ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων σε διάφορες επιστήμες όπως η Αρχιτεκτονική, την Πολιτική Μηχανική, τη Μηχανολογία, την Ηλεκτρολογία κ.α. Στη συνέχεια δίνονται ασκήσεις με γεωμετρικές κατασκευές στις οποίες επεξηγείται η πορεία σχεδίασής τους. Μπορούμε να τις σχεδιάσουμε ανά τέσσερις ή έξι σε κάθε φύλλο σχεδίασης, αφού προηγουμένως το φύλλο σχεδίασης χωριστεί στα αντίστοιχα μέρη. Οι μαθητές θα ξεκινήσουν τη σχεδίαση στο σχολείο και θα ολοκληρώνουν τις ασκήσεις τους στο σπίτι.
Ορισμός: ΤΡΙΓΩΝΑ Τρίγωνο ονομάζεται μια επιφάνεια ευθύγραμμα περιορισμένη από τρεις πλευρές α, β, γ καιμετρειςγωνιέςα, Β, Γ.
Είδη τριγώνων
Κατασκευή τριγώνου, όταν δίνονται οι τρεις πλευρές του Δίνονται οι τρεις πλευρές α, β καιγ. Χαράζουμε το ευθύγραμμο τμήμα ΑΒ = γ. Με κέντρο το σημείο Α και ακτίνα ίση με την πλευρά β χαράζουμε τόξο. Με κέντρο το σημείο Β και ακτίνα ίση με την πλευρά α χαράζουμε τόξο που τέμνει το προηγούμενο στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΓΑ και ΓΒ. Το σχήμα ΑΒΓ είναι το ζητούμενο τρίγωνο.
Κατασκευή τριγώνου, όταν δίνονται μια πλευρά και δύο γωνίες Δίνονται η πλευρά ΑΒ και οι δύο προσκείμενες γωνίες α και β. Χαράζουμε την πλευρά ΑΒ και κατασκευάζουμε τις προσκείμενες γωνίες α και β στα σημεία Α και Β αντίστοιχα. Οι πλευρές των δύο γωνιών τέμνονται στο σημείο Γ σχηματίζοντας το ζητούμενο τρίγωνο.
Κατασκευή ισόπλευρου τριγώνου, όταν δίνεται το μήκος της μιας πλευράς Δίνεται η πλευρά ΑΒ. Χαράζουμε την πλευρά ΑΒ και με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που να τέμνονται στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ και σχηματίζεται το ζητούμενο τρίγωνο.
Κατασκευή ισοσκελούς τριγώνου, όταν δίνονται η βάση καιτοκατακόρυφούψος Δίνονται η βάση ΑΒ και το κατακόρυφο ύψος ΔΓ. ΧαράζουμετηβάσηΑΒκαιτη διχοτομούμε. Χαράζουμε κάθετη στο σημείο Δ. Με κέντρο το σημείο Δ και ακτίνα το δοσμένο ύψος ΔΓ χαράζουμε τόξο το οποίο τέμνει την ΔΓ στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.
Κατασκευή τριγώνου με αναλογία πλευρών 3:4:5 ΧαράζουμετηβάσηΒΓώστενα έχει μήκος 3 μονάδες μήκους. Με κέντρο το σημείο Β και ακτίνα ίση με 5 μονάδες μήκους χαράζουμε τόξο. Με κέντρο το σημείο Γ και ακτίνα ίση με 4 μονάδες μήκους χαράζουμετόξοώστενατέμνειτο προηγούμενο στο σημείο Α. Χαράζουμε τα ευθύγραμμα τμήματα ΒΑ και ΓΑ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.
ΤΕΤΡΑΠΛΕΥΡΑ Ορισμός: Τετράπλευρο ονομάζεται οποιαδήποτε επιφάνεια, ευθύγραμμα περιορισμένη από τέσσερις πλευρές.
Είδη τετραπλεύρων 1. Τετράγωνο: έχει όλες τις πλευρές ίσες και όλες τις γωνιές ίσες. 2. Ορθογώνιο: έχει τις απέναντι πλευρές ίσες και παράλληλες και όλες τις γωνιές ορθές. 3. Ρόμβος: έχει όλες τις πλευρές ίσες, τις απέναντι πλευρές παράλληλες και τις απέναντι γωνιές ίσες. 4. Παραλληλόγραμμο: έχει τις απέναντι πλευρές ίσες και παράλληλες και τις απέναντι γωνιές ίσες. 5. Τραπέζιο: έχει τι δύο απέναντι πλευρές παράλληλες. 6. Ακανόνιστο τετράπλευρο: κάθε πλευρά έχει διαφορετικό μήκος και οι γωνιές έχουν διαφορετικό μέγεθος.
