172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Σχετικά έγγραφα
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

Statistical Inference I Locally most powerful tests

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Other Test Constructions: Likelihood Ratio & Bayes Tests

Research on Economics and Management

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Ο παράγοντας Φ του Bayes Σύντομη αναφορά σε έναν εναλλακτικό τρόπο λήψης στατιστικών αποφάσεων

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Prey-Taxis Holling-Tanner

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Solution Series 9. i=1 x i and i=1 x i.

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

FORMULAS FOR STATISTICS 1

Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Lecture 34 Bootstrap confidence intervals

Congruence Classes of Invertible Matrices of Order 3 over F 2

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Bayesian modeling of inseparable space-time variation in disease risk

552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Μηχανική Μάθηση Hypothesis Testing

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Homework 8 Model Solution Section

ST5224: Advanced Statistical Theory II

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Theorem 8 Let φ be the most powerful size α test of H

ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL

Exercises to Statistics of Material Fatigue No. 5

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

IMES DISCUSSION PAPER SERIES

!! " # $%&'() * & +(&( 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Applying Markov Decision Processes to Role-playing Game

Homomorphism of Intuitionistic Fuzzy Groups

Lecture 21: Properties and robustness of LSE

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Approximation of distance between locations on earth given by latitude and longitude

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

6.3 Forecasting ARMA processes

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Supplementary Appendix

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS


The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

27/2/2013

794 Appendix A:Tables

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Test Data Management in Practice

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

EE512: Error Control Coding

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Reminders: linear functions

OLS. University of New South Wales, Australia

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Exercise 2: The form of the generalized likelihood ratio

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

STAT200C: Hypothesis Testing

The ε-pseudospectrum of a Matrix

An Inventory of Continuous Distributions

Αξιολόγηση της αισθητικής αξίας δασογεωργικών και γεωργικών συστημάτων

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Second Order Partial Differential Equations

Global energy use: Decoupling or convergence?

DOI /J. 1SSN

Homomorphism in Intuitionistic Fuzzy Automata

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Περίπτωση ασθενούς µε ιδιαίτερα ανθεκτική υπέρταση επιτυχώς αντιµετωπισθείσα µε απονεύρωση νεφρικών αρτηριών

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Transcript:

20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ 0 H 1 : θ θ 0. θ : P(θ = θ 0 ) = π 0, θ θ 0 π 1 g 1 (θ), π 1 = 1 π 0, g 1 (θ),. nz = n x θ 0 /σ P, H 0 α 0 1. Lindley [1][2],. BergerSellke (1987):, π 0 = 0.5, n, g 1 (θ), α 0 P, Berger-Sellke. P, H 0, α 0,.,.,, π 0, g 1 (θ)α 0. α 0 α 0. Lindley (1997)Lavine(1999)α 0. P (),. P H 0., H 0 : θ = 50 H 1 : θ 50. σ = 1, n = 2500, x = 50.1, : z = 5, P = 2[1 Φ(5)] = 5.7 10 7., P 2008321, 2009123.

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : CasellaBerger (1987), Gomez-VillegasSanz (1998, 2000), OhDasGupta (1999), Gomez-Villegas(2002), MicheasDcy (2003), De la Horra (2005), MicheasDey (2007). P., P, P..,.., 2.54.. ( ),,,,., k(k4 ),.,,.,,,,.,,. Wang (2006) (2007)P, P, Wang (2006)P, P,, P. 2. P 2.1 P X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ 0 H 1 : θ θ 0. x = 1 n n n(x θ) n(x θ0 ) x i, z =, z 0 =, σ σ i=1

: P 173 Z. P 2P(Z > z 0 ), z 0 > 0; P = 2P(Z < z 0 ), z 0 < 0, P = P( Z > z 0 ) = 2[1 Φ( z 0 )], Φ( )., θ 0 = 0σ = 1, Y i = (X i θ 0 )/σ. : z 0 = nx, z = z 0 nθ. : H 0 : θ Θ 0 = {0}H 1 : θ Θ 1 = ( a, 0) (0, b), a, b > 0.,, θ 0, a = b., a b,. a = b, a b,. Θ = Θ 0 Θ 1. 2.2 Wang (2006)P P W P W P W = P θ=θ0 ( Z > z ) inf P( Z > z ). P( Z > z ) sup P( Z > z ) inf P W (a) = P W, z = z 0 nθ, P W (a) = P W (a) = = sup 2.3 P P F P F 2 P F = P( Z > z 0 ) inf P( Z > z 0 nθ ) P( Z > z 0 nθ ) inf P( Z > z 0 nθ ). P( Z > z 0 ) P( Z > z 0 + na) P( Z > max( z 0 na, 0)) P( Z > z 0 + na) Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] Φ[max( z 0 na, 0)]. (2.1) 2 P θ=θ0 (Z > z) inf P(Z > z) sup sup P(Z > z) inf P(Z > z), z 0 > 0; P θ=θ0 (Z < z) inf P(Z < z) P(Z < z) inf P(Z < z), z 0 < 0.

