ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
|
|
- Ἀπολλόδωρος Γιάνναρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 1
2 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων 2. Optimal substructure 3. Αναδρομική σχέση για τη βέλτιστη λύση Η αναδρομική σχέση δίνει μία σειρά (order) των υποπροβλημάτων τέτοια ώστε καθένα μπορεί να λυθεί βέλτιστα δεδομένης των βέλτιστων λύσεων μικρότερων υπο-προβλημάτων (που εμφανίζονται νωρίτερα στη σειρά). ΑΛΓΟΡΙΘΜΟΣ 1. Μετάφραση της αναδρομικής σχέσης σε έναν επαναληπτικό αλγόριθμο (ΠΟΤΕ αναδρομικό) 2. Εύρεση πρώτα της τιμής της βέλτιστης λύσης 3. Εύρεση της ίδιας της βέλτιστης λύσης ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 2
3 Algorithm design methods DIVIDE AND CONQUER Non overlapping sub-problems Recursion can be used Tree GREEDY A sub-problem defines the next one A single (greedy) choice Chain DYNAMIC PROGRAMMING Overlapping sub-problems Recursion is forbidden Many choices for a sub-problem OPTIMAL SUB-STRUCTURE DAG ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 3
4 Longest Common Subsequence (LCS) ΕΙΣΟΔΟΣ: Δύο συμβολοσειρές X=x 1, x 2,,x m και Y=y 1, y 2,,y n ΕΡΩΤΗΣΗ: H LCS (όχι συνεχόμενη) των X και Y Εφαρμογή: Βιολογία, σύγκριση συμβολοσειρών DNA Παράδειγμα X = A B C B D A B Y = B D C A B A LCS(X,Y) = B C B A Η LCS δεν είναι συνεχόμενη ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 4
5 Longest Common Subsequence (LCS) Brute force: Σύγκρινε κάθε υπο-ακολουθία της X με την Y X = m, Y = n Υπάρχουν 2 m κάθε υπο-ακολουθίες της X Σύγκρινε κάθε μία με την Y (n συγκρίσεις - γιατί?) Πολυπλοκότητα O(n2 m ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 5
6 Longest Common Subsequence (LCS) X 1 i m Y 1 j n X i, Y j : προθέματα των X και Y με μήκη i και j Υπο-πρόβλημα: c[i,j] = Μήκος της LCS(X i, Y j ) Αρχικό πρόβλημα: c[m,n]=μήκος της LCS(X,Y) Optimal substructure: Έστω Z=z 1, z 2,,z k η LCS των X και Y, Z =k (i) If x m = y n,, then z k = x m = y n : η Z k-1 είναι LCS των X m-1 and Y n-1 (ii) If x m y n,, then (a) z k x m : η Z είναι LCS των X m-1 και Y (b) z k y n : η Z είναι LCS των X και Y n-1 Πρώτα θα βρούμε το μήκος της LCS(X,Y), και μετά την ίδια την LCS(X,Y) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 6
7 Longest Common Subsequence (LCS) Υπολογισμός του c[i,j] Μελετάμε δύο περιπτώσεις/επιλογές: 1) x i = y j Ένα ακόμη σύμβολο των X και Y ταιριάζει c [ i, j ] = c [ i-1, j-1 ] +1 2) x i y j Τα σύμβολα x i και y j δεν ταιριάζουν, η λύση δεν βελτιώνεται Το μήκος της LCS(X i, Y j ) είναι ίδιο με πριν c [ i, j ] = max { c [ i, j-1 ], c [ i-1, j ] Γιατί δεν παίρνουνε μόνο το μήκος της LCS(X i-1, Y j-1 )? Παράδειγμα: BBD A c(3,3)=2 BBA C c(4,4)= max{ c(4,3), c(3,4) } = max {3, 2) = 3 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 7
8 Longest Common Subsequence (LCS) H LCS δύο κενών συμβολοσειρών είναι κενή: c[,] = Η LCS μιας κενής συμβολοσειράς και οποιασδήποτε άλλης συμβολοσειράς είναι κενή: c[, j] = c[i,] =, i m, j n Αναδρομική σχέση: c[ i, j] c[ i max( c[ i, 1, j 1] 1 j 1], c[ i 1, j]) if if if i or j i, i, j and x j and x i i y y j j ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 8
9 Longest Common Subsequence (LCS) LCS-Length(X, Y) m = length(x) n = length(y) // # of symbols in X // # of symbols in Y for i = 1 to m: c[i,] = // special case: Y for j = 1 to n: c[,j] = // special case: X for i = 1 to m: // for all X i for j = 1 to n: // for all Y j if x i = y j : c[i,j] = c[i-1,j-1] + 1 else : c[i,j] = max(c[i-1,j], c[i,j-1]) Πολυπλοκότητα: O(mn) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 9
10 LCS example X = A B C B Y = B D C A B LCS(X, Y) = BCB i if x i = y j : c[i,j] = c[i-1,j-1] + 1 else : c[i,j] = max(c[i-1,j], c[i,j-1]) j y j B D C A B x i 1 A B C B ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 1