Kατασκευή τετραγώνου, όταν δίνεται η πλευρά Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσομετηδοθείσαπλευρά. Χαράζουμε ευθεία ε κάθετη στο ευθύγραμμο τμήμα ΑΒ στο σημείο Α. Με κέντρο το Α και ακτίνα R= ΑΒ χαράζουμε τόξο το οποίο τέμνει την κάθετη, στοσημείοδ. Με κέντρο τα σημεία Β και Δ και με την ίδια ακτίνα R χαράζουμε τόξα που τέμνονται στο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το τετράγωνο ΑΒΓΔ.
Kατασκευή ορθογωνίου, όταν δίνονται τα μήκη των πλευρών Χαράζουμε το ευθύγραμμο τμήμα ΑΒίσομετηδοθείσαπλευρά(α). Χαράζουμε ευθεία ε κάθετη στο ΑΒ, στο σημείο Α. Με κέντρο το Α και ακτίνα R1 ίση με την άλλη πλευρά β, χαράζουμε τόξο το οποίο τέμνει την κάθετη ευθεία ε στο σημείο Δ. Με κέντρο το Δ και ακτίνα R2 = α, χαράζουμε τόξο. Με κέντρο το Β και ακτίνα R1 = β, χαράζουμετόξοτοοποίοτέμνειτο προηγούμενο στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το ορθογώνιο ΑΒΓΔ.
Kατασκευή ρόμβου, όταν δίνεται η πλευρά ΑΒ και μια γωνία Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Α κατασκευάζουμε γωνία α ίση με τη δοθείσα γωνία. Με κέντρο το Α και ακτίνα R= ΑΒ χαράζουμε τόξο το οποίο τέμνει την ευθεία ε στο σημείο Δ. Με κέντρο τα σημεία Δ και Β και ακτίνα R= ΑΒ, χαράζουμε τόξα που τέμνονται στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται ο ρόμβος ΑΒΓΔ.
Kατασκευή παραλληλογράμμου, όταν δίνεται η πλευρά ΑΒ, η γωνίαβκαιηαπόστασηγτης παράλληλης πλευράς από την ΑΒ Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα γωνία. Χαράζουμε παράλληλη προς την ΑΒ, σε απόσταση γ, η οποίατέμνει την ευθεία (ε) στοσημείογ. Η παράλληλη με την (ε) που περνά από το Α τέμνει την παράλληλη του ΑΒστοσημείοΓ. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.
Kατασκευή τραπεζίου, όταν δίνονται τρεις πλευρές ΑΒ, ΒΓ, ΓΔ και η γωνία β Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα. Με κέντρο το σημείο Β και ακτίνα τη δοθείσαπλευράβγχαράζουμετόξο το οποίο τέμνει την ευθεία (ε) στο σημείο Γ. Χαράζουμε ευθεία ε1 παράλληλη με την ΑΒ και ορίζουμε ευθύγραμμο τμήμα ΓΔ ίσο με τη δοθείσα πλευρά. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.
Ορισμός: ΠΟΛΥΓΩΝΑ Κανονικό πολύγωνο ονομάζεται οποιαδήποτε επιφάνεια περιορισμένη από ένα αριθμό ίσων ευθύγραμμων τμημάτων τα οποία μεταξύ τους σχηματίζουν ίσες γωνιές. Τα πολύγωνα παίρνουν την ονομασία τους από τον αριθμό των γωνιών τους (τετράγωνο, πεντάγωνο, εξάγωνο κ.τ.λ.) Οι εσωτερικές γωνιές των πολυγώνων που σχηματίζονται στο κέντρο έχουν άθροισμα 360. Η εσωτερική γωνιά του πολυγώνου υπολογίζεται διαιρώντας τη γωνιά των 360 με τον αριθμό των πλευρών του πολυγώνου.
Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Διχοτομούμε το ΑΒ. Ορίζουμε πάνω στη διχοτόμο, απόσταση ΟΚ = ΑΒ. Ορίζουμε πάνω στην προέκταση της ΑΚ απόσταση ΚΛ = ΑΟ. Με κέντρο το Α και την ακτίνα R3 = ΑΛ χαράζουμε τόξο το οποίο τέμνει τη διχοτόμοστοσημείοδ. Με κέντρο τα τρία σημεία Α, Β, Δ και ακτίνα ΑΒ χαράζουμε τόξα των οποίων οι τομές προσδιορίζουν τις κορυφές Ε και Γ ου πενταγώνου. Ενώνοντας τα σημεία Α, Ε, Δ, Γ, Β σχηματίζεται το πεντάγωνο.
Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου(2 η μέθοδος) Χαράζουμε το ευθύγραμμο τμήμα ΑΒ ίσομετηδοθείσαπλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα R= ΑΒ χαράζουμε περιφέρειες κύκλων, οι οποίες τέμνονται στα σημεία Γ και Δ. Ενώνουμε τα σημεία Γ και Δ. Με κέντρο το Δ και ακτίνα R= ΑΒ χαράζουμε άλλη περιφέρει κύκλου η οποία τέμνει τις δύο προηγούμενες στα σημεία Ε και Ζ και το ευθύγραμμο τμήμα ΓΔ στο Ο.
Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου(2 η μέθοδος) (συνέχεια) Ενώνουμε τα σημεία Ε και Ζ με το Ο και προεκτείνουμε τις ευθείες μέχρι να συναντήσουν τις δύο περιφέρειες στα σημεία Η και Θ. Με κέντρο τα σημεία Η και Θ και ακτίνα R = AB χαράζουμε τόξα τα οποία τέμνονται στο Κ. Ενώνοντας τα σημεία Β, Θ, Κ, Η, Α σχηματίζεται το πεντάγωνο.
Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο Δίνεται ο κύκλος με κέντρο Ο και ακτίνα R. Χαράζουμε δύο διαμέτρους κάθετες μεταξύ τους, την ΑΒ και ΓΔ. Διχοτομούμε το ΑΟ και ορίζουμε το μέσο Μ. Με κέντρο το Μ και ακτίνα το ΜΓ χαράζουμε τόξο το οποίο τέμνει το ΟΒ στο σημείο Κ. Με κέντρο το Γ και ακτίνα το ΓΚ χαράζουμε τόξο που τέμνει την περιφέρεια του κύκλου στο σημείο Ε. Το ευθύγραμμο τμήμα ΓΕ είναι η ζητούμενη πλευρά του πενταγώνου.
Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε τις υπόλοιπες κορυφές του πενταγώνου, δηλαδή τα σημεία Ζ, Η, Θ. Ενώνοντας τα σημεία Γ, Ε, Ζ, Η και Θ σχηματίζεται το πεντάγωνο.
Κατασκευή κανονικού εξαγώνου όταν δίνεται η πλευρά του Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνονται στο Ο. Με κέντρο το Ο και με ακτίνα το ΟΑ χαράζουμε περιφέρεια κύκλου η οποία περνά από τα σημεία Α και Β. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνουν την περιφέρεια του κύκλου στα σημεία Ζ και Γ αντίστοιχα. Με κέντρο τα σημεία Ζ και Γ και την ίδια ακτίνα χαράζουμε τόξα που τέμνουν την περιφέρεια στα σημεία Ε και Δ αντίστοιχα. Ενώνοντας τα σημεία Α, Ζ, Ε, Δ, Γ και Β σχηματίζεται το εξάγωνο.
Κατασκευή κανονικού εξαγώνου εγγεγραμμένου σε κύκλο ακτίνας R Χαράζουμε κύκλο με κέντρο Ο και με ακτίνα R ίσα με τη δοθείσα. Χαράζουμε τη διάμετρο ΑΒ.Με κέντρο τα σημεία Α και Β και ακτίνα R χαράζουμε τόξα τα οποία τέμνουν την περιφέρεια του κύκλου στα σημεία Γ, Δ καιε, Ζ αντίστοιχα. Ενώνοντας τα σημεία Α, Γ, Ε, Β, Ζ, Δ, σχηματίζεται το ζητούμενο εξάγωνο
Κατασκευή κανονικού οκταγώνου εγγεγραμμένου σε τετράγωνο με δοσμένη πλευρά Κατασκευάζουμε το τετράγωνο ΑΒΓΔ με δοσμένη πλευρά ΑΒ. Προσδιορίζουμε το κέντρο Ο του τετραγώνου. Με κέντρο τα σημεία Α, Β, Γ, Δ και ακτίνα ΟΑ ίση με το ½ της διαγωνίου χαράζουμε τόξα που τέμνουν τις πλευρές στα σημεία 1 και 4, 6 και 3, 8 και 5, 7 και 2 αντίστοιχα. Ενώνοντας τα σημεία 1, 2, 3, 4, 5, 6, 7, 8, 1 σχηματίζεται οκτάγωνο.
Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Γενική μέθοδος) Χαράζουμε την πλευρά ΑΒ. Προεκτείνουμε το ευθύγραμμο τμήμα ΑΒ προς το Β. Με κέντρο το Β και με ακτίνα το ΑΒ χαράζουμε ημιπεριφέρεια. Διαιρούμε την ημιπεριφέρεια σε όσα ίσα μέρη όσες είναι οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε και αριθμούμε τα σημεία, όπως φαίνεται στο σχήμα. Στην περίπτωσή μας, εννέα. Χαράζουμε το ευθύγραμμο τμήμα Β2.
Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Γενική μέθοδος) (συνέχεια) Διχοτομούμε το ΑΒ και το Β2. Οι διχοτόμοι τέμνονται στο σημείο Κ, το οποίο είναι το κέντρο του περιγεγραμμένου κύκλου. Με κέντρο το Κ και ακτίνα ΑΚ χαράζουμε περιφέρεια κύκλου. Με τη βοήθεια του διαβήτη ορίζουμε στην περιφέρεια του κύκλου τις κορυφές του πολυγώνου. Ενώνοντας τα σημεία Γ, Δ, Ε, Ζ, Η, Θ, Ι, Α σχηματίζεταιτο εννιάγωνο.
Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Σε κοινή βάση) Χαράζουμε την πλευρά ΑΒ και τη διχοτομούμε. Κατασκευάζουμε τετράγωνο ΑΒΓΔ και χαράζουμε τη διαγώνιο ΑΓ. Η διαγώνιος τέμνει τη διχοτόμο ΕΖ στο σημείο 4. Με κέντρο το Α και ακτίνα ΑΒ χαράζουμετόξοτοοποίοτέμνει τη διχοτόμο ΕΖ στο σημείο 6. Διχοτομούμε το ευθύγραμμο τμήμα 4-6 και ορίζουμε το μέσο του (σημείο 5).
Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Σε κοινή βάση) (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε σημεία 7, 8, 9 πάνω στη διχοτόμο ΕΖ της πλευράς ΑΒ που απέχουν μεταξύ τους απόσταση ίση με το ευθύγραμμο τμήμα 4-5. Τα σημεία 4, 5, 6, 7, 8, 9... είναι τα κέντρα των κύκλων που είναι περιγεγραμμένοι στα αντίστοιχα πολύγωνα και έχουν ακτίνες 4Α, 5Α, 6Α, 7Α, 8Α, 9Α.
Κατασκευή κανονικού πολυγώνου εγγεγραμμένου σε κύκλο με δοσμένη διάμετρο Χαράζουμε περιφέρεια κύκλου με κέντρο Ο και με διάμετρο ΑΒ ίσημετηδοθείσα. Με κέντρο τα σημεία Α και Β και ακτίνα ίση με την ΑΒ χαράζουμε τόξα που τέμνονται στα σημεία Γ και Δ. Διαιρούμε το ευθύγραμμο τμήμα σε τόσα ίσα μέρη όσες και οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε. Για παράδειγμα, σε 8 ίσα μέρη για την κατασκευή οκταγώνου.
Κατασκευή κανονικού πολυγώνου εγγεγραμμένου σε κύκλο με δοσμένη διάμετρο (συνεχεια) Ενώνουμε το σημείο Γ με τα σημεία 1, 3, 5, 7 και προεκτείνουμε τις ευθείες, ώστε να τέμνουν την περιφέρεια του κύκλου, στασημείαε, Ζ, Η, Θ. Με τον ίδιο τρόπο ορίζονται τα σημεία Ι, Κ, Λ, Μ απότις προεκτάσεις των ευθειών που περνούν από το σημείο Δ. Ενώνοντας τα σημεία Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ σχηματίζεται το οκτάγωνο.