Single-value extension property for anti-diagonal operator matrices and their square
|
|
- Ευσέβιος Βαρνακιώτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : ,, :, Hilbert. : ; ; : O177.2 : A DOI: /j.issn Single-value extension property for anti-diagonal operator matrices and their square Abstract: CUI Miao-miao, CAO Xiao-hong Department of Mathematics and Information Science, Shaanxi Normal University, Xi an 71119, China In this paper, we mainly proved the equivalence of the perturbation of single-value extension property for anti-diagonal operator matrices and their square on an infinite dimensional separable Hilbert space. Key words: single-value extension property; compact perturbations; anti-diagonal operator matrices 1, H Hilbert. BH H, KH H. T BH, NT RT T. T Fredholm, RT nt nt, nt dim NT, nt dim NT T T. T indt nt nt. Wolf σ SF T σ SF T {λ C : T λi Fredholm }. : : , ; GK21317 :,,,. address: cuiye@snnu.edu.cn. :,,,,. address: xiaohongcao@snnu.edu.cn.
2 ρ SF TC\σ SF T T Fredholm. ρ a T{λ ρ SF T : nt λi}, ρ SF+ T{λ ρ SF T : nt λi < }. T Fredholm, < indt < +, T Fredholm ; indt T Weyl. T asct NT n NT n+1,, asct ; T dest RT n RT n+1,, dest. T Fredholm, T Browder. σ e T, Weyl σ w T σ e T {λ C : T λi Fredholm }, σ w T {λ C : T λi Weyl }. σ T {λ isoσt : T λi Browder }. 2, SVEP, T T SVEP. N. Dunford [1-3], Fredholm., [4-5].,, [6-8] [9].,., T intσ p T, Bishop s β, δ [7], σ p T T.. [1-11], T BH H,. 1 AB ; 2 BA ; 3 T AB intσ SF AB ρ SF AB [4], intσ SF BA., B δ µ σ SF BA. intσ SF AB, µ 1 B δ µ AB µ 1 I Fredholm. ρ SF AB, AB µ 1 I Browder, µ 2 µ 2 B δ µ AB µ 2 I, BA µ 2 I,. 2 ρ SF BA. : ρ SF BA ρba σ BA. ρ SF BA ρba σ BA. µ ρ SF BA, µ / ρba, µ ρ SF BA σba, B δ µ µ B δ µ BA µi Fredholm. intσ SF AB, µ 1 B δ µ AB µ 1 I Fredholm. ρ SF AB, AB µ 1 I Browder, µ 2 µ 2 B δ µ AB µ 2 I. ρab ρba, BA µ 2 I, µ σba. BA µ I Fredholm BA µ I n d, µ σba, BA µ I Browder [12], 4.9.
3 1, : 97 ρ SF AB, ρ SF AB ρab E, E C. ρab ρba, ρ SF AB ρ SF BA BA int σ SF BA ρ SF BA [4], intσ SF T 2., B δ µ σ SF T 2. intσ SF BA, µ 1 B δ µ BA µ 1 I Fredholm. ρ SF BA, BA µ 1 I Browder, µ 2 µ 2 B δ µ BA µ 2 I. ρab ρba, AB µ 2 I, T 2 µ 2 I [13], 3.9,. 2 ρ SF T 2. BA, 1 2 AB, intσ SF AB ρ SF AB [4], 1.3. AB SVEP BA SVEP, µ C, indab µi indba µi, ρ SF AB ρ SF+ AB, ρ SF BA ρ SF+ BA [5], 11. ρ SF AB ρ SF BA, ρ SF AB ρ SF+ AB ρab E 1, ρ SF BA ρ SF+ BA ρba E 2, E 1 C, E 2 C. ρab ρba, ρ SF AB ρ SF BA ρ SF T 2 ρ SF AB ρ SF BA T 2, K, intσ SF T 2 intσ SF T 2 + K ρ SF T 2 ρ SF T 2 + K [4], intσ SF AB., B δ µ σ SF AB. intσ SF T 2, µ 1 B δ µ T 2 µ 1 I Fredholm. ρ SF T 2, T 2 µ 1 I Browder, µ 2 µ 2 B δ µ T 2 µ 2 I, AB µ 2 I [13], 3.9,. 2 ρ SF AB. ρ SF AB, ρ SF AB Ω. Γ Ω. N Γ σ SF AB, K 1 AB + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω, K2 Ω σn + K 2 \σ w N + K 2. K + K 1, K T 2 + K K AB + K BA N + K2 BA,. intσ SF T 2 + K, µ Ω T 2 + K µi Fredholm. ρ SF T 2 + K, µ µ Ω T 2 + K µ I, AB + K µ I [13], 3.9, N + K 2 µ I. N + K 2 µ I Weyl, N + K 2 µ I,. T, σ ω T σ ω AB σ ω BA, σ ω {σ, σ e, σ w } [13], T, Wolf.
