Supplementary Information

Σχετικά έγγραφα
Electronic Supplementary Information:

SUPPLEMENTARY INFORMATION

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Butadiene as a Ligand in Open Sandwich Compounds

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Electronic Supplementary Information (ESI)

Supporting Information for: electron ligands: Complex formation, oxidation and

of the methanol-dimethylamine complex

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

January 22, University of Minnesota, Minneapolis, Minnesota , USA

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Electronic Supplementary Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Table of Contents 1 Supplementary Data MCD

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

ELECTRONIC SUPPORTING INFORMATION

Electronic Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates


Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Supporting Information

Supporting Information

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003 Chem. Eur. J Supporting Information. for

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Electronic Supplementary Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supplementary Information

Supporting Information: Design principles for α-tocopherol analogues

Carbon σ-electron Densities and C-H Stretching Vibration Frequencies of Phenanthrene

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Electronic Supplementary Information (ESI)

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

The Free Internet Journal for Organic Chemistry

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

Electronic Supplementary Information

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Far infrared spectra of solid state aliphatic amino acids in different protonation states

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Supporting Information

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

SUPPLEMENTARY INFORMATION

Electronic Supplementary Information (ESI)

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

* To whom correspondence should be addressed.

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Electronic supplementary information for

Supplementary materials

SUPPORTING INFORMATION

Supplementary Information for

2. Chemical Thermodynamics and Energetics - I

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

vibrational Supplementary density of the Beyer-

Structural Expression of Exo-Anomeric Effect

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Supporting Information

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

SUPPLEMENTARY MATERIAL

Transcript:

Oxathiirane Peter R. Schreiner, a * Hans Peter Reisenauer, a Jaroslaw Romanski, b and Grzegorz Mloston b * a Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 58, 35392 Giessen, Germany and b University of Lodz, Section of Heteroorganic Compounds, Tamka 12, PL-91-403 Lodz, Poland Supplementary Information 1. Spectroscopic Data Figure S1. UV-spectrum of the matrix-isolated pyrolysate of 1,3-dithietan-1,3-dioxide (Ar, 10 K); dashed line: after 25 min irradiation with λ = 313 nm S1

H 2 C S O 2 h ν λ = 313 nm Ar, 11 K H H 1 S O + 3, 6, 7, H 2 CO, COS, HOH CS, COS, CO Figure S2. IR spectrum of the photolysis products of matrix isolated sulfine (2) in solid argon (11 K). The spectrum is obtained by subtracting the spectrum of the non-irradiated matrix from that of the irradiated matrix (1 h, 313 ± 10 nm). Positive bands: products, negative band: sulfine (2) S2

Figure S3. Photolysis of matrix isolated HOH CS complex in solid argon (11 K) with l = 254 nm. The spectrum is obtained by subtracting the spectrum before and after irradiation with λ = 254 nm (10 min). Positive bands: products, negative bands: HOH CS complex; lower part: computed IR spectrum of the complex (CCSD(T)/cc-pVTZ). S3

2. Tables of observed and computed IR data Table S1. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of oxathiirane (1) Approx. Mode Computation Experiment ν 7 a CH 2 asym. str. 3215.1 (6.7) 3052.8 (vw) ν 1 a CH 2 sym. str. 3132.2 (17.7) 2980.1(w) ν 2 a CH 2 sciss. 1527.0 (2.6) n.o. ν 3 a CH 2 wag. + ring def. 1181.3 (25.1) 1134.5 (s) ν 8 a CH 2 rock. 1156.2 (1.4) 1107.3 (vw) ν 4 a Ring def + CH 2 wag. 1125.7 (5.4) 1076.3 (m) ν 9 a CH 2 twist. 907.8 (0.6) 887.8 (vw) ν 5 a Ring def 714.9 (29.7) 699.9 (s) ν 6 a Ring def 629.2 (1.5) n.o. Table S2. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of [d 2 ]-oxathiirane ([d 2 ]-1) Approx. Mode Computation Experiment ν 7 a CD 2 asym. str. 2402.5 (5.9) 2308.6 (vw) ν 1 a CD 2 sym. str. 2269.0 (13.0) 2167.7(w) ν 2 a CD 2 sciss. + ring def. 1207.0 (11.3) 1147.2 (m) ν 3 a CD 2 sciss.+ ring def. 1031.6 (10.4) 994.7 (s) ν 4 a CD 2 wag. 917.5 (7.7) 877.5 (m) ν 8 a CD 2 rock. 888.8 (2.1) 860.2 (w) ) ν 5 a ring def 678.8 (24.0) 666.7 (s) ν 9 a CD 2 twist. 669.8 (0.3) n.o. ν 6 a ring def 629.7 (1.5) n.o. S4

