Cosmological dynamics and perturbations in Light mass Galileon models

Σχετικά έγγραφα
Dark matter from Dark Energy-Baryonic Matter Couplings

Higher Derivative Gravity Theories

Space-Time Symmetries

Geodesic Equations for the Wormhole Metric

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

4.6 Autoregressive Moving Average Model ARMA(1,1)

Finite Field Problems: Solutions

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Matrices and Determinants

EE512: Error Control Coding

Non-Gaussianity from Lifshitz Scalar

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

D Alembert s Solution to the Wave Equation

Homework 3 Solutions

Example Sheet 3 Solutions

Local Approximation with Kernels

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Cosmology with non-minimal derivative coupling

Section 8.3 Trigonometric Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( y) Partial Differential Equations

Cosmological Space-Times

Second Order Partial Differential Equations

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

the total number of electrons passing through the lamp.

Srednicki Chapter 55

[Note] Geodesic equation for scalar, vector and tensor perturbations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

The Simply Typed Lambda Calculus

Derivation of Optical-Bloch Equations

Section 7.6 Double and Half Angle Formulas

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Forced Pendulum Numerical approach

Homework 8 Model Solution Section

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

The ε-pseudospectrum of a Matrix

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1 String with massive end-points

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Second Order RLC Filters

2 Composition. Invertible Mappings

Lifting Entry (continued)

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Exercises to Statistics of Material Fatigue No. 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Risk! " #$%&'() *!'+,'''## -. / # $

Homework 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

( ) 2 and compare to M.

Strain gauge and rosettes

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

[1] P Q. Fig. 3.1

The challenges of non-stable predicates

Lecture 26: Circular domains

Numerical Analysis FMN011

Tutorial problem set 6,

Solution Series 9. i=1 x i and i=1 x i.

Cosmological Perturbations from Inflation

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ST5224: Advanced Statistical Theory II

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Variational Wavefunction for the Helium Atom

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

What happens when two or more waves overlap in a certain region of space at the same time?

Every set of first-order formulas is equivalent to an independent set

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Statistical Inference I Locally most powerful tests

Symmetric Stress-Energy Tensor

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

derivation of the Laplacian from rectangular to spherical coordinates

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Areas and Lengths in Polar Coordinates

Higher spin gauge theories and their CFT duals

Reminders: linear functions

Math221: HW# 1 solutions

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Tridiagonal matrices. Gérard MEURANT. October, 2008

Notes on the Open Economy

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Transcript:

Cosmological dynamics and perturbations in Light mass Galileon models Md. Wali Hossain APCTP Pohang, Korea Collaborators: A. Ali, R. Gannouji and M. Sami 13 th December, 2017, CosPA 2017, YITP, Kyoto University, Japan

Plan Introduction to Light Mass Galileon Background Cosmology First and Second Order Perturbations 2/28

Cosmic History Figure: Cosmic history. Picture is taken from wfirst.gsfc.nasa.gov. 3/28

Cosmic acceleration = Equation of state = w = Pressure/Density < 1 3. Observationally = w inf 1 and also currently w DE,0 1. 4/28

Cosmic acceleration = Equation of state = w = Pressure/Density < 1 3. Observationally = w inf 1 and also currently w DE,0 1. Inflation: L = µ φ µ φ+v(φ). φ is a scalar field. V Φ Slow Roll Reheating Φ 4/28

Cosmic acceleration = Equation of state = w = Pressure/Density < 1 3. Observationally = w inf 1 and also currently w DE,0 1. Inflation: L = µ φ µ φ+v(φ). φ is a scalar field. V Φ Dark Energy: Simplest candidate can be Λ. Fine tuning problem = ρ Λ,obs ρ Λ,theo = 10 120 Slow Roll Reheating Cosmic Coincidence = ρ Λ ρ m0. Φ Alternatives = Make DE dynamical = Modification of gravity. 4/28

Horndeski Lagrangian Most general scalar-tensor Lagrangian 5 L = c i L i i=1 L 2 = K(φ,X), L 3 = G 3 (φ,x) φ, [ L 4 = G 4 (φ,x)r +G 4X (φ,x) ( φ) 2 ( µ ν φ) 2], L 5 = G 5 (φ,x)g µν µ ν φ 1 [ 6 G 5X(φ,X) ( φ) 3 3 φ( µ ν φ) 2 +2( µ ν φ) 3], with K and G i (i = 3,4,5) are arbitrary functions of φ and X = 1 2 µφ µ φ and G ix = G i / X. Second order equation of motion. 5/28