4 T BH H, 1 T λi Fredholm, AB λ 2 I BA λ 2 I Fredholm indab λ 2 I indba λ 2 I indt λi; 2 σ SF T σ SF T 2. 1 λ, T 2 A Fredholm, AB BA BA Fredholm, A B Fredholm indab indba. 2 indt indt 2 indab+indba, indab indba indt. λi λ, 1: NT λi NAB λ 2 x I. NT λi, B y x λi λix + Ay Bx λy, AB λ 2 Ix, NAB λ 2 I. y B λx λ 2, x NAB λ 2 x + ABx λi I, T λi, x Bx B NT λi. 2: nab λ 2 I nt λi. x 1, x 2,, x n NAB λ 2 I λx1 λx2 λxn, 1,,, NT λi, Bx 1 Bx 2 Bx n nab λ 2 I nt λi. ξ 1 ξ 2 ξ m,,, NT λi, 1 x 1, x 2,, η 1 η 2 η m x m NAB λ 2 ξi λxi λx1 λx2 I, i 1,, m.,,, η i Bx i Bx 1 Bx 2 λxm. a 1 x 1 +a 2 x 2 + +a m x m, a 1, a 2,, a m C, a 1 Bx 1 + Bx m λx 1 λx 2 a 2 Bx 2 + +a m Bx m a 1 λx 1 +a 2 λx 2 + +a m λx m, a 1 +a 2 + Bx 1 Bx 2 λxm +a m, a 1 a 2 a m, x 1, x 2,, x m NAB λ 2 I Bx m. nab λ 2 I nt λi. 3: RAB λ 2 I. AB λ 2 Ix n yn, T 2 λ 2 x n I y x n y n. T +λi z n, T λiz n n. T λi x y x Fredholm RT λi, T λi, y y y AB λ 2 x λ. RAB λ2 I. : I BA λ 2 I Fredholm nba λ 2 I nt λi, dab λ 2 I dba λ 2 I dt λi. T λi Fredholm, AB λ 2 I BA λ 2 I
5 1, : 99 Fredholm indab λ 2 I indba λ 2 I indt λi; II T λi Fredholm, AB λ 2 I, BA λ 2 I Fredholm indab λ 2 I indba λ 2 I indt λi. 2 λ / σ SF T 2, T 2 λ 2 I Fredholm, T ± λi Fredholm, λ / σ SF T., λ / σ SF T, 1 AB λ 2 I BA λ 2 I Fredholm, T 2 λ 2 I Fredholm, λ / σ SF T T, T 2 T. S1 S 2. : S SVEP, S 1 SVEP. S 3 U C, f 1 : U H S 1 λif 1 λ. fλ f 1 λ, S1 λi S 2 f1 λ S λifλ S 1 λif 1 λ. S 3 λi S SVEP, f, f 1, S 1 SVEP. : 1 intσ SF T., B ε λ σ SF T. Γ B ε λ. Γ σ SF T, N K 1 T + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω, Ω σn + K2 K 2 \σ w N + K 2. K + K 1, T 2 + K T + K 2 N + K2 2 K TK + KT + K 2. T 2, 1 N + K 2 2 SVEP. σn Γ, I λ, λ B ε λ, λ / Γ; II λ, ε / B ε λ, λ λ B ε λ, λ / Γ. λ 1 B ε λ λ 1 / Γ, N λ 1 I, N + λ 1 I, N + K 2 2 λ 2 1I Weyl. N + K 2 2 SVEP, N + K 2 2 λ 2 1I Browder [4], 15, N + K 2 λ 1 I Browder, λ 2 Ω N + K 2 λ 2 I,. 2ρ SF T 2., ρ SF T 2, ρ SF T 2 Ω. Γ N Ω. Γ σ SF T, K 1 T 2 + K 1, N σn σ SF N Γ [14], 2.1. N, Φ C\[σN\σ N], [15, 3.1] K 2 σn + K 2 σn Φ Ω,,
