(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Σχετικά έγγραφα
High order interpolation function for surface contact problem

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Congruence Classes of Invertible Matrices of Order 3 over F 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

D Alembert s Solution to the Wave Equation

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Motion analysis and simulation of a stratospheric airship

Partial Trace and Partial Transpose

X g 1990 g PSRB

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

EE512: Error Control Coding

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Numerical Analysis FMN011

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Finite difference method for 2-D heat equation

Prey-Taxis Holling-Tanner

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Envelope Periodic Solutions to Coupled Nonlinear Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

chatzipa

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Wavelet based matrix compression for boundary integral equations on complex geometries

Approximation of distance between locations on earth given by latitude and longitude

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

( y) Partial Differential Equations

On a four-dimensional hyperbolic manifold with finite volume

Computing the Gradient

Lecture 26: Circular domains

Matrices and Determinants

Reminders: linear functions

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Second Order RLC Filters

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Math221: HW# 1 solutions

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Homework 3 Solutions

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Homework 8 Model Solution Section

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Tridiagonal matrices. Gérard MEURANT. October, 2008

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ADVANCED STRUCTURAL MECHANICS

Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές

On the Galois Group of Linear Difference-Differential Equations

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

L p approach to free boundary problems of the Navier-Stokes equation

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Finite Field Problems: Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

Single-value extension property for anti-diagonal operator matrices and their square

Buried Markov Model Pairwise

CE 530 Molecular Simulation

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Τεχνική Έκθεση Μέθοδοι χαλάρωσης στη διεπαφή για σύνθετα προβλήματα πολλαπλών φυσικών μοντέλων και πολλαπλών χωρίων... 7

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Computing the Macdonald function for complex orders

Heisenberg Uniqueness pairs

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Chapter 6 BLM Answers

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Srednicki Chapter 55

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

A summation formula ramified with hypergeometric function and involving recurrence relation

Example Sheet 3 Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 7.6 Double and Half Angle Formulas

Research on divergence correction method in 3D numerical modeling of 3D controlled source electromagnetic fields

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CorV CVAC. CorV TU317. 1

Transcript:

34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev Fourier,,,,,, (SEM [4],,,,,,,,, SEM : [5] [6] Gauss-Lobatto-Legendre (GLL Chebyshev Lagrange, Legendre Dubiner [7], (QSEM (TSEM,,,, : 17-4-7 : (1987,,,,, E-mail: wtshao@sspu.edu.cn : (16ZR1417, (XXKZD134

84 17 34, C,,,,,,,,, 1 1.1, (β u( + ru( = f(, Ω + Ω (1 u( =, Ω ( : r ; β Ω +, β = β + ; Ω, β = β : u H 1 (Ω, (β u, v + r(u, v = (f, v, v H 1 (Ω Ω T, Ω e N el Nel, Ω = e=1 Ωe, e=1 Ωe = Ω e : N e (β u, v = (β e u e, v e e=1 N e N e (u, v = (u e, v e, (f, v = (f e, v e e=1 e=1 Ω e Ω st = [ 1, 1], Ω e Ω st Ω st, N : N u st (ξ = û st k ψ k (ξ, 1 ξ 1 : û st k k= ; ψ k(ξ, : ψ (ξ = 1 ξ, ψ N(ξ = 1 + ξ ψ k (ξ = 1 k k + 1 φ k 1(ξ, 1 k N 1 : φ k (ξ = L k (ξ L k+ (ξ; L k (ξ Legendre, Mu = F : M, u, u = [û e k ], k =, 1,, N, e = 1,,, N el; F f e ( 1. (QSEM,, : Ω = Nel e=1 Ωe, Ω e = [ e 1, e ] [y e 1, y e ],, Ω st = [ 1, 1], Ω e Ω st Ω st, N : N N u st (ξ, η = û st i,jψ i,j (ξ, η, û st i,j i= j=,, ψ i,j (ξ, η = ψ i (ξψ j (η, [3] : ( 1 ξ ( 1 η ψ, (ξ, η = ( 1 ξ ( 1 + η ψ,n (ξ, η = ( 1 + ξ ( 1 η ψ N, (ξ, η = ( 1 + ξ ( 1 + η ψ N,N (ξ, η = ( 1 i ( 1 η ψ i, (ξ, η = i + 1 φ i 1(ξ ( 1 i ( 1 + η ψ i,n (ξ, η = i + 1 φ i 1(ξ 1 i N 1 ( 1 ξ ( 1 j ψ,j (ξ, η = j + 1 φ j 1(η ( 1 + ξ ( 1 j ψ N,j (ξ, η = j + 1 φ j 1(η 1 j N 1 (3 (4 (5 (6

