crystal structure of the ordered LnBaCo2O5+ 26). 26

Table 3. LnBaCo 2 O 5+ Type Cathode Materials -Power density: 150 and 250 mw.cm -2 at 700 and 800 ) from the samples of GdBaCo 2O 5+ /YSZ/Ni-YSZ GdBaCo 2O 5+ 35) -Advanced power density: 300, 500 and 550 mw.cm -2 at 700, 800 and 900 from the samples of GdBaCo 2O 5+ /porous YSZ layer/ysz/ni-ysz properties -Decomposition of GdBaCo 2O 5+ under 500 ppm to 100% CO 2 -Stability under air condition for 100 hours at 500, 600 and 700 GdBaCo 2O 5+ -Reactivity with various electrolytes 36) -Area specific resistance (ASR): 0.250.cm 2 at 650 on LSGM electrolyte. - Electrical conductivity: 570 S.cm -1 around 200-250, 170 S.cm -1 at 90 - ASR SmBaCo 2O 5+ (1) SBCO sintered at 1000 : 0.130.cm 2 at 700 34) (2) composite cathode (SBCO:50, mixture of 50wt% of SBCO and 50wt% of CGO): 0.250, 0.050 cm 2 at 600 and 700. Thermal properties -TEC (12 10-6 K -1 ) of SBSCO:50 at 700. -ASR (1) 2.594 cm 2 at 572 GdBaCo 2O 5+ (2) 1.349 cm 2 at 598 11) (3) 0.777 cm 2 at 621 (4) 0.534 cm 2 at 645 -ASR from GBCO/CGO/GBCO (1)0.626.cm 2 at 625 properties -Oxygen surface exchange and oxide ionic diffusivity GdBaCo 2O 5+ (500~700 ) 37) oxygen surface exchange(cm.s -1 ) oxide ionic diffusivity(cm 2.s -1 ) 1.6x10-8 7.6x10-11 2.8x10-7 4.8x10-10 1.3x10-7 1.3x10-9 properties -Oxygen surface exchange and oxide ionic diffusivity (350 ) PrBaCo 2O 5+ oxygen surface exchange(cm.s -1 ) oxide ionic diffusivity(cm 2.s -1 ) 15) ~x10-3 ~x10-5 Structural changes with respect to the Sr substitution NdBaCo -Tetragonal (x=0 and 0.6) 2O 5+ (NBCO) -ASR from NBCO/CGO/NBCO (1)0.250 cm 2 at 700 tetragonal, Sm, Eu Gd orthorhombic. layered perovskite oxygen content (5+ ) oxygen content A-site Ln. Fig. 3 LnBaCo 2 O 5+ Ln 3+ Ba 2+ c 33) Fig. 4. Schematic crystal structure of LnBaCo2O5+ with, from left to right, (a) =0, (b) =0.5, and (c) =1. 32) ordering. Ln layer. Ln Ln Ba 2+ CO 5 pyramid CO 6 octahedral. 23,24) layered perovskite. 1)A-site ordering : Ln Ba 2)Ln layer 3) CO 5 pyramid CO 6 octahedral. LnBaCo 2 O 5+ Table 2 layered perovskite oxygen contents. 23, 24, 27-29) layered perovskite oxygen content.30) 0 LnBaCo 2 O 5 Fig. 4 (a). Co CO 5 pyramid 1 Fig. 4(c) CO 6 octahedral. 0.5 Fig. 4(b) CO 5 CO 6 Ln-O 27

. (001). Co. Co 3+ CO 5 intermediate spin state (t 5 2ge 1 g) CO 6 low spin state (t 6 2ge 0 g) high spin state (t 4 2ge 2 g). spin state oxygen content 5.5 metal insulator transition (MIT) 300-350K. 31) 350K metallic SOFC. 2.3. Layered perovskite A / A // B 2 O 5+ layered perovskite LnBaCo 2 O 5+. A / A // B 2 O 5+ A / -site lanthanide A // -site Ba. B-site simple complex perovskite Co Fe IT-SOFC.. 2.3.1. LnBaCo 2 O 5+ type LnBaCo 2 O 5+ Table 3. MIEC Ln lanthanide Pr, Nd, Sm Gd PrBaCo 2 O 5+ (PBCO) 15), NdBaCo 2 O 5+ (NBCO) 33), SmBaCo 2 O 5+ (SBCO) 34) GdBaCo 2 O 5+ (GBCO) 11, 35-37). Fig. 5(a) SBCO 34) 200~250 570 S.cm -1, 900 170 S.cm -1. 