Light Mass Galileon K(φ,X) = X V(φ), G 3 (φ,x) = 2X and G 4 = G 5 = 0. L 2 = 1 2 ( µφ) 2 V(φ), L 3 = ( µ φ) 2 φ, 6/28

Light Mass Galileon K(φ,X) = X V(φ), G 3 (φ,x) = 2X and G 4 = G 5 = 0. L 2 = 1 2 ( µφ) 2 V(φ), L 3 = ( µ φ) 2 φ, if V(φ) φ then φ-field preserves galilean shift symmetry in the flat space time = Galileon field. φ φ+b µ x µ +c µ φ µ φ+b µ There are five Lagrangians which preserve the shift symmetry and give second order equation of motion. 6/28

Galileon Lagrangian 5 L = c i L i i=1 L 1 = M 3 φ, L 2 = 1 2 ( µφ) 2, L 3 = 1 M 3( µφ) 2 φ, L 4 = 1 M 6φ ;µφ ;µ[ 2( φ) 2 2φ ;µν φ ;µν 1 2 Rφ ;µφ ;µ], L 5 = 1 M 9φ ;µφ ;µ[ ( φ) 3 3( φ)φ ;µν φ ;µν +2φ µν φ ;µρ φ ;ν ;ρ 6φ ;µφ ;µν φ ;ρ G νρ ]. Second order equation of motion. Can explain late time acceleration of the Universe. Local physics is restored through the Vainshtein mechanism. 7/28

The Model A. Ali, R. Gannouji, MWH and M. Sami, Phys. Lett. B 718, 5 (2012) MWH, Phys. Rev. D 96, no. 2, 023506 (2017) Action S = d 4 x [ M 2 pl g 2 R 1 2 ( φ)2( 1+ α ) ] M 3 φ V(φ) [ ] +S m ψ m ;e 2βφ/M pl g µν EH action is modified with Galileon Lagrangian L (2) and L (3) and with a potential = Only L (2) and L (3) can t give late time accelaration. Potential is added phenomenologically to get accelaration. Potential = breaks shift symmetry even in the flat background. Non-linear self interaction term of the galileon field plays the main role to preserve the local physics through Vinshtein mechanism. 8/28

V = V 0 (cosh(αφ/m Pl ) 1) p V. Sahni and L. M. Wang, PRD 62, 103517 (2000). ( ) ) p αφ V = V 0 (cosh 1 M Pl 9/28

V = V 0 (cosh(αφ/m Pl ) 1) p V. Sahni and L. M. Wang, PRD 62, 103517 (2000). ( ) ) p αφ V = V 0 (cosh 1 M Pl V(φ) = V 0 2 eαpφ/m Pl, for V(φ) = V ( ) 2p 0 αφ, for 2 M Pl αφ M Pl 1, φ > 0 αφ M Pl 1 M. S. Turner, PRD 28, 1243 (1983). 9/28

V = V 0 (cosh(αφ/m Pl ) 1) p V. Sahni and L. M. Wang, PRD 62, 103517 (2000). ( ) ) p αφ V = V 0 (cosh 1 M Pl V(φ) = V 0 2 eαpφ/m Pl, for V(φ) = V ( ) 2p 0 αφ, for 2 M Pl αφ M Pl 1, φ > 0 αφ M Pl 1 M. S. Turner, PRD 28, 1243 (1983). ρ φ = ρ φ0 a 6p/(p+1) 9/28

V = V 0 (cosh(αφ/m Pl ) 1) p V. Sahni and L. M. Wang, PRD 62, 103517 (2000). ( ) ) p αφ V = V 0 (cosh 1 M Pl V(φ) = V 0 2 eαpφ/m Pl, for V(φ) = V ( ) 2p 0 αφ, for 2 M Pl αφ M Pl 1, φ > 0 αφ M Pl 1 M. S. Turner, PRD 28, 1243 (1983). ρ φ = ρ φ0 a 6p/(p+1) V. Sahni and L. M. Wang, PRD 62, 103517 (2000). 1 2 < w φ >= φ 2 V(φ) 1 φ 2 2 +V(φ) = p 1 p +1. 9/28

V = V 0 (cosh(αφ/m Pl ) 1) p α = 20 and p = 1. 1.0 1.5 0.5 V Φ Ρc0 1.0 wφ 0.0 0.5 0.5 0.0 0.10 0.05 0.00 0.05 0.10 Φ Mpl 1.0 2 0 2 4 6 Log 10 1 z 10/28

