Effects of Heat And Mass Transfer of Thin Film Region on the Stability of the Capillary Evaporating Meniscus

Σχετικά έγγραφα
High order interpolation function for surface contact problem

,,, (, ) , ;,,, ; -

ER-Tree (Extended R*-Tree)

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Motion analysis and simulation of a stratospheric airship

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

DuPont Suva 95 Refrigerant

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

CorV CVAC. CorV TU317. 1

DuPont Suva 95 Refrigerant

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Arbitrage Analysis of Futures Market with Frictions

Approximation Expressions for the Temperature Integral

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

[1] P Q. Fig. 3.1

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention


Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Research on Economics and Management

Quick algorithm f or computing core attribute

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

A summation formula ramified with hypergeometric function and involving recurrence relation

Higher Derivative Gravity Theories

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

College of Life Science, Dalian Nationalities University, Dalian , PR China.

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

X g 1990 g PSRB

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

2.1

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

PRESENTATION TITLE PRESENTATION SUBTITLE

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Durbin-Levinson recursive method

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Second Order Partial Differential Equations

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Graded Refractive-Index

Approximation of distance between locations on earth given by latitude and longitude

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

By R.L. Snyder (Revised March 24, 2005)

Homomorphism in Intuitionistic Fuzzy Automata

4.6 Autoregressive Moving Average Model ARMA(1,1)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Journal of the Institute of Science and Engineering. Chuo University

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Homework 3 Solutions

A research on the influence of dummy activity on float in an AOA network and its amendments

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

ΜΕΛΕΤΗ ΑΠΟΤΙΜΗΣΗΣ ΠΑΡΑΓΟΜΕΝΗΣ ΕΝΕΡΓΕΙΑΣ Φ/Β ΣΥΣΤΗΜΑΤΩΝ ΕΓΚΑΤΕΣΤΗΜΕΝΩΝ ΣΕ ΕΛΛΑ Α ΚΑΙ ΤΣΕΧΙΑ

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

GS3. A liner offset equation of the volumetric water content that capacitance type GS3 soil moisture sensor measured

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Prey-Taxis Holling-Tanner

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Adaptive grouping difference variation wolf pack algorithm

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΠΕ ΙΝΗΣ ΚΟΙΤΗΣ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ ΣΕ ΣΥΜΒΑΤΟΤΗΤΑ ΜΕ ΧΩΡΟΥΣ ΑΝΑΨΥΧΗΣ ΚΑΙ ΡΑΣΤΗΡΙΟΤΗΤΩΝ

«ΧΩΡΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΤΟΥ ΠΛΗΘΥΣΜΟΥ ΤΗΣ ΠΕΡΔΙΚΑΣ (ALECTORIS GRAECA) ΣΤΗ ΣΤΕΡΕΑ ΕΛΛΑΔΑ»

Transcript:

34 6 2013 6 Journal of Astronautics Vol. 34 June No. 6 2013 黄晓明 1, 吴江权 1, 刘伟 1 2, 郁伯铭 1. 430074 2. 430074 50% TK124 DOI 10. 3873 /j. issn. 1000-1328. 2013. 06. 019 A 1000-1328 2013 06-0873-08 Effects of Heat And Mass Transfer of Thin Film Region on the Stability of the Capillary Evaporating Meniscus HUANG Xiao-ming 1 WU Jiang-quan 1 LIU Wei 1 YU Bo-ming 1. School of Energy and Power Engineering of Huazhong University of Science and Technology Wuhan 430074 China 2. School of Physics Huazhong University of Science and Technology Wuhan 430074 China Abstract The stability of heated and evaporating capillary meniscus is crucially important for the operation of capillary pumped heat transfer devices. Since more than 50% of the mass transfer by evaporation occurs on a very small region socalled thin film region it is expected that the instability will arise from this region. To explain the stability mechanism of the meniscus effectively a new method that can skillfully combine the linear stability analysis with the numerical analysis of the meniscus is proposed in this paper. Numerical analysis is executed to acquire the characteristic thickness and length of thin film region and a linear stability criteria is calculated by using these two characteristic dimensions. By use of the combination of these two analysis methods the stability mechanism of an evaporating meniscus can be clearly disclosed especially about the effect of the temperature of the meniscus thermophysical properties of the working fluid and the dimensions of the capillary tube on the stability. The effectiveness of this method can be approved by the experimental results of some published references. Key words Capillary evaporating meniscus Linear stability analysis Heat and mass transfer Numerical analysis 0 Heat Pipe LHP 50% - - Microchannel Heat Pipe MHP Loop 2012-07-10 2013-01-01 51106057 2011QN150