11 Longest Common Subsequence (LCS) Μέχρι τώρα έχουμε βρει το μήκος, c[m,n], της LCS(Χ,Υ) αλλά όχι την ίδια την LCS(Χ,Υ) Επέκταση του αλγορίθμου για να βρίσκει και την LCS(X,Y) Κάθε c[i,j] προκύπτει είτε από το c[i-1, j-1] ή από τα c[i-1,j] και c[i,j-1] Κοιτάζοντας τον πίνακα c μπορούμε να βρούμε πως προέκυψε κάθε c[i,j] Θυμηθείτε την αναδρομική σχέση: if i or j c [ i, j] c[ i 1, j 1] 1 if i, j and x i y j max( c [ i, j 1], c[ i 1, j]) if i, j and xi y j If x i =y j then c[i,j] = c[i-1, j-1] If x i y j then c[i,j] = max{c[i-1,j], c[i,j-1]} ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 11
12 Longest Common Subsequence (LCS) Αναδρομική σχέση c[ i, j] c[ i 1, j 1] 1 max( c[ i, j 1], c[ i 1, j]) if i or j if if i, i, j and j and x i x i y y j j Άρχισε από το c[m,n] και πήγαινε προς τα πίσω: If x i =y j then c[i,j] = c[i-1, j-1]+1) : κράτησε το x i, το x i ανήκει στην LCS(X,Y) πήγαινε στο c[i-1, j-1] If x i y j then c[i,j] = max{c[i-1,j], c[i,j-1]} If c[i,j] = c[i-1, j] < c[i, j-1]: πήγαινε στο c[i-1,j] If c[i,j] = c[i, j-1] < c[i-1, j] : πήγαινε στο c[i, j-1] If c[i,j] = c[i-1, j] = c[i, j-1]: πήγαινε είτε στο c[i-1,j] ή στο c[i, j-1] Ιf i= or j= output την LCS(X,Y) σε αντίστροφη σειρά ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 12
13 LCS example i j Y j B D C A B X i 1 A B C B LCS (reversed order): BCB LCS (straight order): BCB ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 13
14 Longest Common Subsequence (LCS) LCS (X, Y) m = length(x) n = length(y);... LCS length algorithm... k:=, i = m, j = n While i and j : if x i =y j : // c[i,j] = c[i-1, j-1]+1 k=k+1, LCS[k]=x i, i=i-1, j=j-1 else: // c[i,j] = max(c[i-1,j], c[i,j-1]) if c[i,j] = c[i-1, j]: i=i-1 else: j=j-1; for i= k downto 1: output LCS[i]; ΠΟΛΥΠΛΟΚΟΤΗΤΑ: Ο(mn) +? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 14
15 Edit distance Edit distance between two strings = the minimum number of edits insertions deletions substitutions to transform the first string into the second Alignment: writing the strings one above the other using spaces (-) # of edits = # of columns in which the characters of the strings differ Edit distance: the minimum cost over all possible alignments ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 15
16 Edit distance Example # of edits=3 # of edits=5 insert U insert S substitute O with N substitute S with U delete W delete O delete W insert N Too many possible alignments between two strings! How can we find the best alignment? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 16
17 Edit distance Dynamic Programming Strings X[1..m] and Y[1..n] X[1..i], i m-1 is a prefix of X Y[1..j], j n-1 is a prefix of Y Subproblem: E[i,j]) = Minimum Edit Distance between X[1..i] and Y[1..j] Optimal substructure: Consider the rightmost column of an optimal alignment In each of the cases (i) to (iv) below the Edit Distance of the prefixes in their right-hade side must be also optimal: (i) Match: E(i,j)= E(i-1,j-1) (ii) Substitute: E(i,j)= E(i-1,j-1) +1 (iii) Insert: E(i,j)= E(i,j-1)+1 (iv) Delete: E(i,j)= E(i-1,j) +1 Edit distance between X and Y = E[m,n] First we ll find the Edit distance, then the edits themselves ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 17
18 Edit distance Three choices for the rightmost column of an alignment: 1 + E(i-1, j) 1+ E(i, j-1) diff(i, j) + E(i-1, j-1) where diff 1 if x[i] y[j] if x[i] y[j] Base cases: E(,j) = j : alignment of empty string and Y[1..j] E(i,) = i : alignment of X[1..i] and empty string ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 18