700 0.13Ω.cm 2. Co complex perovskite (700 20 10-6 K -1 ). 34) PBCO oxygen surface exchange oxide ionic diffusivity GBCO. 15) 350 PBCO oxygen surface exchange 10-3 (cm.s -1 ) oxide ionic diffusivity 10-5 (cm 2.s -1 ) 15) 300 GBCO oxygen surface exchange(1.6 10-8 cm.s -1 ) oxide ionic diffusivity (7.6 10-11 cm 2.s -1 ). 37) 2.3.2. LnBa 1-x Sr x Co 2 O 5+ type LnBa 1-x Sr x Co 2 O 5+ LnBaCo 2 O 5+ layered perovskite A-site Sr layered perovskite. Ln lanthanide Pr, Nd, Sm Gd Sr Table 4. LnBa 1-x Sr x Co 2 O 5+ Sr 0 x 1 IT-SOFC Sr 0.5 mol%. University of St. Andrews Irvine Table 4. LnBa 1-x Sr x Co 2 O 5+ Type Cathode Materials -ASRs from PBSCO/CGO/PBSCO PrBa 0.5Sr 0.5Co 2O 5+ (1)0.689 cm 2 at 600 (PBSCO) (2)0.286 cm 2 at 650 38) (3)0.154 cm 2 at 700 - ASRs from SBSCO/CGO/SBSCO (1)0.611 cm 2 at 600 (2)0.244 cm 2 at 650 SmBa 0.5Sr 0.5Co 2O 5+ (3)0.092 cm 2 at 700 38) (SBSCO) -ASR from SBSCO/DLE(CGO coated on 8YSZ)/SBSCO (1)0.196 cm 2 at 600 (2)0.052 cm 2 at 650 (3)0.033 cm 2 at 700 -ASR from SBSCO/CGO/SBSCO GdBa 0.5Sr 0.5Co 2O 5+ (1)1.252 cm 2 at 600 (GBSCO) (2)0.558 cm 2 at 650 38) (3)0.253 cm 2 at 700 Structural changes with respect to the Sr substitution -Tetragonal (x=0 and 0.6) NdBa 0.5Sr 0.5Co 2O 5+ (NBSCO) -ASR from NBSCO/CGO/NBSCO 33) (1)0.11 cm 2 at 700 28

700 0.033 Ω.cm 2. 38) YSZ CGO91 700 0.033 Ω.cm 2 YSZ CeO 2 Sr layered perovskite. University of St. Andrews Irvine LnBa 0.5 Sr 0.5 Co 2 O 5+ layered perovskite lanthanide Fig. 5. Electrical conductivities of (a) SmBaCo2O5+ 34) and (b) SmBa0.5Sr0.5Co2O5+ 39) as a function of temperature. Sr 0.5 mol% SmBa 0.5 Sr 0.5 Co 2 O 5+ (SBSCO) 0.5mol%. 38) SBSCO Ce 0.9 Gd 0.1 O 2- (CGO91) (Area Specific Resistance, ASR) 600 0.611 Ω.cm 2 700 0.092 Ω.cm 2. SBSCO Fig. 5(b) 50 (1280 S.cm -1 ) 900 (280 S.cm -1 ) Metallic Fig. 5(a) SBCO MIT. 39) YSZ YSZ CGO 600 0.196 Ω.cm 2 Pr Nd PrBa 0.5 Sr 0.5 Co 2 O 5+ (PBSCO) NdBa 0.5 Sr 0.5 Co 2 O 5+ (NBSCO) (neutron diffraction). 40) PBSCO NBSCO [Pr- O] [Nd-O] (2a p 2a p 2a p ). layered perovskite 300 300 700. 4 (DC 4 probe) 300 metallic (2a p 2a p 2a p ) (a p a p 2a p ). 40) 2.3.3. LnBaCo 2 O 5+ -composite type Table 5. LnBaCo 2 O 5+ -composite Type Cathode Materials PrBaCo 2 O 5+ -Composite -ASR from PBCO-composite/CGO/ PBCO-composite 15) (1)0.150 cm 2 at 600 NdBaCo 2 O 5+ -composite -ASR from NBCO:50/CGO/NBCO:50 33) (1)0.061 cm 2 at 700 29

Table 6. LnBa 1-x Sr x Co 2 O 5+ - composite Type Cathode Materials -ASR from SBSCO:50/ DLE(CGO coated on 8YSZ)/SBSCO:50 SmBa 0.5Sr 0.5Co 2O 5+ (1)0.124 cm2 at 600 38) -Composite (2)0.040 cm 2 at 650 (3)0.019 cm 2 at 700 -ASR from SBSCO:50/CGO/SBSCO:50 (1)0.102 cm 2 at 600 SmBa 0.5Sr 0.5Co 2O 5+ (2)0.038 cm2 at 650 39) -Composite (3)0.016 cm 2 at 700 -Electrical conductivity Maximum (1280 S.cm -1 at 50 ) and minimum (280 S.cm -1 at 900 ) NdBa 0.5Sr 0.5Co 2O 5+ -ASR from NBSCO:50/CGO/NBSCO:50 33) -Composite (1)0.038 cm 2 at 700 Fig. 6. Area specific resistance results for various composite cathodes of CGO91 with SBSCO onto CGO91 electrolyte. 