6 1 215 K 2 Ω σn + K 2 \σ w N + K 2. K + K 1, T 2 + K T + K 2 N + K 2 2, K TK+KT +K 2. T 2, T 2 +K, intσ SF T 2 +K ρ SF T 2 +K [4], 1.3. λ Ω, λ / σ SF T. 2.2 T 2 +K λ 2 I Fredholm, ρ SF T 2 +K, T 2 +K λ 2 I Browder, T +K λ I Browder, ascn +K 2 λ I <. N + K 2 λ I Weyl, N + K 2 λ I Browder. 1 :.. ρ SF T ρ SF T 2 [ρ SF T] 2. fx x 2, ρ SF ft ρ SF T 2 [ρ SF T] 2 fρ SF T. ρ SF T 2, A, B C ρ SF T 2 A B, [A B] [A B]. ρ SF T 2 [ρ SF T] 2 ρ SF T f 1 A B, f 1 A B A B f. [f 1 A f 1 B] [f 1 A f 1 B] [f 1 A f 1 B] [f 1 A f 1 B] f 1 A B f 1 A B f 1 [A B A B], ρ SF T. intσ SF T 2., B δ µ σ SF T 2. µ λ 2, 2.2 λ σ SF T. intσ SF T, λ n λ T λ n I, T + λ n I λ 2 n λ 2 [13], , T 2 λ 2 n I, µ intσ SF T T, T 2 T. 2.1 : 2.1 AB BA T, A B T. : 1 T A B., Ax 1, x 2, x 3,, x 1, x 2,, Bx 1, x 2, x 3, x 2, x 3, x 4,, ABx 1, x 2, x 3,, x 2, x 3,, BAx 1, x 2, x 3, x 1, x 2, x 3,, : σa σb D, σ SF A σ SF B D AB 2 AB, σt 2 {, 1}. T 2 [4], 1.3, 2.1 T. A B [4], A B T., A 1 x 1, x 2, x 3,, x 1, x 2,, A 2 x 1, x 2, x 3, x 2, x 3, x 4,, B 1 x 1, x 2, x 3,, x 1,, x 2,, B 2 x 1, x 2, x 3, x 2, x 4, x 6,,
7 1, : 11 1 A, B Bl 2 l 2, T Bl 2 l 2 l 2 l 2 A A 2 B1, T. B 2 A1 B 2 A T 2 2 B 1 BA B1 A 2, B 2 A 1 A 2 A1 A 2, B 2 B1 B 2. I I, B A 1 A 2 x 1, x 2, x 3,, x 2, x 3, x 4,, B 1 B 2 x 1, x 2, x 3,, x 2,, x 4,, A 1 B 2 x 1, x 2, x 3,, x 2, x 4, x 6,, A 2 B 1 x 1, x 2, x 3, x 1,, x 2,,, B 1 A 2 x 1, x 2, x 3,, x 2,, x 3,, B 2 A 1 x 1, x 2, x 3, x 1, x 3, x 5,. : 1 σa 1 B 2 D, σt 2 σ SF T 2 D. T 2 [4], 1.3, 2.1 T. 2 σa 1 A 2 σb 1 B 2 {, 1}, σa σb {, 1, 1}, A B [4], T, A B, T. 2.2 T, 1 A SVEP, B AB BA, BA SVEP. 2 A, B, BK KB K, BA + K SVEP. 1 U C, f : U H BA λifλ, f. B, γ 1, γ 2,, γ k B γ 1 B γ 2 B γ k, k. p j λ λ γ 1 λ γ 2 λ γ j, j 1, 2,, k. : p j Bfλ, j 1, 2,, k. BA λifλ, B γ k Afλ + γ k A λfλ. AB BA, p k BAfλ + γ k A λp k 1 Bfλ, γ k A λp k 1 Bfλ. A SVEP, p k 1 Bfλ. p j Bfλ, j 1, 2,, k, p 1 Bfλ B γ 1 fλ, B γ 1 Afλ. BA λifλ, B γ 1 Afλ + γ 1 A λfλ, γ 1 A λfλ. A SVEP, f. : BA SVEP. 2 BK KB K, U C, f : U H BA + K λifλ, f.