19 Edit distance The subproblem E(7, 5), diff = N or - or N - N N E(7,5) = min {1+ E(6,5), 1+ E(7,4), +E(6,4) } ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 19
20 Edit distance Fill a two-dimensional array by solving subproblems Row by row or column by column match or subst delete insert x x x x x x = 6 edits ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 2
21 Edit distance Complexity: O(nm) Exercise: Extent the algorithm to find the actual edits ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 21
22 Longest Increasing Subsequence (LIS) ΕΙΣΟΔΟΣ: ακολουθία αριθμών Α=a 1, a 2,...,a n ΕΡΩΤΗΣΗ: υπο-ακολουθία ai, ai,..., ai, 1 i... ik n 1 2 k 2 τ.ω. a a... a και το μήκος της k είναι μέγιστο Παράδειγμα: Ακολουθία Α= i 1 i 2 i k LIS: 2, 3, 6, 9 k=4 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 22
23 Longest Increasing Subsequence (LIS) Αναγωγή στο LCS Έστω Α=a 1, a 2,...,a n η ακολουθία μας Ταξινομούμε τους αριθμούς στην Α παραλείποντας τους επαναλαμβανόμενους, έστω Β αυτή η ταξινομημένη ακολουθία Βρίσκουμε την LCS των Α και Β Παράδειγμα A = 5, 2, 8, 6, 3, 6, 9, 7 B = 2, 3, 5, 6, 7, 8, 9 LCS (A, B) = 2,3,6,9 =LIS (A) ΠΟΛΥΠΛΟΚΟΤΗΤΑ: O(n 2 ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 23
24 Longest Increasing Subsequence (LIS) Αναγωγή στο Edit distance Έστω Α=a 1, a 2,...,a n η ακολουθία μας Ταξινομούμε τους αριθμούς στην Α παραλείποντας τους επαναλαμβανόμενους, έστω Β αυτή η ταξινομημένη ακολουθία Βρίσκουμε την Edit Distance των Α και Β Παράδειγμα A = 5, 2, 8, 6, 3, 6, 9, 7 Β = 2, 3, 5, 6, 7, 8, 9 Edit distance των Α και Β LIS= οι αριθμοί που είναι ίδιοι στο alignment! ΠΟΛΥΠΛΟΚΟΤΗΤΑ: O(n 2 ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ Ι. ΜΗΛΗΣ 9 DP II 24
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ 08 DP I 1 Dynamic Programming Richard Bellman (1953) Etymology (at
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Greedy Algorithms 1 Greedy algorithms H βασική ιδέα: Άρχισε από ένα υπο-πρόβλημα μικρού μεγέθους Επαναληπτικά,
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Knapsack problems ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2017 - Ι. ΜΗΛΗΣ 10 DP III 1 Knapsack problems ΕΙΣΟΔΟΣ: Σακίδιο χωρητικότητας
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Αλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Αλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Δυναμικός Προγραμματισμός Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Δυναμικός Προγραμματισμός Δυναμικός Προγραμματισμός 1 Περίληψη
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf6/ Άνοιξη 06 - I. ΜΗΛΗΣ P NP και NP-complete προβλήματα (Κλάσεις Πολυπλοκότητας) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 06 - Ι. ΜΗΛΗΣ 5 NP-COMPLETENESS I Γιατί για πολλά προβλήματα
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Κεφάλαιο 4. Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 4 Δυναµικός Προγραµµατισµός (Dynamic Programming) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Τεχνικές Σχεδίασης Αλγορίθµων Απληστία. Χτίζουµε µια λύση σταδιακά, βελτιστοποιώντας
Δομές Δεδομένων & Αλγόριθμοι
- Πίνακες 1 Πίνακες Οι πίνακες έχουν σταθερό μέγεθος και τύπο δεδομένων. Βασικά πλεονεκτήματά τους είναι η απλότητα προγραμματισμού τους και η ταχύτητα. Ωστόσο δεν παρέχουν την ευελιξία η οποία απαιτείται
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Εισαγωγή στους Αλγορίθμους Ενότητα 11η
Εισαγωγή στους Αλγορίθμους Ενότητα 11η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Δυναμικός Προγραμματισμός Σταθμισμένος Χρονοπρογραμματισμός
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 17 Μέγιστη Κοινή Υπακολουθία
I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11
