32 1 Vol 32 1 2011 1 Journal of Harbin Engineering University Jan 2011 doi 10 3969 /j issn 1006-7043 2011 01 003 FPSO 150001 U661 43 A 1006-7043 2011 01-0011-06 Reliability and risk analysis of a broken FPSO cable in tandem SUN Hai SUN Liping FAN Hongyuan Deepwater Engineering Research Center Harbin Engineering University Harbin 150001 China Abstract Broken hawser analysis in tandem is one of the key security analysis problems of offloading It has brought many difficulties to research and development of reliability assessment because of the complexity of stress in hawser and mooring systems Based on the weakest-failure modes theory a broken hawser risk analysis of hawser and mooring systems was classified into several orthogonal weakest-failure modes which were calculated respectively binding the software calculation results The system was classified as a series of systems and calculated by example which provided a feasible technical solution of the broken hawser analysis in tandem The research is of instructive significance to the security analysis problems of offloading in tandem Keywords offloading in tandem broken hawser analysis weakest failure modes system reliability FPSO floating production storage and offloading system 1-3 FPSO 4 5-6 FPSO 2009-09-24 50708023 B070019 1982- E-mail sunhai2009 @ gmail com 1962-
12 32 7 e i = g j S 0 = S - a 0j = S q j a 1 j 7 q j = a 0j a 1j 1 n i i e t j e j j i j = 1 2 n N 9 m 1 i N * k = sup Eki = S q t* k 9 2 m q t* k = max 1 i N q t k E * ki i = 1 2 N m * k 1 i N = sup Ei 1 k 2 m m * 1 i N sup Ei E 0 + * k E ki 2 E ki k * i = 1 P m { E } i * k = m P fi * k = m max 1 i N P fxi 5 { } P fi k 2 m * max 1 i N P fxi k 2 * 1 m Fig 1 Relationship of weakest failure modes and failure modes * k * k 1 S 2 1 g j S = a 0j + a 1j S 6 E = n i { } i =1 n i e i = { S q } j = S q t 8 P f i =1 = P m { E } i * k = P fmax = max 1 i N min 1 j n P fri 10 P fri i m * k = N 3 i = 1 10 P f = P{ N E } i = P{ m E } i * k 4 2
1 FPSO 13 CDF PDF CDF PDF FPSO f Xi ' X * i = f Xi X * i 15 X * i F Xi F Xi ' f Xi f Xi ' P fk = P n E ( ) i i = 1 i = 1 2 n 11 i 11 9 n max 2 P fk = P( ) i max = 1 2 n max 12 i max = max F Xi ' X * i = F Xi X * i 14 μ Xi ' = x * i - Φ -1 F Xi x * i σ Xi ' P fk σ Xi ' = Φ -1 F Xi x i ' 17 f m Xi x i ' m i = 1 2 3 n max i max = 1 2 n max G imax k = R imax - S imax k i max = 1 2 n max 2 m 13 R imax S imax k 2 FPSO Fig 2 Reliability evaluation of broken hawser in tandem 2 2 1 11 2 16
14 32 1 0 10-10 3 0 3 4 0 7 MBL 0 06 13 5 3 Table 1 1 Main parameters of ship FPSO /m 235 6 244 64 / m 225 236 03 /m 46 42 00 /m 24 1 21 90 /m 16 12 00 /t 118 821 68 110 000 2 Table 2 FPSO Main parameters of mooring in tandem 1 FPSO - /m 650 61 220 / kg m - 1 66 1 1 680 372 3 15 m /s 4 m 8 25 s / kg m - 1 87 2 11 700 436 5 0 6 m /s 3 /kn 1 550 000 2 /kn 17 000 43 000 5 700 1 270 200 19 100 / mm 128 168 147 11-12 Ariane7 4 Fig 3 3 FPSO Schematic diagram of FPSO offloading in tandem / kn 400 10 400 3 Table 3 Cable tension in tandem Line1 0 10-10 0 565 388 128 103 560 70 121 616 10 564 262 115 291 560 644 108 585 561 262 120 10 45 559 584 87 873 7 557 050 92 602 7 548 044 86 883 4 90 549 216 126 198 553 222 116 897 543 339 136 378 135 559 311 80 327 1 565 011 85 550 8 549 615 81 756 180 548 528 128 699 569 333 109 402