174 P F (a) = P F, Φ[z 0 + na] Φ[z 0 ] 2 P F Φ[z 0 + na] Φ[z 0 na], z 0 > 0; (a) = Φ[ na z 0 ] Φ[ z 0 ] 2 Φ[ na z 0 ] Φ[ z 0 na], z 0 < 0. 2.4 P F (a)p W (a) 2.1 : P F Φ( z 0 + na) Φ( z 0 ) (a) = 2 Φ( z 0 + na) Φ( z 0 na). (2.2) z 0 > na x > a, P F (a) = 2P W (a). z 0 > 0, z 0 < 0, (2.1) P W (a) = (2.2): P F (a) = 2P W (a),. 2.2 (1) dp F (a)/da < 0. (2) lim P F (a) = P, lim P F (a) = 1. a a 0 (3) sup P F (a) = 1, inf P F (a) = P. : (1) Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] Φ[ z 0 na]. P F Φ[ z 0 + na] Φ[ z 0 ] (a) = 2 Φ[ z 0 + na] Φ[ z 0 na]. F (a) = z > 0, F (a) < 0. F (a) = = Φ(z + a) Φ(z) Φ(z + a) Φ(z a), φ(z + a)[φ(z) Φ(z a)] φ(z a)[φ(z + a) Φ(z)] [Φ(z + a) Φ(z a)] 2 φ(z + a) [Φ(z) Φ(z a)] e 2az [Φ(z + a) Φ(z)] 2π [Φ(z + a) Φ(z a)] 2, φ( ). G(a) = [Φ(z) Φ(z a)] e 2az [Φ(z + a) Φ(z)],

: P 175 G (a) = φ(z a) e 2az φ(z + a) 2ze 2az [Φ(z + a) Φ(z)] = 2ze 2az [Φ(z + a) Φ(z)] < 0. G(0) = 0, a > 0G(a) < 0, F (a) < 0dP F (a)/da < 0. > 0. (2) lim (a) a = lim Φ( z 0 + na) Φ( z 0 ) a Φ( z 0 + na) Φ( z 0 na) = 2[1 Φ( z 0 )] = P lim P F (a) = lim a 0 (3) (1)(2), Φ( z 0 + na) Φ( z0 ) a 0 Φ( z 0 + na) Φ( z 0 na) = 2 lim a 0 = 1. nφ( z0 + na) nφ( z0 + na) + nφ( z 0 na) sup P F (a) = lim P F (a) = 1, a 0 inf P F (a) = lim P F (a) = P. a 2.3 (1) lim P W (a) = P, lim P W (a) = 1. a a 0 (2) z 0 > na, x >a, dp W (a)/da<0. z 0 < na, x <a, dp W (a)/da (3) sup P W (a) = 1, ( inf P W (a) = P W z 0 ) = Φ(2 z 0 ) Φ( z 0 ) < P. n Φ(2 z 0 ) 0.5 (4) z 0 < na, x < a, P W (a) < P. : (1) (2.1), lim P W (a) = 1 Φ[ z 0 ] = 2[1 Φ[ z 0 ]] = P a 1 0.5

176 lim P W Φ[ z 0 + na] Φ[ z0 ] (a) = lim a 0 a 0 Φ[ z 0 + na] Φ[max( z 0 na, 0)] Φ[ z 0 + na] Φ[ z0 ] = lim a 0 Φ[ z 0 + na] Φ[ z 0 ] = 1. (2) z 0 > na, P F (a) = 2P W (a), z 0 < na, dp W (a)/da > 0. (3) (1)(2) (2)(2.1) dp W (a) da = 1 dp F (a) < 0; 2 da P W (a) = Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] 0.5, sup P W (a) = lim P W (a) = 1. a 0 ( inf P W (a) = P W z 0 ) = Φ(2 z 0 ) Φ( z 0 ) < lim n Φ(2 z 0 ) 0.5 P W (a) = P. a (4) z 0 < na, (2), dp W (a)/d; (4), lim P W (a)=p. P W (a)<p. a. 2.5 P F (a)p W (a) (1) P W (a), a < z 0 / n, a; a > z 0 / n, a.,!, 2.3 (4), a > z 0 / n, P W (a) < P. a > z 0 / n,., P W (a)p., P H 0, P W (a) P. (2) P F (a) P F (a)a,, a, H 0, P F (a)a. sup P F (a) = 1, inf P F (a) = P P F (a) H 0. inf P F (a) = P P F (a).