Αλγόριθμοι και Πολυπλοκότητα 2η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Δεκέμβριος 2018 (CoReLab - NTUA) Αλγόριθμοι - 2η σειρά ασκήσεων Δεκέμβριος 2018 1 / 64 Outline 1 Άσκηση
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε (γενικά) Χωρίζουµε
Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort
Εργαστήριο 7: Ο αλγόριθμος ταξινόμησης Radix Sort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Ο αλγόριθμος ταξινόμησης Radix Sort -Δυο εκδοχές: Most Significant Digit (MSD) και Least Significant
Μάθημα 20: Δυναμικός Προγραμματισμός (DP)
Μάθημα 20: Δυναμικός Προγραμματισμός (DP) Γενικά Είναι μια γενική μεθοδολογία και δεν υπάρχει ένα πρότυπο διατύπωσης /επίλυσης προβλημάτων Αρχικά ξεκίνησε σαν μαθηματική μέθοδος για τη λήψη σειράς αλληλοσυνδεόμενων
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων
Θέματα Εφαρμογών Βάσεων Δεδομένων: Ιδιωτικότητα Δεδομένων 3. Δυναμικός Προγραμματισμός Ζαγορίσιος Παναγώτης Παπαοικονόμου Χριστίνα Δυναμικός Προγραμματισμός Μέθοδος επίλυσης σύνθετων προβλημάτων. Όπως
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Προγραμματισμός Αναδρομή
Προγραμματισμός Αναδρομή Προγραμματισμός Προγραμματισμός Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Προγραμματισμός Αναδρομή
Αναδρομή Κλήσεις Συναρτήσεων Όταν καλείται μια συνάρτηση, πρέπει Να θυμάται σε ποιο σημείο του προγράμματος θα επιστρέψει Να δεσμεύσει χώρο για την τιμή που θα επιστρέψει Να δεσμεύσει χώρο για τα ορίσματα
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)
Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining) Εξόρυξη Χρονικής Γνώσης (temporal data mining) Γιάννης Θεοδωρίδης, Νίκος Πελέκης Οµάδα ιαχείρισης
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 8: Δυναμικός Προγραμματισμός. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 8: Δυναμικός Προγραμματισμός Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Αλγόριθμοι Ταξινόμησης Μέρος 3
Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 5 υναµικός Προγραµµατισµός Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 5 1 / 49 Εισαγωγή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;
ΚΥΠΡΙΚΗ ΜΘΗΜΤΙΚΗ ΤΙΡΙ ΠΡΧΙΚΟΣ ΙΩΝΙΣΜΟΣ 7//2009 ΩΡ 0:00-2:00 ΟΗΙΣ. Να λύσετε όλα τα θέματα. Κάθε θέμα βαθμολογείται με 0 μονάδες. 2. Να γράφετε με μπλε ή μαύρο μελάνι (επιτρέπεται η χρήση μολυβιού για τα
Notes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό. Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016
ΜΥΥ105: Εισαγωγή στον Προγραμματισμό Αναζήτηση και Ταξινόμηση Χειμερινό Εξάμηνο 2016 Αναζήτηση και Ταξινόμηση Βασικές λειτουργίες σε προγράμματα Αναζήτηση (searching): Βρες ένα ζητούμενο στοιχείο σε μια
Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ
ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ
14 Lesson 2: The Omega Verb - Present Tense
Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο
Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization)
Διάρκεια μιας Ομολογίας (Duration) Ανοσοποίηση (Immunization) Προσδιορισμός της Τιμής όταν η Ομολογία Αγοράζεται μεταξύ δύο Τοκοφόρων Περιόδων Για να υπολογίσουμε την τιμή της ομολογίας πρέπει: Υπολογίζουμε
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 3: Αλγοριθµική Ελαχιστοποίηση (Quine-McCluskey, tabular method) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα. Δυναμικός & Γραμμικός Προγραμματισμός Προβλήματα Ροές σε Δίκτυα Σταύρος Δ. Νικολόπουλος -7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ ΕΡΓΑΣΤΗΡΙΟ
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ ΕΡΓΑΣΤΗΡΙΟ Κωδικός Θ: ΤΠ3001, Κωδικός Ε: ΤΠ3101 (ΜΕΥ/Υ) Ώρες (Θ - Ε): 4-2 Προαπαιτούμενα: Δρ. ΒΙΔΑΚΗΣ ΝΙΚΟΣ ΕΡΓΑΣΤΗΡΙΟ 6 Στοίβα (Stack) Stack Introduction Stack is one of the
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης