ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

Σχετικά έγγραφα
Βασικές Γεωμετρικές έννοιες

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

6 Γεωμετρικές κατασκευές

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ


Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

4. Πολύγωνα Πολύγωνο ονομάζεται κάθε κλειστά γεωμετρικό σχήμα που αποτελείται από διαδοχικά ευθύγραμμα τμήματα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο


Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

Τάξη A Μάθημα: Γεωμετρία

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ


1. Γενικά για τα τετράπλευρα

ΠΑΡΑΡΤΗΜΑ Α. Γεωμετρικές κατασκευές. 1. Μεσοκάθετος ευθυγράμμου τμήματος. 2. ιχοτόμος γωνίας. 3. ιχοτόμος γωνίας με άγνωστη κορυφή. 4.

1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

Γεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ

Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

1 ο Αχαρνών 197 Αγ. Νικόλαος ο Αγγ. Σικελιανού 43 Περισσός

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

2ηέκδοση 20Ιανουαρίου2015

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

Ενότητα: Τετράπλευρα (Ιδιότητες Ταξινόμηση) Keywords: parallelogram, rectangular, rhombus, square, diagonals, height.

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 19/ 04/ 2012

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

Παράλληλες ευθείες που τέμνονται από μια άλλη ευθεία. είναι «επί τα αυτά».

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

Ερωτήσεις ανάπτυξης. 1. ** Έστω τρίγωνο ΑΒΓ και έστω, Ε, Ζ τα µέσα των πλευρών ΑΒ, ΒΓ και ΓΑ αντίστοιχα. Να δείξετε ότι: α) ( ΕΖ) = (ΖΓΕ)

ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).

3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

Κεφάλαιο 7 Γεωμετρικές Κατασκευές

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

ΓΕΩΜΕΤΡΙΑ ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΕΠΑΝΑΛΗΨΗΣ. 1. Να σχεδιάσετε ένα σκαληνό τρίγωνο με περίμετρο 10 cm. Πόσες λύσεις έχει το πρόβλημα;

Επαναληπτικές Ασκήσεις στην Γεωμετρία Α Λυκείου

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 16691

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Καλή Επιτυχία!!! ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ Αµυραδάκη 20, Νίκαια ( ) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Ιωάννης Σ. Μιχέλης Μαθηματικός

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

Μαθηματικά προσανατολισμού Β Λυκείου

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ

ΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Εφαρμογές της αναλυτικοσυνθετικής μεθόδου. Δέκα Στοιχειώδεις Κατασκευές:

VAN HIELE GEOMETRY TEST * (USISKIN) ΟΔΗΓΙΕΣ

Transcript:

ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.

ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων σε διάφορες επιστήμες όπως η Αρχιτεκτονική, την Πολιτική Μηχανική, τη Μηχανολογία, την Ηλεκτρολογία κ.α. Στη συνέχεια δίνονται ασκήσεις με γεωμετρικές κατασκευές στις οποίες επεξηγείται η πορεία σχεδίασής τους. Μπορούμε να τις σχεδιάσουμε ανά τέσσερις ή έξι σε κάθε φύλλο σχεδίασης, αφού προηγουμένως το φύλλο σχεδίασης χωριστεί στα αντίστοιχα μέρη. Οι μαθητές θα ξεκινήσουν τη σχεδίαση στο σχολείο και θα ολοκληρώνουν τις ασκήσεις τους στο σπίτι.

Ορισμός: ΤΡΙΓΩΝΑ Τρίγωνο ονομάζεται μια επιφάνεια ευθύγραμμα περιορισμένη από τρεις πλευρές α, β, γ καιμετρειςγωνιέςα, Β, Γ.

Είδη τριγώνων

Κατασκευή τριγώνου, όταν δίνονται οι τρεις πλευρές του Δίνονται οι τρεις πλευρές α, β καιγ. Χαράζουμε το ευθύγραμμο τμήμα ΑΒ = γ. Με κέντρο το σημείο Α και ακτίνα ίση με την πλευρά β χαράζουμε τόξο. Με κέντρο το σημείο Β και ακτίνα ίση με την πλευρά α χαράζουμε τόξο που τέμνει το προηγούμενο στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΓΑ και ΓΒ. Το σχήμα ΑΒΓ είναι το ζητούμενο τρίγωνο.