8 B, γ 1, γ 2,, γ k B γ 1 B γ 2 B γ k, k. p j λ λ γ 1 λ γ 2 λ γ j, j 1, 2,, k. : p j Bfλ, j 1, 2,, k. BA+K λifλ B γ k Afλ+γ k A+K λfλ, AB BA p k BAfλ+γ k A+K λp k 1 Bfλ, γ k A+K λp k 1 Bfλ. A, p k 1 Bfλ. p j Bfλ, j 1, 2,, k, p 1 Bfλ B γ 1 fλ, B γ 1 Afλ. BA + K λifλ, B γ 1 Afλ + γ 1 A + K λfλ, γ 1 A + K λfλ. A, f , : T, A B T?,. [ ] [ 1 ] DUNFORD N. Spectral theory II [J]. Resolutions of the identity. Pacific J Math, 1952, 24: [ 2 ] DUNFORD N. Spectral operators [J]. Pacific J Math, 1954, 43: [ 3 ] DUNFORD N. A survey of the theory of spectral operators [J]. Bull Amer Math Soc, 1958, 64: [ 4 ] ZHU S, LI CH G. SVEP and compact perturbations [J]. Journal of Mathematical Analysis and Applications, 211, 38: [ 5 ] FINCH J K. The single valued extension property on a Banach space [J]. Pacific J Math, 1975, 58: [ 6 ] AIENA P. Fredholm and Local Spectral Theory, with Applications to Multipliers [M]. Dordrecht: Kluwer Academic Publishers, 24. [ 7 ] LAURSEN K B, NEUMANN M M. An Introduction to Local Spectral Theorey [M]. London Math Soc Monogr New Ser 2. New York: The Clarendon press, 2. [ 8 ] KIM Y, KO E, LEE J E. Opeators with the single valued extension property [J]. Bull Koerean Math Soc, 26, 43: [ 9 ] LI J X. The single valued extension property for operator weighted shifts [J]. Northeast Math J, 1994, 11: [1] DUGGAL B P. Upper triangular operator matrices with single-valued extension property [J]. J Math Anal, 29, 349: [11] SHI W J, CAO X H. Stability of single-valued extension property for 2 2 upper triangular operator [J]. Journal of University of Chinese Academy of Sciences, 213, 34: , 484. [12] GRABINER S. Uniform ascent and descent of bounded operators [J]. Math Soc Japan, 1982, 342: [13] HARTE R E, LEE W Y, LITTLEJOIN L L. On generalized Riesz points [J]. J Operator Theory, 22, 47: [14] JI Y Q. Quasitriangular+small compactstrongly irreducible [J]. Trans Amer Math Soc, 1999, 35111: [15] HERRERO D A. Economical compact perturbations, II, filling in the holes [J]. J Operator Theory, 1988, 191:
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
The q-commutators of braided groups
206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.