V = V 0 (cosh(αφ/m Pl ) 1) p α = 20 and p = 1. 1.0 1.5 0.5 V Φ Ρc0 1.0 wφ 0.0 0.5 0.5 0.0 0.10 0.05 0.00 0.05 0.10 Φ Mpl 1.0 2 0 2 4 6 Log 10 1 z α = 30 and p = 0.1. V Φ Ρc0 3.0 2.5 2.0 1.5 1.0 wφ 1.0 0.5 0.0 0.5 0.5 0.4 0.2 0.0 0.2 0.4 Φ Mpl 1.0 2 0 2 4 6 Log 10 1 z 10/28

V = V 0 e µ 1φ/M Pl +e µ 2φ/M Pl T. Barreiro, E. J. Copeland and N. J. Nunes, PRD 61, 127301 (2000) ) V = V 0 (e µ1φ/m Pl +e µ2φ/m Pl. 2.0 1.8 1.6 V Φ 1.4 1.2 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Φ M pl Figure: µ 1 = 20 and µ 2 = 0.1. 11/28

V = V 0 e µ 1φ/M Pl +e µ 2φ/M Pl T. Barreiro, E. J. Copeland and N. J. Nunes, PRD 61, 127301 (2000) ) V = V 0 (e µ1φ/m Pl +e µ2φ/m Pl. V Φ 2.0 1.8 1.6 1.4 1.2 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Φ M pl Figure: µ 1 = 20 and µ 2 = 0.1. V Φ 2.0 1.8 1.6 1.4 1.2 0.0 0.1 0.2 0.3 0.4 0.5 Φ M pl Figure: µ 1 = 20 and µ 2 = 1. 11/28

Cosmological Evolution 30 ρm 20 ρ ϕ ρr 0.5 weff wϕ Log 10 (ρ/ρc0) 10 0 w 0.0-0.5-10 -1.0-2 0 2 4 6 8 Log 10 (1+z) -2 0 2 4 6 8 Log 10 (1+z) 1.0 0.8 0.6 m r 0.4 0.2 0.0 Φ 0 1 2 3 4 5 Log 1 z Figure: µ 1 = 20, µ 2 = 0.1 and β = 0.01. 12/28

Cosmological Perturbation We consider the following metric in the Newtonian gauge ds 2 = a(τ) 2[ (1+2Φ)dτ 2 +(1 2Ψ)d x 2], where τ is the conformal time, Φ and Ψ are the scalar perturbations of the metric. We expand the perturbations in series, Φ = Φ 1 + 1 2! Φ 2 + 1 3! Φ 3 +, Ψ = Ψ 1 + 1 2! Ψ 2 + 1 3! Ψ 3 +, 13/28

Linear Perturbation A. Ali, R. Gannouji, MWH and M. Sami, Phys. Lett. B 718, 5 (2012) MWH, Phys. Rev. D 96, no. 2, 023506 (2017) Equation for the linear density contrast in subhorizon (k 2 H 2 ) and quasistatic ( φ H φ k 2 φ ) approximations, δ 1 +(H+ β M Pl φ) δ 1 4πG eff a 2 ρ m δ 1 = 0 G eff G eff = G 1+ ( α M 3 a 2 M φ2 Pl +2β ) 2 4α M 3 a 2 ( φ+h φ ) 2 α2 M 6 a 4 M 2 Pl φ 4 14/28

Evolution of G eff 1.5 1.4 Geff G 1.3 1.2 1.1 1.0 0 1 2 3 4 5 Log 1 z Figure: Evolution of G eff /G with µ 1 = 20, µ 2 = 0.5 and β = 0.5. 15/28

Growing and decaying modes: Integral solutions MWH, Phys. Rev. D 96, no. 2, 023506 (2017) Using the transformation ã = a e βφ/m Pl Evolution equation of the density contrast can be written as δ 1 + H δ 1 4π G eff ã 2 ρ m δ 1 = 0 where G eff H = 1 dã ã dτ = H+ β dlnã φ = H M Pl dlna = G eff e (2β/M Pl)φ 16/28

Growing and decaying modes: Integral solutions Growing Mode D + (ã) = ã 7/4 m e 3βφm/4M Pl ( A(φm ) A(φ 0 ) ) 1/2 γ(ã) H 0 ã H Decaying Mode D (ã) = ãm 3/4 e7βφm/4m Pl [ 1 5 1 2ã m A(φ m ) ( ) 1/2 A(φm ) γ(ã) A(φ 0 ) ã ã dã ] ã m γ 2 (ã ) H 0 H 17/28