39) The chemical composition of SBSCO:10 indicates the composite cathode comprised of 90 wt% SBSCO and 10 wt% CGO91. In addition, SBSCO:50 displays the composite cathode with 50 wt % SBSCO and 50 wt% CGO91. layered perovskite Table 5. PrBaCo 2 O 5+ (PBCO) CeO 2 composite layered perovskite. 15) PBCO-composite ( ) / CGO ( )/ PBCO-composite ( ) 600 0.150 Ω.cm 2 15) NdBaCo 2 O 5+ (NBCO) CGO91 1:1 700 0.061 Ω.cm 2. 33) 2.3.4. LnBa 1-x Sr x Co 2 O 5+ - composite type LnBa 1-x Sr x Co 2 O 5+ Ln Sm Ba Sr 0.5 mol% SmBa 0.5 Sr 0.5 Co 2 O 5+ (SBSCO) CGO91 1:1 SBSCO-composite 600 0.102 Ω.cm 2 700 0.016 Ω.cm 2 (Fig.6). 39) NdBa 0.5 Sr 0.5 Co 2 O 5+ (NBSCO) NBSCO-composite 700 0.038 Ω.cm 2. 33). Fig. 7. Thermal expansion coefficient results as a function of weight percentages of CGO91 with SBSCO from room temperature to 500, 700, and 900. 38) Table 7. LnBaM 2 O 5+ Type Cathode Materials Structural changes with respect to the Ni substitution -Tetragonal (0 x 0.4), Orthorhombic (x=0.6) NdBaCo 2-xNixO 5+ 43) -Power density: maximum power density (560, 350 and 220 mw.cm -2 at 800, 750 and 700 ) Cathode for proton conducting oxide GdBaCoFeO 5+ -Power density: maximum power density 42) (482 mw.cm -2 at 700 ) Thermal properties -TEC (14.6 10-6 K -1 ) in the temperature ranges of 50-800 SmBaCu 2O 5+ -Electrical conductivity: 31.61 S.cm-1 around at 610 -ASR : 41) (1) 1.187 cm 2 at 600 (2) 0.550 cm 2 at 650 (3) 0.469 cm 2 at 700 30

Table 6. Fig. 7 SBSCO SOFC 20 10-6 K -1. Co layered perovskite. SBSCO-composite 700 12 10-6 K -1 CGO YSZ. 39) LnBa 1-x Sr x Co 2 O 5+. Table 8. LnBa 1-x Sr x M 2 O 5+ Type Cathode Materials Thermal properties -TEC (14.1 10-6 K -1 ) of SBSCO and (14.9 10-6 K -1 ) of SBSCFO in the temperature ranges of 50-800 - Maximum electrical conductivity: 277.7 S/cm SmBa 0.5Sr 0.5Cu 2O 5+ -ASR from SBSCO/SDC/SBSCO (SBSCO) and (1) 0.217 cm 2 at 600 44) SmBa 0.5Sr 0.5CuFeO 5+ (2) 0.254 cm 2 at 650 (SBSCFO) (3) 0.236 cm 2 at 700 -ASR from SBSCFO/SDC/SBSCFO (1) 2.248 cm 2 at 600 (2)1.045 cm 2 at 650 (3) 0.522 cm 2 at 700 2.3.5. LnBaM 2 O 5+ type Layered perovskite B-site Co Fe Cu Table 7. SmBaCu 2 O 5+ 41) SmBaCo 2 O 5+ (50 800 : 14.6 10-6 K -1 ). Cu 610 31 S.cm -1 600 700 1.1868 Ω.cm 2 0.4694Ω.cm 2. GdBaCoFeO 5+ proton conducting oxide GdBaCoFeO 5+ / BaZr 0.1 Ce 0.7 Y 0.2 O 3- (BZCY7) / Ni- BZCY7 700 482 mw.cm -2. 42) Ni. NdBaCo 2-x NixO 5+ Ni Tetragonal(0 x 0.4) Orthorhombic Co Ni oxidation state oxygen content (5+ ). NdBaCo 1.6 Ni 0.4 O 5+ /GDC/LDC/Ni-CGO 700 220 mw. cm -2. 43) 2.3.6. LnBa 1-x Sr x M 2 O 5+ type Table 8 SmBa 0.5 Sr 0.5 Co 2 O 5+ Cu SmBa 0.5 Sr 0.5 Cu 2 O 5+ SmBa 0.5 Sr 0.5 Co 2 O 5+ (14.1 10-6 K -1 ). 44) Cu 600 700 0.217 Ω.cm 2 0.236 Ω.cm 2. 44) B-site Cu Fe SmBa 0.5 Sr 0.5 Cu Fe 2 O 5+ SmBa 0.5 Sr 0.5 Cu 2 O 5+ 50-800 SmBa 0.5 Sr 0.5 Cu 2 O 5+ (14.9 10-6 K -1 ). SmBa 0.5 Sr 0.5 CuFe 2 O 5+ 600 700 2.248 Ω.cm 2 0.522 Ω.cm 2. IT-SOFC layered perovskite. simple perovskite complex perovskite layered perovskite oxygen ion diffusivity surface exchange coefficient. SOFC,,. 31