Supporting Information [NH 3 CH 3 ] [In SbS 9 SH]: A novel methylamine-directed indium thioantimonate with Rb + ion-exchange property Kai-Yao Wang a,b, Mei-Ling Feng a, Jian-Rong Li a and Xiao-Ying Huang
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ
H ΕΠΙ ΡΑΣΗ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΤΗΝ ΑΝΑΛΥΤΙΚΗ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ TΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΩΝ ΒΙΟΕΠΙΣΤΗΜΩΝ Πρωτοπαπάς Ελευθέριος Υποψήφιος ιδάκτορας Ε.Α.Π. E-mail address:
2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10
À 34 À 3 Ù Ú ß Vol. 34 No. 3 2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, 2011 Á É ÔÅ Ky Fan Ë ÍÒ ÇÙÚ ( ¾±» À ¾ 100044) (Ø À Ø 550025) (Email: dingtaopeng@126.com) Ü Ö Ë»«Æ Đ ĐÄ Ï Þ Å Ky Fan Â Ï Ò¹Ë
, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.
212 2 28 1 Pure and Applied Mathematics Feb. 212 Vol. 28 No. 1 P bkc (c[, 1]) P bkc (L p [, 1]) (1) ( (), 364) (G, β, u),,, P bkc (c[, 1]) P bkc (L p [, 1]),. ; ; O174.12 A 18-5513(212)1-99-1 1, [2]. 1965,
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα
Συναρτησιακή Ανάλυση, μεταπτυχιακό μάθημα Περίληψη του μαθήματος Μιχάλης Παπαδημητράκης Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης 1η εβδομάδα. Στα πρώτα δύο μαθήματα είπαμε κάποια πολύ βασικά πράγματα για
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Diderot (Paris VII) les caractères des groupes de Lie résolubles
Βιογραφικο Σημειωμα Μ. Ανουσης Προσωπικά στοιχεία Εκπαίδευση Μιχάλης Ανούσης Πανεπιστήμιο Αιγαίου 83200 Καρλόβασι Σάμος Τηλ.: (3022730) 82127 Email: mano@aegean.gr 1980 Πτυχίο από το Τμήμα Μαθηματικών
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
Markov chains model reduction
Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /
Το φασματικό Θεώρημα
Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή
Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices
Supplementary Material For Testing Homogeneity of High-dimensional Covariance Matrices Shurong Zheng, Ruitao Lin, Jianhua Guo, and Guosheng Yin 3 School of Mathematics & Statistics and KLAS, Northeast
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
Το φασματικό Θεώρημα
Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή
Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβο λος1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών telmasu, 11 Ιουνίου 2016
Θεωρία Τελεστών Σημειώσεις Αριστείδης Κατάβολος 1 Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών 2014-15 1 telmasu, 11 Ιουνίου 2016 Περιεχόμενα 1 Χώροι με νόρμα, χώροι Hilbert 1 1.1 Χώροι με νόρμα και τελεστές...................