Κατασκευή τριγώνου, όταν δίνονται μια πλευρά και δύο γωνίες Δίνονται η πλευρά ΑΒ και οι δύο προσκείμενες γωνίες α και β. Χαράζουμε την πλευρά ΑΒ και κατασκευάζουμε τις προσκείμενες γωνίες α και β στα σημεία Α και Β αντίστοιχα. Οι πλευρές των δύο γωνιών τέμνονται στο σημείο Γ σχηματίζοντας το ζητούμενο τρίγωνο.

Κατασκευή ισόπλευρου τριγώνου, όταν δίνεται το μήκος της μιας πλευράς Δίνεται η πλευρά ΑΒ. Χαράζουμε την πλευρά ΑΒ και με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που να τέμνονται στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ και σχηματίζεται το ζητούμενο τρίγωνο.

Κατασκευή ισοσκελούς τριγώνου, όταν δίνονται η βάση καιτοκατακόρυφούψος Δίνονται η βάση ΑΒ και το κατακόρυφο ύψος ΔΓ. ΧαράζουμετηβάσηΑΒκαιτη διχοτομούμε. Χαράζουμε κάθετη στο σημείο Δ. Με κέντρο το σημείο Δ και ακτίνα το δοσμένο ύψος ΔΓ χαράζουμε τόξο το οποίο τέμνει την ΔΓ στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.

Κατασκευή τριγώνου με αναλογία πλευρών 3:4:5 ΧαράζουμετηβάσηΒΓώστενα έχει μήκος 3 μονάδες μήκους. Με κέντρο το σημείο Β και ακτίνα ίση με 5 μονάδες μήκους χαράζουμε τόξο. Με κέντρο το σημείο Γ και ακτίνα ίση με 4 μονάδες μήκους χαράζουμετόξοώστενατέμνειτο προηγούμενο στο σημείο Α. Χαράζουμε τα ευθύγραμμα τμήματα ΒΑ και ΓΑ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.

ΤΕΤΡΑΠΛΕΥΡΑ Ορισμός: Τετράπλευρο ονομάζεται οποιαδήποτε επιφάνεια, ευθύγραμμα περιορισμένη από τέσσερις πλευρές.

Είδη τετραπλεύρων 1. Τετράγωνο: έχει όλες τις πλευρές ίσες και όλες τις γωνιές ίσες. 2. Ορθογώνιο: έχει τις απέναντι πλευρές ίσες και παράλληλες και όλες τις γωνιές ορθές. 3. Ρόμβος: έχει όλες τις πλευρές ίσες, τις απέναντι πλευρές παράλληλες και τις απέναντι γωνιές ίσες. 4. Παραλληλόγραμμο: έχει τις απέναντι πλευρές ίσες και παράλληλες και τις απέναντι γωνιές ίσες. 5. Τραπέζιο: έχει τι δύο απέναντι πλευρές παράλληλες. 6. Ακανόνιστο τετράπλευρο: κάθε πλευρά έχει διαφορετικό μήκος και οι γωνιές έχουν διαφορετικό μέγεθος.

Kατασκευή τετραγώνου, όταν δίνεται η πλευρά Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσομετηδοθείσαπλευρά. Χαράζουμε ευθεία ε κάθετη στο ευθύγραμμο τμήμα ΑΒ στο σημείο Α. Με κέντρο το Α και ακτίνα R= ΑΒ χαράζουμε τόξο το οποίο τέμνει την κάθετη, στοσημείοδ. Με κέντρο τα σημεία Β και Δ και με την ίδια ακτίνα R χαράζουμε τόξα που τέμνονται στο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το τετράγωνο ΑΒΓΔ.