Table S3. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of the H 2 O CS complex. Approx. Mode Computation Experiment ν 1 a OH 2 asym. str. 3936.9 (124.7) 3709.3 (m) ν 2 a OH 2 sym. str. 3819.6 (194.8) 3554.9 (vs) ν 3 a OH 2 sciss. 1691.2 (57.6) 1607.8 (w) ν 4 a CS str. 1307.3 (57.9) 1299.9 (s) ν 8 a CHO o.o.p. bend. 463.6 (94.1) n.o. ν 5 a CHO i.p. bend. 310.7 (75.8) n.o. ν 6 a SC HOH str. 123.3 (1.3) n.o. ν 7 a SCH i.p. bend. 65.5 (4.9) n.o. ν 9 a SCH o.o.p. bend. 60.6 (4.2) n.o. Table S4. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of the D 2 O CS complex. Approx. Mode Computation Experiment ν 1 a OD 2 asym. str. 2884.0 (88.4) 2745.0 (s, broad) ν 2 a OD 2 sym. str. 2761.3 (88.1) 2605.2 (vs) ν 3 a CS str. 1311.9 (57.8) 1300.6 (s) ν 4 a OD 2 sciss. 1240.0 (29.9) n.o. ν 8 a CDO o.o.p. bend. 352.0 (56.0) n.o. ν 5 a CDO i.p. bend. 250.7 (37.6) n.o. ν 6 a SCD i.p. bend. 143.9 (5.8) n.o. ν 7 a SC DOD str. 119.1 (1.1) n.o. ν 9 a SCD o.o.p. bend. 75.3 (54.6) n.o. S5

Table S5. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of Z-methanoic O-acid (Z-7) Approx. Mode Computation Experiment ν 1 a OH str. 3737.7 (53.0) 3501.1 (w) ν 2 a CH str. 3181.8 (7.7) n.o. ν 3 a HOC + HCO i.p. 1474.0 (209.3) 1422.1 (s) bend.+ CS str. ν 4 a CO str. 1315.4 (111.6) 1220.1 (m) ν 5 a HOC + HCO i.p. bend 1238.4 (233.3) 1193.3 (s) ν 8 a HC o.o.p. bend. 947.1 (41.4) n.o. ν 6 a CS str. 961.4 (23.4) n.o. ν 9 a HO o.o.p. bend. 686.0 (72.7) 642.1 (w) ν 7 a SCO i.p. bend. 464.2 (15.2) n.o. Table S6. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of [d 2 ]-Z-methanoic O-acid ([d 2 ]- Z-7) Approx. Mode Computation Experiment ν 1 a OD str. 2718.8 (30.7) n.o. ν 2 a CD str. 2345.1 (7.4) n.o. ν 3 a OCS asym.str. 1352.1 (439.9) 1299.0 (vs) ν 4 a OCS sym.str. 1124.0 (1.9) n.o. ν 5 a DOC + DCO i.p. 923.0 (59.9) 901.0 (w) bend ν 6 a CS str. 885.7 (5.7) 867.9 (vw) ν 8 a DC o.o.p. bend. 796.5 (8.9) n.o. ν 9 a DO o.o.p. bend. 536.1 (50.2) 505.1 (w) ν 7 a SCO i.p. bend. 425.6 (16.4) n.o. S6