Growing and decaying modes: Integral solutions Where, A(φ) = dlnã dlna = 1+ β M Pl dφ dlna And γ 2 (ã) = e ã ãm dã g(ã ) Where g(ã ) satisfies dg(ã) dã 1 2 g2 (ã)+2i(ã) = 0 With I(ã) = A(ã)+ 1 d H ( ã H dã 1 d H ) 2 + 1 d 2 H 4 H 2 dã 2 H dã 2 A(ã) = 4π G eff ρ m H 2 18/28

Density Contrast D+(z)/a 1.5 1.4 1.3 1.2 1.1 β=0 β=0.1 β=0.2 ΛCDM 1.0 0.0 0.5 1.0 1.5 Log 10 (1+z) D+(z)/a 1.05 1.00 0.95 β=0.2 0.90 β=0.1 0.85 β=0 0.80 ΛCDM 0.75 0.0 0.5 1.0 1.5 Log 10 (1+z) Figure: µ 1 = 20, µ 2 = 0.1 and β = 0, 0.1, 0.2. 19/28

Density Contrast: Comparison 0.8 0.6 δ1(z), D+(z) 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Log 10 (1+z) Figure: µ 1 = 20, µ 2 = 0.1 and β = 0.1. 20/28

Power spectrum and fσ 8 (k) (h -3 Mpc 3 ) 10 4 5000 1000 500 100 50 z=0 β=0.2 β=0.1 β=0 z=1 fσ8(z) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 β=0.2 β=0.1 β=0 0.001 0.010 0.100 1 k (hmpc -1 ) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 z Figure: µ 1 = 20, µ 2 = 0.1 and Ω b = 0.04, Ω m = 0.3 and n s = 0.968. 21/28

Second Order Perturbation Equation for the second order density contrast, ( δ 2 + H+ β ) φ δ 2 4πG eff a 2 ρ m δ 2 =S δ M Pl Fourier transform of S δ can be written as S δ (a, k) = d 3 k 1 d 3 k 2 δ (3) ( k k 1 k 2 )K(a, k 1, k 2 )δ 1 (a, k 1 )δ 1 (a, k 2 ) 22/28

Second Order Perturbation Second Order Density Contrast ã δ 2 (ã, k) = D + (ã)δ 2 ( k) D + (ã) ã D + (ã )Ŝδ(ã, +D (ã) k) ã m ã 2 H 2 (ã )W r (ã ) dã D (ã )Ŝδ(ã, k) ã m ã 2 H 2 (ã )W r (ã ) dã W r (ã) = D + (ã) dd (ã) dã D (ã) dd +(ã) dã 23/28

Second Order Perturbation δ(ã, k) = δ 1 (ã, k)+ 1 2 δ 2(ã, k) = D + (ã)δ 1 ( k)+ d 3 k 1 d 3 k 2 δ (3) ( k k 1 k 2 ) F 2 (ã, k 1, k 2 )δ 1 (ã, k 1 )δ 1 (ã, k 2 ) Second Order Kernel F 2 (ã, k 1, k 2 ) = ã dã D(ã,ã )K(ã, k 1, k 2 ) ã m 2ã 2 H 2 (ã )W r (ã ) ( ) D(ã,ã ) = D2 + (ã ) D+(ã) 2 D (ã)d + (ã ) D + (ã)d (ã ) 24/28

Bispectrum δ(τ, k)δ(τ, k )δ(τ, k ) = δ (3) ( k + k + k )B(τ,k,k ) B(τ,k,k ) = 2F 2 ( k, k )P(k)P(k )+cyc Q = B(τ,k,k ) P(τ,k)P(τ,k )+P(τ,k )P(τ,k )+... 25/28

Bispectrum (θ) 1.0 0.8 0.6 0.4 0.2 (θ) 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.0 0.0 0.2 0.4 0.6 0.8 1.0 θ/π 0.7 0.0 0.2 0.4 0.6 0.8 1.0 θ/π Figure: µ 1 = 20, µ 2 = 0.1 and k = k = 0.01 hmpc 1 and 5k = k = 0.05 hmpc 1 for β = 0, 0.5 and ΛCDM. 26/28

Summary We have discussed the effect of the conformal coupling at the perturbation level in a tracker scalar field model with a cubic Galileon correction term. Integral solution of the growing and decaying modes are calculated in the subhorizon approximation. Effect of the conformal coupling constant on matter power spectrum and bispectrum has been observed. The power spectrum changes for different conformal constant but there is no significant change in the reduced bispectrum. Comparison with fσ 8 data shows that higher values of the conformal constant can be ruled out. 27/28

THANK YOU 28/28