土壤 (Soils), 2013, 45(2): 373 377 1 1 2 1* 1 1 1 (1 330013 2 330025) (EESI-MS) 3 3 3 (IT-MS) S151.9; O657.6 ( ) [1 2] [3] [4 5] [6 7] ( EESI-MS) ( ) [8 10] [8,11 15] EESI-MS 3 3 1 1.1 20 20 2010 4 (116 55 E 28 15 N) 0 ~ 20 cm ( ) 0~4 1 5 g / (.. 1 v/v) 20 ml 5 min 5 min 20 ml / (1.. 1 v/v) 5 min 5 min 1.2 LTQ XL ( Finnigan ) EESI [9 16] ( 1 ) Xcalibur ( Finnigan ) (KQ3200B ) ( Burdick&Jackson, SK Chemical, Ulsan, Korea) ( ) (2009DFA41880) (KZCX2-YW-438) (2010GZH0002) * (dingjianh2004@126.com) (1987 ) E-mail: pansusu0611@163.com
374 45 1 EESI Fig. 1 Schematic diagram of EESI source 1.3 LTQ-MS ( ) (m/z)50~700 3.5 kv 180 / (4.. 1 v/v) (N 2 ) 1.4 MPa 5 μl/min 1.0 Da 30 ms 10% ~ 25% 1 α β γ 90 120 150 a b 1 ~ 2 mm 5 mm LTQ-MS 2 2.1 EESI-MS ( ) EESI-MS ( 2 3) 2 3 m/z 65 115 125 251 295 601 621 3 ( 3) m/z 299 301 314 394 m/z 181 357 397 425 ( ) 3 (a b c ) 2 3 EESI-MS Fig. 2 EESI-MS spectra of extracts from rhizosphere soil samples, recorded in positive ion detection mode 3 ( ) ( 3) 3 2.2 EESI-MS ( 3) [M-H] 4 (MW182) (MW358) ( 4a) m/z 166 153 149 CH 3 CO CH 3 OH [17]
2 375 [17]( ) [17] CO CH 3 m/z 166 ( m/z 125 135 137 138 163 ) 1 ( 4a) 4b (MW358) CH 3 m/z 342 C m/z 327 CH 3 CH m/z 311 [18] [18-19] m/z 151 ( 5% 4b m/z 151 20 ) EESI m/z 341 339 313 289 275 1 (MW300) 5 m/z 237 253 255 281 m/z 237 HCOOH CH 4 [20] Fig. 3 (a b c ) 3 EESI-MS EESI-MS spectra of extracts from rhizosphere soil samples, recorded in negative ion detection mode EI-MS CH 3 HCOOH m/z 253 255 281 HCOOH CO 2 Fig. 4 4 (a) (b) MS/MS spectra of syringaldehyde (a) and pinoresinol (b) detected in rhizosphere soil samples in which Schima superba Gardn et. Champ. were growing
376 45 Table 1 1 Principal fragments produced by CID experiments on [M-H] ions of partial components in rhizosphere soil samples in which Schima superba Gardn et. Champ. and Pinus massoniana were growing respectively MW [M-H] m/z C 9 H 10 O 4 H 3 CO 182 181 166 [17] (100%) CH 3 163 (8%) HO CHO 153 [17] (19%) CO H 3 CO 149 [17] (5%) 138 (5%) 137 (74%) 135 (5%) 125 (8%) CH 3 OH CO + CH 3 CO + CH 4 CO + 2CO C 20 H 22 O 6 OCH 3 358 357 342 [18] (11%) CH 3 HO 341 (15%) CH 4 H O 339 (18%) H 327 [18] (5%) C O 313 (22%) CO + CH 4 OH 311 [18] (15%) CH 3 + CH OCH 3 289 (100%) 2 + CH 3 OH 275 (86%) 151 [19] (5%) + 2CH 3 OH C 12 H 14 O 3 C 20 H 28 O 2 300 299 281 (14%) 253 (100%) HCOOH 237 [20] (7%) HCOOH + CH 4 CO 2 H 3 5 Fig. 5 MS/MS spectrum of Dehydroabietic acid detected in the rhizosphere soil sample in which Pinus massoniana were growing 1 3 [21 22] [23] EESI-IT-MS EESI-MS m/z 50 ~ 700 EESI-MS [1] Rovira AD. Plant Root Exudates[J]. Botanical Review, 1969, 35(1): 35 57 [2],,,. [J]., 2010, 47(4): 747 752 [3] Rice EL. Allelopathy-an overview[j]. American Chemical Society, 1987: 8 22 [4] Shi SJ, Richardson AE, O Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM. Effects of selected root exudate components on soil bacterial communities[j]. FEMS Microbiology Ecology, 2011, 77(3): 600 610 [5] Schroth MN, Hildebrand DC. Influence of plant exudates on root-infecting fungi[j]. Annual Review of Phytopathology, 1964, 2: 101 132
