Evolutive Image Coding

Σχετικά έγγραφα
Stabilization of stock price prediction by cross entropy optimization

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Instruction Execution Times

derivation of the Laplacian from rectangular to spherical coordinates

Molecular evolutionary dynamics of respiratory syncytial virus group A in

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework 3 Solutions

Buried Markov Model Pairwise

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας


Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Modbus basic setup notes for IO-Link AL1xxx Master Block

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 8.3 Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Review Exercises for Chapter 7

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

Matrices and Determinants

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Areas and Lengths in Polar Coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

EE512: Error Control Coding

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Statistical Inference I Locally most powerful tests

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Risk! " #$%&'() *!'+,'''## -. / # $

ST5224: Advanced Statistical Theory II

Homework 8 Model Solution Section

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

The challenges of non-stable predicates

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Section 9.2 Polar Equations and Graphs

Fractional Colorings and Zykov Products of graphs

Elements of Information Theory

Applying Markov Decision Processes to Role-playing Game

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Quick algorithm f or computing core attribute

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Areas and Lengths in Polar Coordinates

Durbin-Levinson recursive method

SOAP API. Table of Contents

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Reminders: linear functions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Solution Concepts. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

[1] P Q. Fig. 3.1

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Detection and Recognition of Traffic Signal Using Machine Learning

CORDIC Background (4A)

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Σπουδάστρια Δακανάλη Νικολέτα Α.Μ "Πώς η εξέλιξη της τεχνολογίας επηρεάζει την απόδοση των επιχειρήσεων" ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ECE 468: Digital Image Processing. Lecture 8

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

1) Formulation of the Problem as a Linear Programming Model

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Numerical Analysis FMN011

Assalamu `alaikum wr. wb.

MathCity.org Merging man and maths

4.6 Autoregressive Moving Average Model ARMA(1,1)


ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Block Ciphers Modes. Ramki Thurimella

How to register an account with the Hellenic Community of Sheffield.

C.S. 430 Assignment 6, Sample Solutions

Advanced Subsidiary Unit 1: Understanding and Written Response

Problem Set 3: Solutions

Section 7.6 Double and Half Angle Formulas

Abstract Storage Devices

Transcript:

1 (GP) JPEG H.64/AVC / () GP Evolutive Image Coding Seishi TAKAMURA 1 Evolutive methods based on genetic programming (GP) enable dynamic algorithm generation, and have been successfully applied to many areas such as plant control, robot control, and stock market prediction. However, conventional image/video coding methods such as JPEG and H.64/AVC all use fixed (non-dynamic) algorithms without exception. The evolutive coding enables an automatic generation of pixel prediction algorithm. It is a radical departure from conventional fixed algorithm, man-made algorithm and hand-made programming toward a new paradigm. In this article, we introduce a GP-based image predictor that is specifically evolved for each input image, which have been evolving day by day. We demonstrate its up-to-date performance as well as the investigation on predictor complexity versus prediction performance. We also report about speeding up the evolution process using parallelization by a factor of 100. Ultimate coding efficiency will also be touched upon. 1. ( ) 1). (genetic algorithm, GA) 1 (genetic programming, GP) GA, GP GA ),3) GA, GP 4).1 1 NTT NTT Cyber Space Labotratories, NTT Corporation, Y-517A, 1-1 Hikarino-oka, Yokosuka-shi, 39 0847 Japan 1 c 009 Information Processing Society of Japan

1 Table 1 Differences between evolutive image processing and evolutive image coding bloat I 10 I 07 I 05 I 08 I 11 I 06 Inw In Ine I 09 I 04 Iw p 1 p Fig. 1 Neighboring pixels of p. GP (bloat) 5) 1 3. 3.1 1 p ( Inw, In ) x x ( ˆx ) x ˆx JPEG-LS 6) MED C T (e.g., ) 3. GP MED GP ( ( )) minimal generation gap 7) T max, min, ave, abs, sqr, sqrt,,, ( ) sin, cos, tan arcsin, arccos, arctan sinh, cosh, tanh log, log 10, pow, pow (log x ) (pow(a, b) = sgn(a) a b, pow(a, b) = sgn(a) a b/10 ) add, sub, mul, div xor, or, and In, Ine, Iw, Inw, I 04...I 11 D GAP D = ( Iw Inw + In Inn + Ine Inne ) ( Iw Iww + In Inw + In Ine ) I I = (Iw + In)/ + (Ine Inw)/4 Igap, Imed, Ils, Ile1 GAP, MED, (4 ), (1 ) x, y (x, y) = ( 1, 1), (1, 1) ρ, θ (L1 ) ρ = 1, θ = π/4 3 (float) ( 1 ) (MED ) ( ) ( ) ( 3 ) ( ) () ( 4 ) ( ) 3 3.3 H T H R (H T + H R, ) H T ( ) H R (CALIC 8) 8 ) CALIC error feedback/flipping c 009 Information Processing Society of Japan