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
[I2], [IK1], [IK2], [AI], [AIK], [INA], [IN], [IK2], [IA1], [I3], [IKP], [BIK], [IA2], [KB]
(Akihiko Inoue) Graduate School of Science, Hiroshima University (Yukio Kasahara) Graduate School of Science, Hokkaido University Mohsen Pourahmadi, Department of Statistics, Texas A&M University 1, =
Discriminantal arrangement
Discriminantal arrangement YAMAGATA So C k n arrangement C n discriminantal arrangement 1989 Manin-Schectman Braid arrangement Discriminantal arrangement Gr(3, n) S.Sawada S.Settepanella 1 A arrangement
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1
207 : msjmeeting-207sep-07i00 ( ) Abstract 989 Korotyaev Schrödinger Gérard Laba Multiparticle quantum scattering in constant magnetic fields - propagator ( ). ( ) 20 Sigal-Soffer [22] 987 Gérard- Laba
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Syntheses and structures of copper complexes of
The Properties of Fuzzy Relations
International Mathematical Forum, 5, 2010, no. 8, 373-381 The Properties of Fuzzy Relations Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University Gangneung, Gangwondo 210-702, Korea
90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)
Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
GAUGES OF BAIRE CLASS ONE FUNCTIONS
GAUGES OF BAIRE CLASS ONE FUNCTIONS ZULIJANTO ATOK, WEE-KEE TANG, AND DONGSHENG ZHAO Abstract. Let K be a compact metric space and f : K R be a bounded Baire class one function. We proved that for any
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
3 : 373 R-LSR-TLS TSVD Tikhonov Tikhonov Ax b, A R m n,b R n,m n (1) min Ax-b Lx δ (5),A ;b ;x,δ ;L 1 b [9] A Lagrange min Ax-b = Δb Ax=b+Δb () L ( x,
41 3 Vol.41,No.3 016 ActaGeodaeticaetCartographicaSinica Jun.,01 GEXuming,WUJicang.GeneralizedRegularizationtoIl-posedTotalLeastSquaresProblem[J].ActaGeodaeticaetCartographicaSinica, 01,41(3):37-377.(.
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 19 εκεµβρίου 2018 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί
Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.
Γεώργιος Ακρίβης Προσωπικά στοιχεία Έτος γέννησης 1950 Τόπος γέννησης Χρυσοβίτσα Ιωαννίνων Εκπαίδευση 1968 1973,, Ιωάννινα. Μαθηματικά 1977 1983,, Μόναχο, Γερμανία. Μαθηματικά, Αριθμητική Ανάλυση Ακαδημαϊκές
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Adaptive grouping difference variation wolf pack algorithm
3 2017 5 ( ) Journal of East China Normal University (Natural Science) No. 3 May 2017 : 1000-5641(2017)03-0078-09, (, 163318) :,,.,,,,.,,. : ; ; ; : TP301.6 : A DOI: 10.3969/j.issn.1000-5641.2017.03.008
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries
No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers
Resilient static output feedback robust H control for controlled positive systems
31 5 2014 5 DOI: 10.7641/CA.2014.30666 Control heory & Applications Vol. 31 No. 5 May 2014 H,, (, 250100), (LMI),, H,,,,, H,, ; H ; ; ; P273 A Resilient static output feedback robust H control for controlled
Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing
Αρχές Κβαντικής Χημείας και Φασματοσκοπίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (3): Ομάδες Σημείου Σιγάλας Μιχάλης Τμήμα Χημείας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μοντέρνα Θεωρία Ελέγχου
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Υπολογισμός του εκθετικού πίνακα Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
L p approach to free boundary problems of the Navier-Stokes equation
L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Arbitrage Analysis of Futures Market with Frictions
2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,
On Pseudo-Differential Operator Associated with Bessel Operator
Int. J. Contemp. Math. Sciences, Vol. 6, 2, no. 25, 237-243 On Pseudo-Differential Operator Associated with Bessel Operator Akhilesh Prasad and Vishal Kumar Singh Department of Applied Mathematics Indian
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS
IFSCOM016 1 Proceeding Book No. 1 pp. 84-90 (016) ISBN: 978-975-6900-54-3 SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS SINEM TARSUSLU(YILMAZ), GÖKHAN ÇUVALCIOĞLU,
Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy
37 6 2004 6 Journal of Tianjin University Vol. 37 No. 6 Jun. 2004 Ξ 1,2, 1,2, 3 (1., 300072 ; 2. 2, 300072 ; 3., 300072) :,,,.,,(RMSEP) 53 %58 %.. : ; ; : O657. 33 : A : 04932 2137 (2004) 062 05352 05
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged
Supporting Information C H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand Xiaoxiao Ji, Dawei
Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ
Βιογραφικό Σημείωμα Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ Ημερομηνία Γέννησης: 23 Δεκεμβρίου 1962. Οικογενειακή Κατάσταση: Έγγαμος με δύο παιδιά. EKΠΑΙΔΕΥΣΗ 1991: Πτυχίο Οικονομικού Τμήματος Πανεπιστημίου
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων
Φασµατικη θεωρια µη φραγµενων γραµµικων τελεστων Πτυχιακη Εργασια Ιωσηφιδης Ηλιας Α.Μ: 311/2329 Επιβλεπων : Τσολοµυτης Αντωνης A Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Σαµος 27 Εξεταστικη Επιτροπη : Τσολοµύτης
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach. A. Kατάβολος
Εισαγωγή στην Φασματική Θεωρία Αλγεβρών Banach A. Kατάβολος Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 1999 Μερική Αναθεώρηση, 2017 Περιεχόμενα 1 Πρώτοι ορισμοί 2 2 Παραδείγματα 3 2.1...................................