4 : 85 ( 1 ψ i,j (ξ, η= i 1 i 1(ξ( i+1 φ j j+1 φ j 1(η 1 i, j N 1 (7 Legendre, Laplacian 1 ( y = y A ξ1 ξ ( 1 + y C ξ ( 1 + + y B ξ1 +, Duffy [8] (9 η 1 = 1 + ξ 1 1 ξ 1, η = ξ, 1 η 1, η 1 (1 ξ 1 = (1 + η 1(1 η 1, ξ = η (11, (8 (9 Ω e τ, Duffy, τ Ω st, ( y ξ A C 1 1 (a The element Laplacian matri 1 B Eqs.(8,(9 1 1 ξ 1 C A 1 B (a (b C η 1 C' the Duffy s transform 1 1 η 1 1 Fig. 1 1 (b The element mass matri 1 QSEM Laplacian, N = 9 Sparse structure of the elemental Laplacian and mass matrices of QSEM with the modal bases of order N = 9 1.3 (TSEM Ω e 3 : {( A, y A, ( B, y B, ( C, y C }, Ω e τ = {(ξ 1, ξ 1 ξ 1, ξ ; ξ 1 + ξ } : ( = A ξ1 ξ ( 1 + + B ξ1 + ( 1 + C ξ (8 Fig. A 1 (a τ(b, Ω st (c (c Each triangular element (a is mapped into the reference triangular τ; (b then mapped into the standard element Ω st ; (c finally all local operations are evaluated in Ω st (b τ, [3] : ψ A (η 1, η = 1 η 1 1 η ψ B (η 1, η = 1 + η 1 1 η (1 ψ C (η 1, η = 1 + η ψi AB (η 1, η = 1 i ( 1 i + 1 φ η i+1 i 1(η 1 (13 1 i N B

86 17 34 ψ AC j (η 1, η = ψ BC j (η 1, η = ( 1 i,j (η 1, η = ( 1 + η ψ Inter ( 1 η1 ( 1 1 j N ( 1 + η1 ( 1 1 j N i i + 1 φ i 1(η 1 j j + 1 φ j 1(η j j + 1 φ j 1(η ( 1 η (14 (15 i+1 P i+1,1 j 1 (η (16 1 i, j N, i + j N, Duffy Ω st 1 1, CC C, C, η GLL C η 1 GLL, η Gauss-Radau,, 3 Laplacian,, Matlab 7, Matlab PDE 1,, Dirac [] (βu + u = f + µδ( α, (, L (17 u( = u(l = (18 C 1 cos(γ + C sin(γ + 1 (, α u( = (19 C 3 cos(γ + + C 4 sin(γ + + 1 (α, L : γ = 1/1; γ + = 1/ 1; α = 1π/6; L = 1π/; β = 1; β + = 1; f = 1; C i Dirichlet u( C, = α : [βu ] =α = β + u (α + β u (α = µ, µ = 1, 1 1 L N N el, [] Legendre (LCM,,, SEM, 4 5 µ = 1, 1,, N el =, N = 1 15 15 (a The element Laplacian matri 15 15 (b The element mass matri 3 TSEM Laplacian, N = 14 Fig. 3 Sparse structure of the elemental Laplacian and mass matrices of TSEM with the modal bases of order N = 14