if (Inw >= max(iw, In)) return min(iw, In); else if (Inw <= min(iw, In)) return max(iw, In); else return Iw + In - Inw; C MED Fig. C- and Tree- expressions of MED predictor 3 () Fig. 3 Evolution strategy (for single process) min, max,,,,,, p (x, y [ 1, 1]), 1 4 CALIC gradient-adjusted prediction (GAP) MED N = 49 3 bit (C float ) P num = 0.15 n dc C(8 ) d C (= 55... 55) N C C 3 : (H T + H R [bpp]) (H T [bits]) : (1 ) Table 3 Top table: Residual entropy (overhead inclusive) of the predictors (H T + H R [bpp]), their increment ( incr. in percentage) against EP1, as well as their H T [bits]. Numbers next to the predictors mean the number of reference pixels. Lower table: proposed predictor (with 1 pixels) s generic prediction performance (H T + H R [bpp]). Lena Baboon Airplane Peppers [%] LS(4) 4.551 5.51 3.654 4.465 4.548 3.705 LS(1) 4.549 5.374 3.635 4.41 4.49.48 LE(4) 4.59 5.506 3.619 4.417 4.517 3.013 LE(1) 4.5 5.361 3.595 4.38 4.465 1.813 GAP 4.539 5.556 3.568 4.468 4.533 3.367 MED 4.69 5.59 3.644 4.646 4.643 5.886 Proposed(4) 4.481 5.46 3.51 4.35 4.454 1.574 H T [bits] 1191. 813.1 971.7 107.9 1046.0 Proposed(1) 4.45 5.334 3.486 4.96 4.385 H T [bits] 150.4 886.6 137. 199.1 1460.8 Lena (4.45) 5.691 3.603 4.386 4.56 Baboon 4.745 (5.334) 3.698 4.773 4.638 Airplane 4.561 5.510 (3.486) 4.519 4.519 Peppers 4.505 5.61 3.68 (4.96) 4.513 H T, H R : log H T = P num + 3 (n ) [bits] (1) log n (1 P num ) + log N (n ) n dc H R = n dc log [bits] () N C C n dc 0 3.4-3 4 (Global Best Individual, GBI) (Local Best Individual, LBI) LBI GBI GBI 5 3 c 009 Information Processing Society of Japan

"!$#&% "! #%$& Z(['\^]^_ `ba'ced frgihj '( ) * + )-,/. 01354 657 :; k^lm'npoq ] hr s 657 8%9 // <= '( >? @%A B CEDF PRQTS UVEW % > B GHIJ%K 4 Fig. 4 Modification for parallel processing 5 Fig. 5 An image of asynchronous parallel evolution X QYS UV W L( > B ( M%NO OS 1 ( 10 ) ( ) () I/O load 100% ')( 4. Lena, Baboon, Airplane, Peppers 4 ( 51 51 8 bpp, ) ( (LS) (LE) GAP( 1 4 1 ) MED ( 3 ) LE LS ( 4 + 1 =)5 ( 1+1=13 ) Powell H R 4.1 Lena 6 Peppers 7 3 4 (LS(4), LE(4) (3 5 =)160, LS(1), LE(1) 416, GAP, MED 0, H T bits) H T H T 1460.8 bits GAP, MED ( H T 349.5, 116.0 bits. 0 ) 4. 3 3 Peppers Lena Baboon 4.638 bpp Peppers Lena 4.3 Core Extreme QX9775 (3.GHz, 4GB Memory, MS Windows Vista Ultimate (3bit) SP1) Core Quad Q6600 (.4GHz, GB Memory, MS Windows XP Professional x64 Ed. Ver. 003 SP) 30 ( 10 ) 4 c 009 Information Processing Society of Japan