: P 177 3. H 0 : θ = 500H 1 : θ 500θ (500 t, 500 + t). x = 506, σ = 90, n = 800, z 0 = n(x θ 0 )/σ = 1.886, P = 2[1 2Φ(1.886)] = 0.059, t a P F P W P 4 0.044 0.2185 0.1092 0.059 4.5 0.05 0.1835 0.0917 0.059 5 0.056 0.1562 0.0781 0.059 6 0.067 0.1184 0.0592 0.059 7 0.078 0.0951 0.05931 0.059 8 0.089 0.0807 0.05934 0.059 9 0.1 0.0718 0.05935 0.059 : (1) a > z 0 / n, x (θ 0 t, θ 0 + t),, P W, P W, P,,.. (2) P F θ 2, P, (Θ), P F P, P F. : P F (a, b)p. [1] Shafer, G., Lindley s paradox, J. Amer. Statist. Assoc., 77(1982), 325 351. [2] Berger, J.O.,,, 1998. [3] Berger, J.O. and Sellke, T., Testing a point null hypothesis: the irreconcilability of P values and evidence (with discussion), J. Amer. Statist. Assoc., 82(1987), 112 139. [4] Lindley, D.V., Discussion forum: some comments on bayes factors, Journal of Statistical Planning and Inference, 61(1997), 181 189. [5] Lavine, M. and Schervish, M.J., Bayes factors: what they are and what they are not, The American Statistician, 53(2)(1999), 119 122. [6] Box, G.E.P., Sampling and Bayes inference in scientific modelling and robustness (with discussion), J. Roy. Statist. Soc. A, 143(1980), 383 430. [7] Guttman, L., The use of the concept of a future observation in goodness-of-fit problems, J. Roy. Statist. Soc. B, 29(1967), 83 100. [8] Rubin, D.B., Bayesianly justifiable and relevant frequency calculations for the applied statistician, Ann. Statist., 12(1984), 1151 1172. [9] Meng, X.L., Posterior predictive P-values, Ann. Statist., 22(1994), 1142 1160. [10] Gelman, A., Meng, X.L. and Stern, H., Posterior predictive assessment of model fitness via realized discrepancies (with discussion), Statistica Sinica, 6(1996), 733 807.

178 [11] De la Horra, J. and Rodriguez-Bernal, M.T., Bayesian robustness of the posterior predictive p-value, Commun. Statist. Theory-Meth., 32(2003), 1493 1503. [12] Bayarri, M.J. and Berger, J.O., P-values for composite null models, J. Amer. Statist. Assoc., 95(2000), 1127 1142. [13] Casella, G. and Berger, R.L., Reconciling Bayesian and frequentist evidence in the one-sided testing problem, J. Amer. Statist. Assoc., 82(1987), 106 111. [14] Gomez-Villegas, M.A. and Sanz, L., Reconciling Bayesian and frequentist evidence in the point null testing problem, Test, 7(1998), 207 216. [15] Gomez-Villegas, M.A. and Sanz, L., ε-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability, Statist. Probab. Lett., 47(2000), 53 60. [16] Oh, H.S. and DasGupta, A., Comparison of the P-value and posterior probability, Journal of Statistical Planning and Inference, 76(1999), 93 107. [17] Gomez-Villegas, M.A., Main, P. and Sanz, L., A suitable Bayesian approach testing point null hypothesis: some examples revisited, Commun. Statist. Theor. Meth., 31(2002), 201 217. [18] Micheas, A.C. and Dey, D.K., Prior and posterior predictive p-values in the one-sided location parameter testing problem, Sankhya, 65(2003), 158 178. [19] De la Horra, J., Reconciling classical and prior predictive P-values in the two-sided location parameter testing problem, Commun. Statist. Theor. Meth., 34(2005), 575 583. [20] Micheas, A.C. and Dey, D.K., Reconciling Bayesian and Frequentist Evidence in the One-Sided Scale Parameter Testing Problem, Communications in Statistics-Theory and Methods, 36(2007), 1123 1138, [21] Wang, H., Modified p-values for two-sided test for normal distribution with restricted parameter space, Communications in Statistics-Theory and Methods, 35(2006), 1361 1374. [22] Wang, H., Modified p-values for one-sided testing in restricted parameter space, Statistics and Probability Letters, 77(2007), 625-631. Modification of P -Value of Two-Sided Test with Restricted Parameter Space and Its Reconciliation with Bayesian Evidence Fu Junhe (Department of Information Management, College of International Business Management, Shanghai International Studies University, Shanghai, 200083 ) This paper makes research on modification of P -value of two-sided test with restricted parameter space and reconciling Bayesian test with classical test based on modified P -value, which shows that there exist critical defects in modified P -value put forward by Wang in 2006. This paper sets forth another modified P -value, which has comparative reasonable characteristics, based on which the conflict of Bayesian test and classical test can be reconciled to some extent. Keywords: Modified P -value, evidence, Bayesian, classical Statistics. AMS Subject Classification: 97K70.