Table S7. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of E-methanoic O-acid (E-7) Approx. Mode Computation Experiment ν 1 a OH str. 3818.8 (92.0) n.o. ν 2 a CH str. 3121.0 (22.5) n.o. ν 3 a HOC + HCO i.p. 1496.0 (92.2) n.o. bend.+ CS str. ν 4 a HOC + HCO i.p. bend 1285.4 (9.2) n.o. ν 5 a CO str. 1252.7 (449.8) n.o. ν 6 a CS str. 963.6 (9.7) n.o. ν 8 a HC o.o.p. bend. 929.1 (7.9) n.o. ν 9 a HO o.o.p. bend. 508.9 (111.2) n.o. ν 7 a SCO i.p. bend. 474.1 (4.6) n.o. S7

Table S8. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of Z-methanoic S-acid (Z-6) Approx. Mode Computation Experiment (Ar, 10 K) Experiment (Gas) a) ν 1 a CH str. 3009.0 (55.5) n.o. 2844.1 ν 2 a SH str. 2704.5 (1.6) n.o. 2590.0 ν 3 a CO str.r. 1769.0 (269.1) 1708.1 (vs) 1722.0 ν 4 a HCO i.p. bend. 1405.7 (12.9) n.o. 1340.2 ν 8 a HC o.o.p. bend. 965.4 (3.7) n.o. 924.2 ν 5 a HSC i.p. bend. 953.3 (46.2) 929.9 (m) 931.6 ν 6 a CS str. 691.0 (105.9) 671.2 (m) 675.6 ν 7 a SCO i.p. bend. 434.8 (9.7) n.o. 431.0 ν 9 a HS o.o.p. bend. 424.0 (25.1) n.o. 400.3 a) B. P. Winnewisser, W. H. Hocking, J. Phys. Chem. 1980, 84, 1771-1782 Table S9. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of [d 2 ]-Z-methanoic S-acid ([d 2 ]- Z-6) Approx. Mode Computation Experiment (Ar, 10 K) ν 1 a CD str. 2232.7 (40.7) n.o. ν 2 a SD str. 1942.2 (0.8) n.o. ν 3 a CO str.r. 1742.4 (277.3) 1690.5 (vs) ν 4 a DCO i.p. bend. 1069.4 (40.4) 1033.3 (s) ν 8 a DC o.o.p. bend. 842.2 (0.3) n.o. ν 5 a DSC i.p. bend. + CS str 785.5 (65.1) 777.8 (s) ν 6 a CS str. + DSC i.p. bend. 619.7 (41.7) 606.8 (m) ν 7 a SCO i.p. bend. 396.0 (11.6) n.o. ν 9 a DS o.o.p. bend. 333.7 (16.6) n.o. S8

Table S10. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of E-methanoic S-acid (E-6) Approx. Mode Computation Exp. (Ar, 10 K) Exp. (Gas) a) ν 1 a CH str. 3001.2 (56.5) n.o. 2841.6 ν 2 a SH str. 2709.2 (0.4) n.o. 2590.0 ν 3 a CO str.r. 1775.9 (303.2) 1712.6 (vs) 1722.0 ν 4 a HCO i.p. bend. 1392.4 (21.6) n.o. 1350.1 ν 5 a HSC i.p. bend. 967.2 (52.6) 946.3 (m) 949.2 ν 8 a HC o.o.p. bend. 948.9 (2.9) n.o. 924.2 ν 6 a CS str. 729.8 (77.8) 714.9 (m) 718.0 ν 7 a SCO i.p. bend. 420.7 (3.7) n.o. 431.0 ν 9 a HS o.o.p. bend. 361.0 (2.5) n.o. 384.4 a) B. P. Winnewisser, W. H. Hocking, J. Phys. Chem. 1980, 84, 1771-1782 Table S11. Experimental (Ar matrix, 10 K) and computed (CCSD(T))/cc-pVTZ, intensities (km/mol) in parentheses) IR spectrum of [d 2 ]-E-methanoic S-acid ([d 2 ]-E-6) Approx. Mode Computation Exp. (Ar, 10 K) ν 1 a CD str. 2228.2 41.5 n.o. ν 2 a SD str. 1946.9 0.3 n.o. ν 3 a CO str.r. 1748.6 307.9 1687.0 (vs) ν 4 a DCO i.p. bend. 1062.2 51.1 1033.3 (s) ν 8 a DC o.o.p. bend. 784.7 0.1 n.o. ν 5 a DSC i.p. bend. + CS str 795.0 59.5 764.8 (s) ν 6 a CS str. + DSC i.p. bend. 617.5 24.3 602.5 (m) ν 7 a SCO i.p. bend. 406.0 4.2 n.o. ν 9 a DS o.o.p. bend. 270.9 0.5 n.o. S9

3. Computational Results (CCSD(T)/cc-pVTZ) All coupled cluster computations were performed with the ACES2 or Cfour program: ACES2 J.F. Stanton, J. Gauss, J.D. Watts, P.G. Szalay, R.J. Bartlett with contributions from A.A. Auer, D.E. Bernholdt, O. Christiansen, M.E. Harding, M. Heckert, O. Heun, C. Huber, D. Jonsson, J. Jusélius, W.J. Lauderdale, T. Metzroth, C. Michauk, D.P. O'Neill, D.R. Price, K. Ruud, F. Schiffmann, M.E. Varner, J. Vázquez and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), and ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen). For the current version, see http://www.aces2.de CFOUR J.F. Stanton, J. Gauss, M.E. Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, D.P. O'Neill, D.R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de. S10

xyz-coordinates, energies, ZPVEs, and vibrational frequencies of all CCSD(T)/cc-pVTZ optimized geometries Oxathiirane Symmetry: Cs, CCSD(T) = -512.092370133361 Hartree, ZPVE = 19.4271 kcal/mol S -0.795448662-0.028555690 0.000000000 C 0.859776264-0.681351359 0.000000000 O 0.794317472 0.711026058 0.000000000 H 1.195537662-1.132934924 0.922366783 H 1.195537662-1.132934924-0.922366783 Vibrations (sym. species, frequency (cm -1 ), intensity (km mol -1 )): A' 629.2177 1.5000 A' 714.8820 29.7252 A'' 907.7720 0.6410 A' 1125.7237 5.3785 A'' 1156.2234 1.3522 A' 1181.3451 25.0755 A' 1526.9838 2.5606 A' 3132.2123 17.7315 A'' 3215.1119 6.7467 Thioformaldehyde-S-oxide (Sulfine) Symmetry: Cs, Energy (Hartree): -512.10655, ZPVE (kcal mol -1 ): 18.3 Cartesian coordinates (Å): O -1.230220177 0.439807668 0.000000000 S -0.018600787-0.413284230 0.000000000 C 1.379062031 0.406582475 0.000000000 H 2.273992344-0.193236195 0.000000000 H 1.420327442 1.483020415 0.000000000 S11

Vibrations (sym. species, frequency (cm -1 ), intensity (km mol -1 )): A' 388.2873 8.6022 A'' 639.8554 0.0991 A'' 790.5862 73.8026 A' 885.7355 2.7827 A' 993.5466 3.2472 A' 1185.0365 106.2759 A' 1427.5708 17.9029 A' 3179.0152 2.1880 A' 3284.1843 1.6716 Trans,trans-Hydroxysulfaacetylen (HOSCH)(3): Symmetry: Cs, Energy (Hartree): -512.05105 ZPVE (kcal mol -1 ): 17.3 Cartesian coordinates (Å): H -1.979951000 0.224375657 0.000000000 O -1.267452765-0.426177946 0.000000000 S 0.145700356 0.455301718 0.000000000 C 1.280117369-0.653776715 0.000000000 H 2.231034513-0.120129649 0.000000000 A'' 202.0562 91.7179 A' 401.2229 9.1620 A' 684.4956 221.3108 A' 804.6213 17.7063 A'' 823.0888 23.4887 A' 1084.5203 10.9313 A' 1179.9701 84.4329 A' 3115.0835 0.6398 A' 3812.7494 87.6529 S12

trans,cis-hydroxysulfaacetylen (HOSCH)(3): Symmetry: Cs, Energy (Hartree): -512.05858, ZPVE (kcal mol -1 ): 17.2 Cartesian coordinates (Å): H -1.038964835 1.276898267 0.000000000 O -1.297186611 0.339524335 0.000000000 S 0.139916179-0.465933731 0.000000000 C 1.255507446 0.664930248 0.000000000 H 2.238468389 0.198596486 0.000000000 Vibrations (sym. species, frequency (cm -1 ), intensity (km mol -1 )): A' 398.0808 39.3586 VIBRATION A'' 451.1719 102.9416 VIBRATION A' 724.4815 166.5521 VIBRATION A'' 814.4845 12.7756 VIBRATION A' 827.2748 38.8239 VIBRATION A' 1083.1155 10.6636 VIBRATION A' 1179.5506 65.8812 VIBRATION A' 3133.7889 0.5054 VIBRATION A' 3692.1672 52.6767 VIBRATION cis,trans-hydroxysulfaacetylen (HOSCH)(3): Symmstry: Cs, Energy (Hartree): -512.05942, ZPVE (kcal mol -1 ): 17.2 Cartesian coordinates (Å): H -2.025938217 0.289303017 0.000000000 O -1.354000874-0.404127701 0.000000000 S 0.156225893 0.413799839 0.000000000 C 1.431687677-0.459298404 0.000000000 H 1.511971036-1.534031821 0.000000000 S13

A'' 245.8805 111.9256 A' 313.3876 75.1136 A' 623.2733 275.1732 A' 701.9660 39.5023 A'' 823.0954 48.0083 A' 1063.5349 87.0818 A' 1224.5117 5.7405 A' 3239.1536 1.2203 A' 3798.0345 66.3763 cis,cis-hydroxysulfaacetylen (HOSCH)(3): Symmetry: Cs, Energy (Hartree): -512.06107, ZPVE (kcal mol -1 ): 17.2 Cartesian coordinates (Å): H -1.300503467 1.254068619 0.000000000 O -1.407319736 0.294757739 0.000000000 S 0.154972346-0.405990516 0.000000000 C 1.439811447 0.455448068 0.000000000 H 1.575784197 1.524544493 0.000000000 A'' 245.8805 111.9256 A' 313.3876 75.1136 A' 623.2733 275.1732 A' 701.9660 39.5023 A'' 823.0954 48.0083 A' 1063.5349 87.0818 A' 1224.5117 5.7405 S14

A' 3239.1536 1.2203 A' 3798.0345 66.3763 Trans,trans-Hydroxymercaptocarbene (HOCSH)(5) Symmetry: Cs, Energy (Hartree): -512.08191, ZPVE (kcal mol -1 ): 17.8 Cartesian coordinates (Å): H -2.345331279 0.135968448 0.000000000 O -1.490471173-0.305989288 0.000000000 C -0.577975091 0.658499675 0.000000000 S 0.984473501-0.130735377 0.000000000 H 1.650770069 1.027087737 0.000000000 A' 414.6367 6.9472 A'' 491.9958 3.0336 A'' 708.9330 104.8091 A' 746.6574 97.8775 A' 949.0770 77.2695 A' 1260.8540 250.3229 A' 1332.5161 41.0672 A' 2729.4006 0.5355 A' 3821.0486 172.5243 Trans,cis-Hydroxymercaptocarbene (HOCSH)(5) Symmetry: Cs, Energy (Hartree): -512.07639, ZPVE (kcal mol -1 ): 17.3 Cartesian coordinates (Å): H -1.269393671 1.154687115 0.000000000 O -1.560874713 0.225900084 0.000000000 C -0.588713653-0.662596783 0.000000000 S 0.988961676 0.131208647 0.000000000 H 1.677667889-1.012899993 0.000000000 S15

A' 409.6991 25.1333 A'' 414.5232 49.7243 A' 706.8233 38.9329 A'' 724.5666 74.1161 A' 924.8143 32.0680 A' 1264.5256 340.4012 A' 1345.2371 14.3788 A' 2732.5956 3.4569 A' 3594.7870 10.8956 cis,trans-hydroxymercaptocarbene (HOCSH)(5) Symmetry: Cs, Energy (Hartree): -512.08165, ZPVE (kcal mol -1 ): 17.5 Cartesian coordinates (Å): H -2.343358803 0.144239997 0.000000000 O -1.492287764-0.306968340 0.000000000 C -0.567559115 0.644828767 0.000000000 S 1.010968533-0.049807951 0.000000000 H 0.713083160-1.370196211 0.000000000 A' 419.8610 3.3374 A'' 540.4667 14.0035 A' 700.9875 41.4794 A'' 708.8044 98.3924 A' 904.3333 98.0946 A' 1257.9156 230.8667 S16

A' 1331.8942 36.1328 A' 2578.6351 17.1897 A' 3805.9040 155.7147 cis,cis-hydroxymercaptocarbene (HOCSH)(5) Symmetry: Cs, Energy (Hartree): -512.07541 ZPVE (kcal mol -1 ): 17.0 Cartesian coordinates (Å): H -1.280541525 1.153204688 0.000000000 O -1.566261954 0.219663439 0.000000000 C -0.571500179-0.635959455 0.000000000 S 1.014773381 0.048713147 0.000000000 H 0.750511073 1.387469642 0.000000000 A' 447.0087 12.7601 A'' 499.5357 0.0503 A' 672.5582 21.3329 A'' 732.2045 85.2277 A' 917.8920 29.7723 A' 1280.7283 345.7091 A' 1342.9533 17.4226 A' 2475.2233 62.6841 A' 3541.9146 4.7766 Z-Methanethioic O-acid (Z-7) Symmetry: Cs, Energy = -512.15373423 Hartrees, ZPVE = 17.7 kcal/mol Cartesian coordinates: S -1.039510099 0.093139270 0.000000000 C 0.471512862-0.500350451 0.000000000 O 1.596042923 0.215004647 0.000000000 H 0.701648037-1.556115076 0.000000000 H 1.331011996 1.146687939 0.000000000 S17

A' 464.1654 15.2382 A'' 685.9705 72.6798 A' 961.3661 23.4066 A'' 974.1489 41.4331 A' 1238.3909 233.3228 A' 1315.3950 111.6416 A' 1474.0444 209.3193 A' 3181.7662 7.7382 A' 3737.6703 53.0167 E-Methanethioic O-acid (E-7) Symmetry: Cs, Energy = -512.152110910914, ZPVE = 17.5928 kcal/mol Cartesian coordinates: S -1.047465348 0.089969864 0.000000000 C 0.463557889-0.483114650 0.000000000 O 1.555810047 0.296679362 0.000000000 H 0.679869927-1.545926122 0.000000000 H 2.338404592-0.264416070 0.000000000 A' 474.0702 4.5927 A'' 508.9402 111.2330 A'' 929.1023 7.8974 S18

A' 963.6226 9.6585 A' 1252.6961 449.7577 A' 1285.3951 9.1658 A' 1495.9819 92.1805 A' 3120.9709 22.4725 A' 3818.7667 92.0351 Z-Methanethioic S-acid (Z-6) Symmetry: Cs, CCSD(T) = -512.151332479037 ZPVE = 20.0610 kcal/mol Cartesian coordinates: O -1.604813798 0.278977361 0.000000000 C -0.658311421-0.460160756 0.000000000 S 1.049386674 0.039554528 0.000000000 H -0.744153945-1.551810102 0.000000000 H 0.761549621 1.348470972 0.000000000 A'' 424.0069 25.1235 A' 434.8306 9.7061 A' 690.9638 105.8839 A' 953.2859 46.1712 A'' 965.4181 3.7294 A' 1405.7479 12.9316 A' 1769.0123 269.1148 A' 2704.5175 1.5576 A' 3009.0298 55.5485 E-Methanethioic S-acid (E-6) Symmetry: Cs, CCSD(T) = -512.142733674432, ZVPE = 19.7989 kcal/mol Cartesian coordinates: O -1.604760028 0.274433570 0.000000000 C -0.659352058-0.463723633 0.000000000 S 1.024440184 0.120611317 0.000000000 H -0.743920187-1.555507945 0.000000000 H 1.564251446-1.104727115 0.000000000 S19