874 34 2 thin film region 3 10 7 W /m 2 1 adsorbed region 2-4 Burelbach 5 long-wave evolution equations S. W. Joo 6 D. Pratt 7 CPL Heat Transfer Loop Buffon 8 PIV 1 Fig. 1 Schematic of evaporation meniscus within a cylindrical capillary pore 9 1 16 R 100nm y = h x t h x y t 1 1 1 one-sided model 5 lubrication theory 1 14 1 intrinsic 9 meniscus region h

6 875 ( ) 珘 h τ = - E 珔珘 Π^ 珘 h + K -1 0 h + h - ( ) 1 3 S 珘 h 3 珘 h - 2 E珔 2 D -1 珘 h + K -3 珘 h 3 珘 h 3-1 Ma [ 珘 h + K 2 Pr [ -1 珘 h ] 2 珘 h ] 1 2 珘 h 珘 h = ΔT ΔT cr = 8 珔 Ax c γh 3 0 h /h 0 η x y Hamaker Marangoni Prandtl ΔT cr h 0 x c E 珔 = EX = kδt D = ρνh fg h0 ρ v x c ρ S = σ 0h 3 0 ρν 2 x c Π^ = 珔 A Ma = c pγδth 2 0 P ρν 2 h 0 x c νk r = μc p k k c P ν h fg σ 0 γ 1 σ = σ 0 - γt 珔 A Hamaker Hamaker A 珔 A = A /6π 1 1 2 2 3 Derjaguin 13 Wayner 14 4 5 Young-Laplace 1 2 4 3 5 Kelvin-Clapeyron 1 d σδ 3σδ'δ 2 dx 1 + δ '2 1. 5-1 + δ '2 2. 5 ΔT < 8 珔 Ax c γh 3 0 2 T w ΔT = T w - T v ΔT 2 ΔT cr = x /x c η = y /h 0 h 0 x c x y η τ ΔT cr 2 η τ E珔 E 珔 D S Π^ Ma Pr Marangoni Hamaker 7 9 1 /r 2 δ ( [ ] 3 ) - 3Aδ' δ 4 3ν = - m 3 δ δ' δ 2 ΔT m Schrage 15 T v

876 34 m = 2^σ 2 - ^σ ( ) 珚 M 2πR g ( ) 1/2 P v_equ T lv - P v 4 2 T lv 1/2 T v 1/ ^σ M珚 R g T lv T v P v P v_equ P v_equ T lv = [ ] P sat T lv exp P v_equ T lv - P sat T lv - P d + P c ρ l T lv R g /M [ ( ) ] P sat T lv = P sat_ref T sat_ref exp Mh fg 1 R g T sat_ref - 1 T lv T lv m T lv = - m h fg /k l δ + T w 5 Runge-Kutta 3 ~ 5 2 1nm 2 2 a Pratt 7 2 a 2 Fig. 2 The effect of superheat on the evaporating P d characteristic of the meniscus R = 2500nm T v = 320K 2 b 3 2 c x 3. 1 2 2 Pratt 7 x c

6 877 P d P d P d = 1 /2000P d0 3 x c 2 Fig. 4 4 h 0 Critical superheat variation with temperature of meniscus based on different h 0 Pentane R = 2500nm ΔT = 1K Fig. 3 3 Length of the thin film region with different super heat h 0 h 0_m h 0_T h 0_a T v 4 4 h 0_m 5 5 Fig. 5 The effect of meniscus temperature on the a evaporating characteristic of the thin film region Pentane R = 2500nm ΔT = 1K 4 h 0_T 5 b

878 34 25000nm ΔT = 5K h 0_a ΔT = 10K Pratt 7 Buffone 8 4 1K 3. 2 6 h 0_a 7 Fig. 7 Critical superheat variation with tube radius 0. 1 ~ 0. 2KPratt at different evaporating condition Pentane T v = 300K 10 5 3. 4 K /m 8 Pentane R = 2500nm ΔT = 1K 3. 3 7 h 0_a ΔT = 1K ΔT = 5K ΔT = 10K Buffone Buffone 8 9 6 h 0_a 9 a Fig. 6 Critical superheat variant with temperature of meniscus basing on average film thickness 9 b

6 879 9 evaporating /condensing liquid films J. J. Fluid Mech 1988 Fig. 9 Evaporating characteristic of the thin film region for different working fluid T v = 300K ΔT = 1K 4 1 8 Fig. 8 Critical superheat at variant superheat for different working fluid R = 2500nm T v = 300K 2 3 1 Holm F W Goplen S P. Heat transfer in the meniscus thin-film transition region J. ASME. Heat Transfer 1979 101 543-547. 2 Maroo S C Chung J N. Heat transfer charac-teristics and pressure variation in a nanoscale evaporating meniscus J. Int. J. Heat and Mass Transfer 2010 53 3335-3345. 3 Dhavaleswarapu H K Murthy J Y Garimella S V. Numerical investigation of an evaporating meniscus in a channel J. Int. J. Heat and Mass Transfer 2012 55 915-924. 4 Harmand S Sefiane K. Experimental and theoretical investigation of the evaporation and stability of a meniscus in a flat micro-channel J. Int. J. Thermal Sciences 2011 50 1845-1852. 5 Burelbach J P Bankoff S G Davis S H. Nonlinear stability of 195 463-494. 6 Joo S W Daivs S H Bankoff S G. Long-wave instabilities of heated falling films two dimensional theory of uniform layers J. Journal of Fluid Mech 1991 230 117-146. the stability of a heated curved meniscus J ASME 1998 120 220-226. an evaporating liquid-vapor interface J 7 Pratt D M Brown J R Hallinan K P. Thermocapillary effects on. J. Heat Transfer 8 Buffone C Sefiane K Easson W. Marangoni-driven instability of 71 056302.. Phys. Rev. E 2005 9 Kaya T. J. 2010 31 5 1487-1494.

880 34 Huang Xiao-ming Kaya T. A linear stability analysis based explicit stability criterion of capillary evaporating meniscus J. J. Astronautics 2010 31 5 1487-1494. 10 Dasgupta S Kim I Y Wayner P C. Use of the Kelvin-Clapeyron equation to model an evaporateing curved microfilm J. Journal of Heat Transfer 1994 116 1007-1015. 11 Wang H Garimella S V. Characteristics of an evaporating thin film in a microchannel J. Int. J Heat Mass Transfer 2007 50 163-172. 12 Kaya T. J. 2010 44 3 21-25. Huang Xiao-ming Kaya T. Heat and mass transfer characteristics and stability of capillary evaporating meniscus J. Journal of Xi an Jiaotong University 2010 44 3 21-25. 13 Derjaguin B V. Definition of the concept of andrnagnitude of the disjoining pressure and its role in the statics and kinetics of thin layers of liquids J. Colloid J. USSR 1955 17 191-197. 14 Potash M Wayner P C. Evaporation from a two-dimensional extended meniscus J. Int. J. Heat Mass Transfer 1972 15 1851-1863. 15 Schrage R W. A theoretical study of interface mass transfer M. Columbia University Press New York 1953. 16 Hallinan K P Chebaro H C Kim S J et al. Evaporation from an extended meniscus for non-isothermal interfacial conditions J. J. Thermo-physics and Heat Transfer 1994 8 4 709-716. 1976-430074 027 87542618-603 E-mail xmhuang@ hust. edu. cn