4 : 87 1 LCM SEM L, µ = 1, 1 Tab. 1 Comparison of the L norm errors for LCM and SEM with µ = 1, Eample 1 LCM [] N SEM N el = N el = 4 N el = 6 4 5.83 1 4 3 4.65 1 6 3.48 1 7 4.89 1 8 6.63 1 6 5 7.11 1 9 1.36 1 1 8.75 1 1 8 5.9 1 9 7 6.56 1 1 3. 1 14 1.53 1 15 1 5.5 1 1 9 4. 1 15 1. 1 15 1.1 1 15 LCM SEM L, µ = 1, 1 Tab. Comparison of the L norm errors for LCM and SEM with µ = 1, Eample 1 LCM [] N SEM N el = N el = 4 N el = 6 4 7.8 1 4 3 7.7 1 6 4.4 1 7 6.1 1 8 6 3.18 1 6 5 1.19 1 8 1.73 1 1 1.6 1 11 8 6.9 1 9 7 1.11 1 11 4.5 1 14 3.3 1 15 1 6.54 1 1 9 7.57 1 15 3.3 1 15 3.15 1 15.15 4..5 Plot of the numerical solution u(.1.5.5 Pointwise errors 1 15 3.5 3..5. 1.5 1..5 Plot of the numerical solution u(.5.1.15..5 Pointwise errors 1 15.5. 1.5 1..5.1 1 3 4 5 1 3 4 5.3 1 3 4 5 1 3 4 5 4 SEM, µ = 1, N el =, N = 1, 1 Fig. 4 The numerical solution and pointwise errors of SEM with µ = 1, N el =, N = 1, Eample 1 5 SEM, µ = 1, N el =, N = 1 1 Fig. 5 The numerical solution and pointwise errors of SEM with µ = 1, N el =, N = 1, Eample 1 Ω = (, L (, 1 [] (βu + u yy + (1 + π u = sin(πy(1 µδ( α ( u =, (, y Ω (1 : u(, y = sin(πy C 1 cos(γ + C sin(γ + 1, (, α C 3 cos(γ + + C 4 sin(γ + + 1, (α, L : β β + γ γ + α L C i 1 µ = 1, Ω

88 17 34 [, α] [, 1], [α, L] [, 1], QSEM 3, L L LCM [] LCM,, QSEM 3 LCM [] SEM L L, µ = 1, Tab. 3 Comparison of the L and L norm errors for LCM and SEM with µ = 1, Eample LCM [] N QSEM L L L.75 1 3 8.8 1 5 1.64 1 4 4 7.7 1 6 4 1. 1 6 1.5 1 6 6 1.67 1 8 6 7.5 1 9 1.5 1 8 8.1 1 11 8 3.47 1 11 4.95 1 11 1 1.19 1 13 1.68 1 13 1 1.6 1 15 9.73 1 16 14 7.91 1 16 8.66 1 16 3 TSEM [9], (β u = f, (, y Ω = [ 1, 1] ( [u] =, (, y Γ (3 [ u n] = µ, (, y Γ (4 u = g, (, y Ω (5 : Γ = Ω Ω +, Ω = {(, y r R, r = + y }, Ω + = [ 1, 1] /Ω, [ u n] = u n + u + n +, n ± Ω ± : γ α /β, r R u(, y = γ α ( 1 β + + β 1 γ α β +, r > R : α = 3, r = 1/, R = 1/ f, µ g β 4 : (1 β + = 1 3, β = 1; ( β + = 1 6, β = 1; (3 β + = 1, β = 1 3 ; (4 β + = 1, β = 1 6 β + /β 4 N = 4,, TSEM L L, h, 4, β + /β, TSEM, 6 β + /β = 1 6, 1 6 4, Ω = [ 1, 1], [1] (β(, y u = f(, y+ C δ( X(sδ(y Y (sds (6 Γ h 4 TSEM L L, 3 Tab. 4 The L and L errors of TSEM, Eample 3 β + = 1 3, β = 1 β + = 1 6, β = 1 L L L L 1/8 1.79 1 3 9.54 1 4 1.79 1 3 9.54 1 4 1/16 5.88 1 4 3.3 1 4 5.89 1 4 3.3 1 4 1/3 1.7 1 4 9.76 1 5 1.71 1 4 9.77 1 5 1/64 4.7 1 5.46 1 5 4.7 1 5.46 1 5 h β + = 1, β = 1 3 β + = 1, β = 1 6 L L L L 1/8 1.17 1 3 1.9 1 3 1.17 1 3 1.9 1 3 1/16 3.87 1 4 3.53 1 4 3.87 1 4 3.54 1 4 1/3 1.1 1 4 1.1 1 4 1.1 1 4 1.1 1 4 1/64.8 1 5.5 1 5.8 1 5.51 1 5