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Αρχές Κβαντικής Χημείας και Φασματοσκοπίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Ενότητα # (4): Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων Σιγάλας Μιχάλης Άδειες
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at
arxiv:math/ v1 [math.rt] 30 Oct 2006
On Regular Locally Scalar Representations of Graph D in Hilbert Spaces arxiv:math/06093v math.rt 30 Oct 006 S. A. Kruglyak, L. A. Nazarova, A. V. Roiter. Institute of Mathematics of National Academy of
Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water
31 1 2010 1 ENVIRONMENTAL SCIENCE Vol. 31,No. 1 Jan.,2010, 3, (,, 100084) :,.,, ( Microcystis aeruginosa),3 (A 2 O ) 10 6 ml - 1,> 0139 d - 1. A 2 O222,. TP ( K max ) ( R max ), Monod. :; ; ; ; :X173 :A
a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4
fl45xfl4r ffi - R K Vol.45, No.4 2016q7F ADVANCES IN MATHEMATICS (CHINA) July, 2016 d ju Birkhoff Πh`fff! " (~i,efl,ba
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]
3. 3 2 2) [2] ) ) Newton[4] Colton-Kress[2] ) ) OK) [5] [] ) [2] Matsumura[3] Kikuchi[] ) [2] [3] [] 2 ) 3 2 P P )+ P + ) V + + P H + ) [2] [3] [] P V P ) ) V H ) P V ) ) ) 2 C) 25473) 2 3 Dermenian-Guillot[3]
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
Κβαντικη Θεωρια και Υπολογιστες
Κβαντικη Θεωρια και Υπολογιστες 1 Εισαγωγη Χειμερινο Εξαμηνο Iωαννης E. Aντωνιου Τμημα Μαθηματικων Aριστοτελειο Πανεπιστημιο Θεσσαλονικη 54124 iantonio@math.auth.gr http://users.auth.gr/iantonio Κβαντική
PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)
GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk
A :H. S B(H) unilateral shift : Se n = e n+1, n Z + και U B(K) bilateral shift : Ue n = e n+1, n Z. X 0 0 S Y S. U m = B = D A.
Διαστολές Τελεστών 1 Εισαγωγή Αν H είναι 1 κλειστός υπόχωρος χώρου Hilbert K, κάθε B B(K) ορίζει έναν A B(H) ως εξής: A :H B K P H x Bx P Bx όπου P B(K) η ορθή προβολή στον H. Δηλαδή A = P B H ή AP = P
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
2 3x 5x x
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ
FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.
38 2010 3 FENXI HUAXUE Chinese Journal of Analytical Chemistry 3 342 ~ 346 DOI 10. 3724 /SP. J. 1096. 2010. 00342 Savitzky-Golay 1 * 1 2 1 3 1 1 510632 2 510632 3 200444 PLS Savitzky-Golay SG 10000 ~ 5300