A'' 360.9570 2.5337 A' 420.7094 3.6525 A' 729.8415 77.7760 A'' 948.8643 2.8660 A' 967.2221 52.6115 A' 1392.3538 21.5868 A' 1775.9463 303.1992 A' 2709.2290 0.4470 A' 3001.2402 56.5382 Formaldehyde O-sulfide Symmetry: Cs, CCSD(T) = -512.057618159198, ZPVE = 18.5117 kcal/mol Cartesian coordinates: S -1.022338589 0.085288180 0.000000000 O 0.593539136-0.468783160 0.000000000 C 1.595569198 0.297696700 0.000000000 H 2.562856890-0.180459099 0.000000000 H 1.451573517 1.370096731 0.000000000 A'' 967.0320 19.5406 A' 1247.0374 13.1872 A' 1322.6058 319.3861 A' 1530.0022 53.9831 A' 3129.0889 18.3853 A' 3259.1272 0.8660 Complex H2O CS Symmetry: Cs, CCSD(T) = -512.090802962385, ZPVE = 16.8386 kcal/mol S20

Cartesian coordinates: S 1.655789352 0.009622591 0.000000000 C 0.117718067-0.044802559 0.000000000 H -2.097441584 0.066911727 0.000000000 O -3.059254111 0.064800876 0.000000000 H -3.279605508-0.867157778 0.000000000 A'' 60.5975 4.2490 A' 65.4663 4.8996 A' 123.2779 1.3198 A' 310.7277 75.8268 A'' 463.6390 94.1166 A' 1307.2877 57.9301 A' 1691.2099 57.5947 A' 3819.6374 194.8373 A' 3936.9380 124.6513 Formaldehyde Symmetry: C2v, CCSD(T) = -114.362498825747, ZPVE = 16.8386 kcal/mol Cartesian coordinates: O 0.000000000 0.000000000-0.602465292 C 0.000000000 0.000000000 0.604035779 H 0.000000000 0.932619237 1.184705435 H 0.000000000-0.932619237 1.184705435 B1 1207.5146 4.2781 B2 1286.1847 11.9606 A1 1556.4129 10.1743 A1 1791.6408 69.5470 A1 2953.8897 58.2201 B2 3000.1289 113.7876 S21

Thioformaldehyde Symmetry: C 2v, Energy = -436.984734 hartree, ZPVE = 15.8 kcal mol -1 Cartesian Coordinates (Å): S 0.000000000 0.000000000-0.518184137 C 0.000000000 0.000000000 1.099994170 H 0.000000000 0.919947337 1.670671875 H 0.000000000-0.919947337 1.670671875 B2 1016.8206 1.8499 A1 1073.3799 6.9442 B1 1149.7610 40.6169 A1 1514.6483 3.1698 A1 3119.5109 24.4804 B2 3186.3673 5.4928 Dioxirane Point group: C 2v, Energy = -189.399045 hartree, ZPVE = 20.7 kcal mol -1 Cartesian Coordinates (Å): C 0.000000000 0.000000000 0.781587833 O 0.000000000 0.756790714-0.378291628 O 0.000000000-0.756790714-0.378291628 H -0.921750937 0.000000000 1.350646430 H 0.921750937 0.000000000 1.350646430 S22

A1 759.1496 0.9871 B2 930.9695 19.4157 A2 1065.1032 0.0000 B1 1205.6750 8.0784 A1 1311.5639 38.4255 B2 1319.1011 2.8999 A1 1583.8525 2.8598 A1 3112.3329 33.6969 B1 3190.2454 28.2314 Formaldehyde O-oxide Symmetry: Cs, Energy = -189.3548999 hartree, ZPVE = 17.8 kcal mol -1 Cartesian Coordinates (Å): H 1.056555745 1.317140964 0.000000000 C 1.133094884 0.242346352 0.000000000 H 2.041895747-0.331571987 0.000000000 O 0.059999101-0.446786801 0.000000000 O -1.105321069 0.202869438 0.000000000 Carbon monosulfide (CS) Energy (Hartree): -435.73826, ZPVE (kcal mol -1 ): 1.8 Cartesian coordinates (Å): C 0.000000000 0.000000000 1.123545468 S 0.000000000 0.000000000-0.421697603 SG+ 1279.5603 66.2144 S23