. Layered perovskite. layered perovskite. 1. A. E. Lutz, R. S. Larson, and J. O. Keller, Thermodynamic Comparison of Fuel Cells to the Carnot Cycle, Int. J. Hydrogen Energ., 27 1103-11 (2002). 2. R. O Hayre, S. W. Cha, W. Colella, and Fritz B. Prinz, Fuel Cell Fundamentals, Wiley, New York, USA, 2006. 3. G. Hoogers, Fuel Cell Technology, CRC, USA, 2003. 4. S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells : Fundamentals, Design and Applications, Elsevier, Oxford, UK, 2003. 5. B. C. H. Steele and A. Heinzel, Materials for Fuel Cell Technologies, Nature, 414 345-52 (2001). 6. W. Chen, T. Wen, H. Nie, and R. Zheng, Study of Ln 0.6 Sr 0.4 Co 0.8 Mn 0.2 O 3 (Ln = La, Gd, Sm, or Nd) as the Cathode Materials for Intermediate Temperature SOFC, Mater. Res. Bull., 38 1319-28 (2003). 7. S. Hashimoto, K. Kammer, P. Larsen, F. Poulsen, and M. Mogensen, A Study of Pr 0.7 Sr 0.3 Fe 1-x Ni x O 3- as a Cathode Material for SOFCs with Intermediate Operating Temperature, Solid State Ionics, 176 1013-20 (2005). 8. B. C. H. Steele and J. M. Bae, of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-x (LSCF) Double Layer Cathodes on Gadolinium Doped Cerium Oxide (CGO) Electrolytes, Solid State Ionics, 106 255-61 (1998). 9. Z. Shao, and S. M. Haile, A High Performance Cathode for The Next Generation Solid Oxide Fuel Cells, Nature, 431 170-73 (2004). 10. A. A. Taskin, A. N. Lavrov, and A. Yoichi, Fast Oxygen Diffusion in A-Site Ordered Perovskites, Prog. Solid State Chem., 35 481-90 (2007). 11. C. Aimin, J. S. Stephen, and A. K John, Electrical of GdBaCo 2 O 5+x for IT-SOFC Applications, Solid State Ionics, 177 2009-2011 (2006). 12. S. Trasatti, Electrodes of Conductive Metallic Oxides Part A, B, Elsevier Scientific Publishing Co., Amsterdam, 1980, 1981. 13. L.-W. Tai, M. M. Nasrallah, H. U. Anderson, D. M. Sparlin and S. R. Sehlin, Structure and Electrical of La 1-x Sr x Co 1-y Fe y O 3. Part 2. The system La 1-x Sr x Co 0.2 Fe 0.8 O 3, Solid State Ionics, 76 273-83 (1995). 14. S. Wang, M. Katsuki, M. Dokiya, and T. Hashimoto, High Temperature of La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3- Phase Structure and Electrical Conductivity, Solid State Ionics, 159 71-78 (2003). 15. G. Kim, S. Wang, A. J. Jacobson, L. Reimus, P. Brodersen, and C. A. Mims, Rapid Oxygen Ion Diffusion and Surface Exchange Kinetics in PrBaCo 2 O 5+x with a Perovskite Related Structure and Ordered A Cations, J. Mater. Chem., 17 2500-05 (2007). 16. Taskin, A.A., A.N. Lavrov, and Y. Ando, Achieving Fast Oxygen Diffusion in Perovskites by Cation Ordering, Appl. Phys. Lett., 86 [9] 091910-1~091910-3 (2005). 17. F. Millange, V. Caignaert, B. Domenges, and B. Raveau, Order-Disorder Phenomena in New LaBaMn 2 O 6-x CMR Perovskites. Crystal and Magnetic Structure, Chem. Mater., 10 1974-83 (1998). 18. T. Nakajima, H. Kageyama, and Y. Ueda, Successive Phase Transitions in a Metal-ordered Manganite Perovskite YBaMn 2 O 6, J. Phys. Chem. Solids, 63 913-16 (2002). 19. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, H. Szymczak, and K. Barner, Magnetic and Electrical of LBaMn 2 O 6- (L=Pr, Nd, Sm, Eu, Gd, Tb) Manganites, Phys. Rev. B: Condens. Mater., 66 184424-1~184424-10 (2002). 20. D. Akahoshi, M. Uchida, Y. Tomioka, T. Arima, Y. Matsui, and Y. Tokura: Random Potential Effect near the Bicritical Region in Perovskite Manganites as Revealed by Comparison with the Ordered Perovskite Analogs, Phys. Rev. Lett., 90 177203-1~177203-4 (2003). 21. I. O. Troyanchuk, N. V. Kasper, and D. D. Khalyavin, Magnetic and Electrical Transport of Orthocobaltites R 0.5 Ba 0.5 CoO 3 (R=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy), Phys. Rev. B, 58 2418-21 (1998). 22. Y. Moritomo, M. Takeo, X. J. Liu, T. Akimoto, and A. Nakamura, Metal-insulator Transition due to Charge Ordering in R 1/2 Ba 1/2 CoO 3, Phys. Rev. B, 58 R13334-37 (1998). 23. A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, and B. Raveau, Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo 2 O 5+d, Closely Related to the 112 Structure, J. Solid. State Chem., 142 247-60 (1999). 24. T. Vogt, P. M. Woodward, P. Karen, B. A. Hunter, P. Henning, and A. R. Moodenbaugh, Low to High Spin-State Transition Induced by Charge Ordering in Antiferromagnetic YBaCo 2 O 5, Phys. Rev. Lett., 84 32

2969-72 (2000). 25. C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, and B. Raveau, Magnetoresistance in the Oxygen Deficient LnBaCo 2 O 5.4 (Ln=Eu, Gd) Phases, Appl. Phys. Lett., 71 1421-23 (1997). 26. J.-H. Kim and A. Manthiram, LnBaCo 2 O 5+d (Ln = La, Nd, Sm, Gd, and Y) Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells, J. Electrochem. Soc., 155 [4] B385-90 (2008). 27. Suard, E.; Fauth, F.; Caignaert, V.; Mirebeau, I.; Baldinozzi, G. Charge Ordering in the Layered Cobased Perovskite HoBaCo 2 O 5, Phys. Rev. B, 61 R11871-74 (2000). 28. F. Fauth, E. Suard, V. Caignaert, and I. Mirebeau, Spin - State Ordered Clusters in the Perovskite Nd BaCo 2 O 5.47, Phys. Rev. B, 66 184421-1~184421-5 (2002). 29. H. Wu, Spin State and Phase Competition in TbBaCo 2 O 5.5 and the Lanthanide Series LBaCo 2 O 5+ (0 1), Phys. Rev. B, 64 092413-1~092413-4 (2001). 30. K. Conder, A. Podlesnyak, E. Pomjakushina, and M. Stingaciu, Layered Cobaltites: Synthesis, Oxygen Nonstoichiometry, Transport and Magnetic, Acta Phy. Polon. A, 111 7-14 (2007). 31. A. A. Taskin, A. N. Lavrov, and Yoichi Ando, Transport and Magnetic of GdBaCo 2 O 5+x Single Crystals: A Cobalt Oxide with Square Lattice CoO 2 Planes over a wide Range of Electron and Hole Doping, Phys. Rev. B, 71 134414-1~134414-28 (2005). 