Kατασκευή ορθογωνίου, όταν δίνονται τα μήκη των πλευρών Χαράζουμε το ευθύγραμμο τμήμα ΑΒίσομετηδοθείσαπλευρά(α). Χαράζουμε ευθεία ε κάθετη στο ΑΒ, στο σημείο Α. Με κέντρο το Α και ακτίνα R1 ίση με την άλλη πλευρά β, χαράζουμε τόξο το οποίο τέμνει την κάθετη ευθεία ε στο σημείο Δ. Με κέντρο το Δ και ακτίνα R2 = α, χαράζουμε τόξο. Με κέντρο το Β και ακτίνα R1 = β, χαράζουμετόξοτοοποίοτέμνειτο προηγούμενο στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το ορθογώνιο ΑΒΓΔ.

Kατασκευή ρόμβου, όταν δίνεται η πλευρά ΑΒ και μια γωνία Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Α κατασκευάζουμε γωνία α ίση με τη δοθείσα γωνία. Με κέντρο το Α και ακτίνα R= ΑΒ χαράζουμε τόξο το οποίο τέμνει την ευθεία ε στο σημείο Δ. Με κέντρο τα σημεία Δ και Β και ακτίνα R= ΑΒ, χαράζουμε τόξα που τέμνονται στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται ο ρόμβος ΑΒΓΔ.

Kατασκευή παραλληλογράμμου, όταν δίνεται η πλευρά ΑΒ, η γωνίαβκαιηαπόστασηγτης παράλληλης πλευράς από την ΑΒ Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα γωνία. Χαράζουμε παράλληλη προς την ΑΒ, σε απόσταση γ, η οποίατέμνει την ευθεία (ε) στοσημείογ. Η παράλληλη με την (ε) που περνά από το Α τέμνει την παράλληλη του ΑΒστοσημείοΓ. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.

Kατασκευή τραπεζίου, όταν δίνονται τρεις πλευρές ΑΒ, ΒΓ, ΓΔ και η γωνία β Χαράζουμε ευθύγραμμο τμήμα ίσομετηδοθείσαπλευράαβ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα. Με κέντρο το σημείο Β και ακτίνα τη δοθείσαπλευράβγχαράζουμετόξο το οποίο τέμνει την ευθεία (ε) στο σημείο Γ. Χαράζουμε ευθεία ε1 παράλληλη με την ΑΒ και ορίζουμε ευθύγραμμο τμήμα ΓΔ ίσο με τη δοθείσα πλευρά. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.

Ορισμός: ΠΟΛΥΓΩΝΑ Κανονικό πολύγωνο ονομάζεται οποιαδήποτε επιφάνεια περιορισμένη από ένα αριθμό ίσων ευθύγραμμων τμημάτων τα οποία μεταξύ τους σχηματίζουν ίσες γωνιές. Τα πολύγωνα παίρνουν την ονομασία τους από τον αριθμό των γωνιών τους (τετράγωνο, πεντάγωνο, εξάγωνο κ.τ.λ.) Οι εσωτερικές γωνιές των πολυγώνων που σχηματίζονται στο κέντρο έχουν άθροισμα 360. Η εσωτερική γωνιά του πολυγώνου υπολογίζεται διαιρώντας τη γωνιά των 360 με τον αριθμό των πλευρών του πολυγώνου.

Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Διχοτομούμε το ΑΒ. Ορίζουμε πάνω στη διχοτόμο, απόσταση ΟΚ = ΑΒ. Ορίζουμε πάνω στην προέκταση της ΑΚ απόσταση ΚΛ = ΑΟ. Με κέντρο το Α και την ακτίνα R3 = ΑΛ χαράζουμε τόξο το οποίο τέμνει τη διχοτόμοστοσημείοδ. Με κέντρο τα τρία σημεία Α, Β, Δ και ακτίνα ΑΒ χαράζουμε τόξα των οποίων οι τομές προσδιορίζουν τις κορυφές Ε και Γ ου πενταγώνου. Ενώνοντας τα σημεία Α, Ε, Δ, Γ, Β σχηματίζεται το πεντάγωνο.

Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου(2 η μέθοδος) Χαράζουμε το ευθύγραμμο τμήμα ΑΒ ίσομετηδοθείσαπλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα R= ΑΒ χαράζουμε περιφέρειες κύκλων, οι οποίες τέμνονται στα σημεία Γ και Δ. Ενώνουμε τα σημεία Γ και Δ. Με κέντρο το Δ και ακτίνα R= ΑΒ χαράζουμε άλλη περιφέρει κύκλου η οποία τέμνει τις δύο προηγούμενες στα σημεία Ε και Ζ και το ευθύγραμμο τμήμα ΓΔ στο Ο.

Κατασκευή κανονικού πενταγώνου όταν δίνεται ηπλευράτου(2 η μέθοδος) (συνέχεια) Ενώνουμε τα σημεία Ε και Ζ με το Ο και προεκτείνουμε τις ευθείες μέχρι να συναντήσουν τις δύο περιφέρειες στα σημεία Η και Θ. Με κέντρο τα σημεία Η και Θ και ακτίνα R = AB χαράζουμε τόξα τα οποία τέμνονται στο Κ. Ενώνοντας τα σημεία Β, Θ, Κ, Η, Α σχηματίζεται το πεντάγωνο.

Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο Δίνεται ο κύκλος με κέντρο Ο και ακτίνα R. Χαράζουμε δύο διαμέτρους κάθετες μεταξύ τους, την ΑΒ και ΓΔ. Διχοτομούμε το ΑΟ και ορίζουμε το μέσο Μ. Με κέντρο το Μ και ακτίνα το ΜΓ χαράζουμε τόξο το οποίο τέμνει το ΟΒ στο σημείο Κ. Με κέντρο το Γ και ακτίνα το ΓΚ χαράζουμε τόξο που τέμνει την περιφέρεια του κύκλου στο σημείο Ε. Το ευθύγραμμο τμήμα ΓΕ είναι η ζητούμενη πλευρά του πενταγώνου.

Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε τις υπόλοιπες κορυφές του πενταγώνου, δηλαδή τα σημεία Ζ, Η, Θ. Ενώνοντας τα σημεία Γ, Ε, Ζ, Η και Θ σχηματίζεται το πεντάγωνο.

Κατασκευή κανονικού εξαγώνου όταν δίνεται η πλευρά του Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνονται στο Ο. Με κέντρο το Ο και με ακτίνα το ΟΑ χαράζουμε περιφέρεια κύκλου η οποία περνά από τα σημεία Α και Β. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνουν την περιφέρεια του κύκλου στα σημεία Ζ και Γ αντίστοιχα. Με κέντρο τα σημεία Ζ και Γ και την ίδια ακτίνα χαράζουμε τόξα που τέμνουν την περιφέρεια στα σημεία Ε και Δ αντίστοιχα. Ενώνοντας τα σημεία Α, Ζ, Ε, Δ, Γ και Β σχηματίζεται το εξάγωνο.

Κατασκευή κανονικού εξαγώνου εγγεγραμμένου σε κύκλο ακτίνας R Χαράζουμε κύκλο με κέντρο Ο και με ακτίνα R ίσα με τη δοθείσα. Χαράζουμε τη διάμετρο ΑΒ.Με κέντρο τα σημεία Α και Β και ακτίνα R χαράζουμε τόξα τα οποία τέμνουν την περιφέρεια του κύκλου στα σημεία Γ, Δ καιε, Ζ αντίστοιχα. Ενώνοντας τα σημεία Α, Γ, Ε, Β, Ζ, Δ, σχηματίζεται το ζητούμενο εξάγωνο

Κατασκευή κανονικού οκταγώνου εγγεγραμμένου σε τετράγωνο με δοσμένη πλευρά Κατασκευάζουμε το τετράγωνο ΑΒΓΔ με δοσμένη πλευρά ΑΒ. Προσδιορίζουμε το κέντρο Ο του τετραγώνου. Με κέντρο τα σημεία Α, Β, Γ, Δ και ακτίνα ΟΑ ίση με το ½ της διαγωνίου χαράζουμε τόξα που τέμνουν τις πλευρές στα σημεία 1 και 4, 6 και 3, 8 και 5, 7 και 2 αντίστοιχα. Ενώνοντας τα σημεία 1, 2, 3, 4, 5, 6, 7, 8, 1 σχηματίζεται οκτάγωνο.

Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Γενική μέθοδος) Χαράζουμε την πλευρά ΑΒ. Προεκτείνουμε το ευθύγραμμο τμήμα ΑΒ προς το Β. Με κέντρο το Β και με ακτίνα το ΑΒ χαράζουμε ημιπεριφέρεια. Διαιρούμε την ημιπεριφέρεια σε όσα ίσα μέρη όσες είναι οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε και αριθμούμε τα σημεία, όπως φαίνεται στο σχήμα. Στην περίπτωσή μας, εννέα. Χαράζουμε το ευθύγραμμο τμήμα Β2.

Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Γενική μέθοδος) (συνέχεια) Διχοτομούμε το ΑΒ και το Β2. Οι διχοτόμοι τέμνονται στο σημείο Κ, το οποίο είναι το κέντρο του περιγεγραμμένου κύκλου. Με κέντρο το Κ και ακτίνα ΑΚ χαράζουμε περιφέρεια κύκλου. Με τη βοήθεια του διαβήτη ορίζουμε στην περιφέρεια του κύκλου τις κορυφές του πολυγώνου. Ενώνοντας τα σημεία Γ, Δ, Ε, Ζ, Η, Θ, Ι, Α σχηματίζεταιτο εννιάγωνο.

Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Σε κοινή βάση) Χαράζουμε την πλευρά ΑΒ και τη διχοτομούμε. Κατασκευάζουμε τετράγωνο ΑΒΓΔ και χαράζουμε τη διαγώνιο ΑΓ. Η διαγώνιος τέμνει τη διχοτόμο ΕΖ στο σημείο 4. Με κέντρο το Α και ακτίνα ΑΒ χαράζουμετόξοτοοποίοτέμνει τη διχοτόμο ΕΖ στο σημείο 6. Διχοτομούμε το ευθύγραμμο τμήμα 4-6 και ορίζουμε το μέσο του (σημείο 5).

Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Σε κοινή βάση) (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε σημεία 7, 8, 9 πάνω στη διχοτόμο ΕΖ της πλευράς ΑΒ που απέχουν μεταξύ τους απόσταση ίση με το ευθύγραμμο τμήμα 4-5. Τα σημεία 4, 5, 6, 7, 8, 9... είναι τα κέντρα των κύκλων που είναι περιγεγραμμένοι στα αντίστοιχα πολύγωνα και έχουν ακτίνες 4Α, 5Α, 6Α, 7Α, 8Α, 9Α.

Κατασκευή κανονικού πολυγώνου εγγεγραμμένου σε κύκλο με δοσμένη διάμετρο Χαράζουμε περιφέρεια κύκλου με κέντρο Ο και με διάμετρο ΑΒ ίσημετηδοθείσα. Με κέντρο τα σημεία Α και Β και ακτίνα ίση με την ΑΒ χαράζουμε τόξα που τέμνονται στα σημεία Γ και Δ. Διαιρούμε το ευθύγραμμο τμήμα σε τόσα ίσα μέρη όσες και οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε. Για παράδειγμα, σε 8 ίσα μέρη για την κατασκευή οκταγώνου.

Κατασκευή κανονικού πολυγώνου εγγεγραμμένου σε κύκλο με δοσμένη διάμετρο (συνεχεια) Ενώνουμε το σημείο Γ με τα σημεία 1, 3, 5, 7 και προεκτείνουμε τις ευθείες, ώστε να τέμνουν την περιφέρεια του κύκλου, στασημείαε, Ζ, Η, Θ. Με τον ίδιο τρόπο ορίζονται τα σημεία Ι, Κ, Λ, Μ απότις προεκτάσεις των ευθειών που περνούν από το σημείο Δ. Ενώνοντας τα σημεία Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ σχηματίζεται το οκτάγωνο.