1 FPSO 15 Table 4 4 Reliability vector of cable 0 10-10 β 0 m β 10 m β - 10 m 0 3 204 7 3 321-10 3 170 6 3 309 5 3 237 45 3 146 6 3 263 1 3 254 2 90 3 193 1 3 283 7 3 301 135 3 074 5 3 160 4 3 180 2 180 3 253 1 3 130 4-2 3 FPSO 1# 2# 3# 4 1 # 0 10 FPSO - 10 10% 10% 1 # 5 1 9 5 1# Table 5 Reliability vector of 1# Line 1 0 10-10 0 7 321 7 616 9-10 7 328 2 7 617 2 7 027 2 45 7 358 4 7 641 3 7 108 8 90 7 425 3 7 666 9 7 137 8 135 7 360 2 7 588 7 099 1 180 7 429 8 7 559 2-3 0 Table 6 FPSO J 2005 46 Z1 21-3 29 FPSO 6 ZHANG Wukui LIU Zhengou SONG Ruxin Key technology of FPSO in Progress J Shipbuilding of China 2005 135 0 45 0 46 Z1 21-29 13 3 SHIMAMURA Y FPSO /FSO State of the art J Journal 3 2 5 of Marine Science and Technology 2002 7 2 59-70 2 5 ~ 3 0 48 6 Reliability of broken hawser in tandem 0 10 0 3 204 7 3 321-10 3 170 6 3 309 5 3 237 45 3 146 6 3 263 1 3 254 2 90 3 193 1 3 283 7 3 301 135 3 074 5 3 160 4 3 180 2 180 3 253 1 3 130 4-2 1 YAN G GU Y Effect of parameters on performance of LNG-FPSO offloading system in offshore associated gas fields J Applied Energy 2010 87 11 3393-3400 2
48 32 4 WU D Y MEURE S SOLOMON D Self-healing polymeric materials A review of recent developments J Pro- 2 0 5 n 2 gress in Polymer Science 2008 33 5 479-522 Sv > 10 5 JONES A S DUTTA H Fatigue life modeling of self-healing polymer systems J Mechanics of Materials 2010 Re < 10 42 4 481-490 6 BEJAN A LORENTE S WANG K M Network of channels for self-healing composite materials J Journal of Applied Physics 2006 100 3 033528 7 WANG K M LORENTE S BEJAN A Vascularized networks with two optimized channels sizes J Journal of 2 Physics D Applied Physics 2006 39 14 3086-3096 1 DRY C M Cementitious materials USA 5575841 P 1996 2 WHITE S R SOTTOS N R GEUBELLE P H et al Autonomic healing of polymer composites J Nature 2001 409 6822 794-797 3 TRASK R S BOND I P Biomimetic self-healing of advanced composite structures using hollow glass fibres J Smart Materials and Structures 2005 15 3 704-710 8 ZHANG H LORENTE S BEJAN A Vascularization with trees that alternate with upside-down trees J Journal of Applied Physics 2007 101 9 094904 9 LORENTE S BEJAN A Svelteness freedom to morph and constructal multi-scale flow structures J International Journal of Thermal Science 2005 44 12 1123-1130 10 CHHABRA R P RICHARDSON J F Non-Newtonian flow and applied rheology engineering applications M 2nd ed Burlington Butterworth-Heinermann 2008 111-114 15 4 FUCATU C H NISHIMOTO K The shadow effect on the dynamics of a shuttle tanker connected in tandem with a FP- SO C / /Proc of the 22nd Int Conf on Offshore Mechanics and Arctic Engineering S l 2003 629-633 5 TRONSTAD L The Use of Risk Analysis in Design Safety Aspects Related to the Design and Operation of a FPSO C / / SPE Americas E&P Environmental and Safety Conference San Antonio USA 2007 6 KINGSLEY E A Model for risk and reliability analysis of complex production systems application to FPSO /flow-riser system J Computers & Chemical Engineering 2009 33 7 1306-1321 7 tanker subjected to combined sea states J Probabilistic - J 2009 30 3 Engineering Mechanics 2009 24 4 493-503 262-266 SUN Hai LIANG Lifu HOU Gangling Optimization and investment-benefit model of the weakest failure modes of structural systems J Journal of Harbin Engineering University 2009 30 3 262-266 8 DUAN Yubo OU Jinping Optimum design of tall buildings based on reliability restraint J Journal of Natural Disasters 1995 4 suppl 57-63 9 M 1999 80-216 10 CHENG Gengdong LI Gang CAI Yue Structural optimum design based on reliability analysis optimal fortification Intensity for aseismic structure Ⅱ M Beijing Science Press 1999 40-223 11 STIFF J FERRARI J KU A SPONGE R Comparative Risk Analysis of Two FPSO Mooring Configurations EB / OL 2003 http / /www otcnet org / 12 TEIXEIRAA A P SOARES C G Reliability analysis of a 13 TORGEIR M EFREN A U Reliability-based assessment of deteriorating ship structures operating in multiple sea loading climates J Reliability Engineering & System Safety 2008 93 3 433-446