32. Harlan U. Anderson, Review of P-type Doped Perovskite Materials for SOFC and Other Applications, Solid State Ionics, 52 33-41 (1992). 33. J. H. Kim and J. T.S. Irvine, Characterization of Layered Perovskite Oxides NdBa 1-x Sr x Co 2 O 5+ (x =0 and 0.5) as Cathode Materials for IT-SOFC, Int. J. Hydrogen Energ., 37 5920-29 (2012). 34. J. H. Kim, Y. Kim, P. A. Connor, J. T. S. Irvine, J. Bae, and W. Zhou, Structural, Thermal and Electrochemical of Layered Perovskite SmBaCo 2 O 5+d, a Potential Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells, J. Pow. Sour., 194 704-11 (2009). 35. A. Tarancón, A. Morata, G. Dezanneau, S. J. Skinner, J. A. Kilner, S. Estradé, F. Hernández-Ramírez, F. Peiró, and J.R. Morante GdBaCo 2 O 5+x Layered Perovskite as an Intermediate Temperature Solid Oxide Fuel Cell Cathode, J. Pow. Sour., 174 255-63 (2007). 36. A. Tarancón, J. Peña-Martínez, D. Marrero-López, A. Morata, J.C. Ruiz-Morales, and P. Núñez, Stability, Compatibility and Electrochemical Performance of GdBaCo 2 O 5+x Layered Perovskite as a Cathode for Intermediate Temperature Solid Oxide Fuel Cells, Solid State Ionics, 179 2372-78 (2008). 37. A. Tarancón, S. J. Skinner, R. J. Chater, F. Hernández-Ramírez, and J. A. Kilner, Layered Perovskites as Promising Cathodes for Intermediate Temperature solid Oxide Fuel cells, J. Mater. Chem., 17 3175-81 (2007). 38. J. H. Kim, M. Cassidy, J. T. S. Irvine, and J. Bae, Advanced Electrochemical of Ln Ba 0.5 Sr 0.5 Co 2 O 5+ (Ln = Pr, Sm, and Gd) as Cathode Materials for IT-SOFC, J. Electrochem. Soc., 156 [6] B682-89 (2009). 39. J. H. Kim, M. Cassidy, J. T.S. Irvine, and J. Bae, Electrochemical Investigation of Composite Cathodes with SmBa 0.5 Sr 0.5 Co 2 O 5+ Cathodes for Intermediate Temperature-Operating Solid Oxide Fuel Cell, Chem. Mater., 22 883-92 (2010). 40. A. K. Azad, J. H. Kim, and J. T. S. Irvine, Structureproperty Relationship in Layered Perovskite Cathode LnBa 0.5 Sr 0.5 Co 2 O 5+ (Ln = Pr, Nd) for Solid Oxide Fuel Cells, J. Pow. Sour., 196 7333-37 (2011). 41. X. Kong and X. Ding, Novel Layered Perovskite SmBaCu 2 O 5+ as a Potential Cathode for Intermediate Temperature Solid Oxide Fuel Cells, Int. J. Hydrogen Energ., 36 15715-21 (2011). 42. H. Ding and X. Xue Novel Layered Perovskite GdBaCoFeO 5+ as a Potential Cathode for Proton- Conducting Solid Oxide Fuel Cells, Int. J. Hydrogen Energ., 35 4311-15 (2010). 43. J.H. Kim and A. Manthiram, Layered NdBaCo 2-x Ni x O 5+d Perovskite Oxides as Cathodes for Intermediate Temperature Solid Oxide Fuel Cells, Electroch. Acta, 54 7551-57 (2009). 44. X. Ding X. Kong, H. Wu, Y. Zhu, J. Tang, and Y. Zhong, SmBa 0.5 Sr 0.5 Cu 2 O 5+ and SmBa 0.5 Sr 0.5 CuFeO 5+ Layered Perovskite Oxides as Cathodes for IT-SOFCs, Int. J. Hydrogen Energ., 37 2546-51 (2012). 33