I 08 max min(in,0.5 (Ine+Imed)) ( Ile 1,Igap and(min(inw, I cosh arcsin arcsin cos( 04 max(θ+and(ile 1, min(cosh(0.7071 log 10 (I 06 ) + Igap ), log sinh sinh 4 arcsin sinh tanh( ) Ile 1 )+sinh sinh arctan sinh(max(0.5 (Inw+,I 09 ),I 05 )) sinh sinh log 10 (cosh log 10 (Ine)) (I 09 +Ine) max(i 04,I 10 ) ) max(imed, In)), I 09 ) Ile 1 )), or(min( sinh tan y+max(imed,i 05) Iw Ine,, log( 8 y arctan arctan log 10 (Iw) 0 D I05 ) Ils+Ile sin 8 sin arctan arctan tanh 4 log 10 (Ile 1 ) max 4 1, 0.5 (0.5 (I 09+Inw)+max(and(or(Imed, I 05), Inw (Ine,I 05 10 ) cos 8 sin ( x 1 x ) (Inw I 09) 8 In xor(d, cos tan( ))), 0.5 (Iw+In)+0.5 (Ine Inw), log Inw+Imed 10 (I 08)+ arcsin tan sinh x +0.5 (Inw+Ils)))+ arccos( max(igap,iw) I 04 ) 1 In 4 4 +θ), min(max( max(inw, I 06, I 07 )+and(ile 1, log sinh(0.5 ( xor(d, cos cosh( 1 ))+ Inw + Igap) + sinh sinh(0.5 (arcsin sinh tan y + θ)) sinh arccos arcsin x)) + max(ile 1, min(max(imed, In), sinh D )), tanh tanh sin(0.5 (Iw + In) + 0.5 (Ine Inw) Ile 1 ) + Igap), max(0.5 (Iw + In) + 0.5 (Ine Inw), 1.818(I 10 0.5 (I 05 + Ine)))))) 6 Lena ( 150.4 bits) Fig. 6 Generated predictor for Lena (tree size=150.4 bits) if D 90.766 then Igap else if D 30.9851 then 0.50107( xor(min(max(ine, Iw), I 05 max(min(ine, Inw), and(i 10, Ine) I 06 + θ + Ils + Ile 1 I 08 I 07 ρ + max(inw, if x 0 then y else min(imed, I 11 I 10 ))) In ), Igap) + Igap) else if I 10 I 04 I 10 Iw I 10 Ile 1 + θ max(inw, I 07 and(ile 1, I 09 ) + max(ine, max( or(i 07,Inw) I 04 sinh ρ Inw Imed, or(i 10, I 07 )))) + min(or(min(min(ils, I 08 ), I 06, I 09 ), D Ils 30.905 Ine 89.86 ), I 05 )+30.074 0 then 0.50489 (3 ( 0.8107 ( 0.60801 ( sin tan( 1 Ine ) I 09+ sin cos θ I 04 Iw Ils Inw+max(xor(xor( Ine, Ine), I 11 ), I 05 + Iw + Ils) + 0.316839 ( I 07 I 04 + Ine Inw + Ine) + xor (3.09001, tan cos y )) + sin( In) else tan sin tan( Ile 1 ) 1 Ile 1 I 07 arctan θ Iw+In Iw Inw Ine Inw 4 +min(max(min(min(ine,inw),i 04,I 09 ), θ+min(sinh Iw, I 06 + Iw+In +and(inw,ine)+ Ine Inw 4 )+Ile 1 I 08 ),max(iw,i 09 )) +Igap ) I tan sin tan( Ile 1 04 + 0.3813 I 06 + 0.3031 Ine) 0.61719 Iw 0.3381 Ine + 0.8906 Ine) + )+1 1 Ile 1 7 Peppers ( 199.1 bits) Fig. 7 Generated predictor for Peppers (tree size=199.1 bits) or(i 05,I 09 ) 1 4 Lena 8 5 Peppers 5 7 75 500 4.4 8 7.5H T (H R + H T ) 1bit 8.5bit ( 7.5bit ) 9 Lena (H T ) (H R + H T ) 1, y = 1.163 10 6 7.5x y = 1.166 10 6 13x ( x = H T, y = H R + H T ) H R 0, H T 0 H R 0 0.581 [bpp]( 1) 0.315 [bpp]( ) 5. GAP 5 c 009 Information Processing Society of Japan

total info (H R + H T ) [bits] tree info (H T ) [bits] 0000 18000 16000 14000 1000 10000 8000 6000 4000 000 total info (H R + H T ) [bits]-1.148e+6 tree info (H T ) [bits]*7.5 0 04/13 04/14 04/15 04/16 04/17 04/18 04/19 04/0 04/1 04/ 04/3 total information (H R + H T ) [bits] 1.17e+06 1.165e+06 1.16e+06 1.155e+06 1.15e+06 trial 1-7.5 bits/tree slope trial -13 bits/tree slope 1.145e+06 0 00 400 600 800 1000 100 1400 1600 1800 000 tree information (H T ) [bits] 8 (H R + H T 1.148 10 6 ) (H T 7.5) ( ). : Lena, Fig. 8 Transitions of total information (H R + H T 1.148 10 6 ) and tree information (H T 7.5), after parallelization. Horizontal axis means the date. Image: Lena, trial: 1. 9 (H T ) (H R + H T ). : Lena Fig. 9 Tree information (H T ) vs. total information (H R + H T ) and their trends. (LE 3.0 %, GAP 3.4 %) GPU 9) Genetic Network Programming 10) 1),, :,, vol. 108, no. 45, IE008-10, pp. 37 40, Feb. (009) ),,, :, D-II, vol. J83-D-II, no. 5, pp. 174 183, May (000). 3),,, :, D-II vol. J83-D-II, no. 6, pp. 1437 1445, June (000). 4), : GP GA PT-ACTIT,, vol. 59, no. 11, pp. 1687 1693, Nov. (005). 5), :, 30, Mar. (003). 6) ISO/IEC 14495-1: Lossless and near-lossless compression of continuous tone still images (000). 7),, :,, vol. 1, no. 5, pp. 734 744, Sep. (1997). 8) Wu, X. and Memon, N.: Context-based, adaptive, lossless image coding, IEEE Trans. Commun., vol. 45, no. 4, pp. 437 444, Apr. (1997). 9), : GPU,. MPS,, vol. 85, pp. 71 74, Sep. (008). 10),,,, : Genetic Network Programming Genetic Programming, C vol. 11, no. 6, pp. 1001 1009 (001). 6 c 009 Information Processing Society of Japan