4 : 89 u.5.5 1. 1.5..5 3. 1 1.5.5 y 1. u.14.1.1.8.6.4. 1..5.5 1..5 (a β + /β = 1 6 (b β + /β = 1 6 6 β + /β, TSEM, 3 Fig. 6 The numerical solutions of TSEM with the very small and big ratio β + /β, Eample 3 y.5 1., f(, y = 8r + 4 r + 1, r 1/ β(, y = b, r > 1/ : u(, y = r, r 1/ ( 1 1 8b 1 ( r 4 /4 + b + r /b+ C log(r/b, r > 1/ Dirichlet 5 b = 1, C =.1 b = 3, C =.1, TSEM L L, 7, TSEM,, b = 3 <,,, 5 TSEM L L, 4 Tab. 5 The L and L errors of TSEM, Eample 4 h b = 1, C =.1 b = 3, C =.1 L L L L 1/4 1.18 1 8.1 1 3 1.75 1 1.4 1 1/8 5.89 1 3 5.43 1 3 1.43 1 1.44 1 1/16 4.54 1 3 4.86 1 3 1.35 1 1.48 1 1/3 4.7 1 3 4.61 1 3 1.3 1 1.49 1 1/64 3.9 1 3 4.5 1 3 1.31 1 1.46 1 u.7.6.5.4.3..1 1..5.5.5 1. y.5 1. u.5.5 1. 1.5 1..5.5.5 1. y.5 1. (a b = 1, C =.1 (b b = 3, C =.1 7 TSEM, 4 Fig. 7 The numerical solutions of TSEM, Eample 4

9 17 34 3,,,, : [1] WU Y, TRUSCOTT S, OKADA M. A finite difference scheme for an interface problem [J]. Japan J Indust Appl Math, 1, 7(: 39-6. [] SHIN B C, JUNG J H. Spectral collocation and radial basis function methods for one-dimensional interface problems [J]. Appl Numer Math, 11, 61(8: 911-98. [3] SHEN J, TANG T. Spectral and high-order methods with applications [M]. nd ed. Beijing: Science Press, 6. [4] KARNIADAKIS G, SHERWIN S. Spectral/hp element methods for CFD [M]. nd ed. New York: Oford University Press, 13. [5] DEHGHAN M, SABOURI M. A spectral element method for solving the Pennesbioheat transfer equation by using triangular and quadrilateral elements [J]. Appl Math Model, 1, 36(1: 631-649. [6] FAKHAR IZADI F, DEHGHAN M. A spectral element method using the modal basis and its application in solving second-order nonlinear partial differential equations [J]. Math Method Appl Sci, 15, 38(3: 478-54. [7] DUBINER M. Spectral methods on triangles and other domains [J]. J Sci Comput, 1991, 6(4: 345-39. [8] DUFFY M G. Quadrature over a pyramid or cube of integrands with a singularity at a verte [J]. Siam Journal on Numerical Analysis, 198, 19(6: 16-16. [9] HOU S, LIU X D. A numerical method for solving variable coefficient elliptic equation with interfaces [J]. J Comput Phys, 5, (: 411-445. [1] LEVEQUE R J, LI Z. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources [J]. Siam J Numer Anal, 1994, 31(4, 119-144. A Numerical Study of The Modal Bases Spectral Element Method for Solving Interface Problems SHAO Wenting (School of Science, Shanghai Polytechnic University, Shanghai 19, China Abstract: The numerical solution of one and two dimensional interface problems using the modal bases spectral element method (SEM was studied. Equations with the discontinuous coefficient or singular source were concerned. For two dimensional cases, the implementations of the quadrilateral element (QSEM and the triangular element (TSEM were both investigated. Several numerical eamples with eact solutions were provided to illustrate the feasibility and effectiveness of the modal bases SEM. Compared with other numerical results, eponential accuracy was regained for the one dimensional case, and better accuracy was also obtained for the two dimensional case. Keywords: spectral element method; quadrilateral elements; triangular elements; interface problems; discontinuous coefficient; singular source