2 377 [6],. [M]. :, 2003 [7],,,. [J]., 2005, 20(3): 330 337 [8],,,,,,. [J]., 2011, 32(8): 1 714 1 719 [9] Chen HW, Venter A, Cooks RG. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation[j]. Chemical Communications, 2006, 19: 2 042 2 044 [10] Zhu L, Hu Z, Gamez G, Law WS, Chen HW, Yang SP, Chingin K, Balabin RM, Wang R, Zhang TT, Zenobi R. Simultaneous sampling of volatile and non-volatile analytes in beer for fast fingerprinting by extractive electrospray ionization mass spectrometry[j]. Analytical and Bioanalytical Chemistry, 2010, 398(1): 405 413 [11] Li X, Hu B, Ding JH, Chen HW. Rapid characterization of complex viscous samples at molecular levels by neutral desorption extractive electrospray ionization mass spectrometry[j]. Nature Protocols, 2011, 6(7): 1 010 1 025 [12] Chen HW, Zenobi R. Neutral desorption sampling of biological surfaces for rapid chemical characterization by extractive electrospray ionization mass spectrometry[j]. Nature Protocols, 2008, 3(9): 1 467 1 475 [13] Chen HW, Yang SP, Li M, Hu B, Li JQ, Wang J. Sensitive detection of native proteins using extractive electrospray ionization mass spectrometry[j]. Angewandte Chemie- International Edition, 2010, 49(17): 3 053 3 056 [14] Law WS, Chen HW, Ding JH, Yang SP, Zhu L, Gamez G, Chingin K, Ren YL, Zenobi R. Rapid characterization of complex viscous liquids at the molecular level[j]. Angewandte Chemie-International Edition, 2009, 48(44): 8 277 8 280 [15] Chen HW, Wortmann A, Zhang WH, Zenobi R. Rapid in vivo fingerprinting of nonvolatile compounds in breath by extractive electrospray ionization quadrupole time-of-flight mass spectrometry[j]. Angewandte Chemie-International Edition, 2007, 46(4): 580 583 [16],,,,,,, 珺. [J]., 2009, 30(8): 1 533 1 537 [17] Flamini R, Vedova AD, Cancian D, Panighel A, De Rosso M. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making[j]. Journal of Mass Spectrometry, 2007, 42(5): 641 646 [18] Guo H, Liu AH, Ye M, Yang M, Guo DA. Characterization of phenolic compounds in the fruits of Forsythia suspensa by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry[j]. Rapid Communications in Mass Spectrometry, 2007, 21(5): 715 729 [19] Ye M, Yan YN, Guo DA. Characterization of phenolic compounds in the Chinese herbal drug Tu-Si-Zi by liquid chromatography coupled to electrospray ionization mass spectrometry[j]. Rapid Communications in Mass Spectrometry, 2005, 19(11): 1 469 1 484 [20] Regert M, Rolando C. Identification of archaeological adhesives using direct inlet electron ionization mass spectrometry[j]. Analytical Chemistry, 2002, 74(5): 965 975 [21],,. [J]., 2010, 41(6): 863 866 [22],,. [J]., 2010, 22(6): 945 948 [23],,,. [J]., 2009, 43(4): 9 14 Application of Extractive Electrospray Ionization Mass Spectrometry in Soil Analysis PAN Su-su 1, ZHAO Na 2, DING Jian-hua 1*, CHEN Huan-wen 1, JIA Bin 1, WANG Jiang 1 (1 Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang 330013, China; 2 Jiangxi Bureau of Surveying and Mapping, Nanchang 330025, China) Abstract: A method based on extractive electrospray ionization mass spectrometry (EESI-MS) was developed to obtain the mass spectra of three types of soil samples with minimal sample pre-treatment. EESI could tolerate the complex matrices of soil sample solutions and readily generate mass spectra without sample cleaning. The mass spectra clearly demonstrated the differences of organics among three types of soil samples. Dehydroabietic acid and the combination of syringaldehyde and pinoresinol were detected in extracts of Pinus massoniana and Schima superba Gardn et. Champ. respectively by extractive electrosprary ionization tandem mass spectrometry (EESI-MS/MS). Key words: Extractive electrospray ionization mass spectrometry (EESI-MS), Grass, Pinus massoniana, Schima superba Gardn et. Champ., Soil analysis