Belle Hawaii activities in Belle New particles in BES & Belle

Σχετικά έγγραφα
Hadronic Tau Decays at BaBar

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Baryon Studies. Dongliang Zhang (University of Michigan) Hadron2015, Jefferson Lab September 13-18, on behalf of ATLAS Collaboration

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Charmonium experimental overview

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Matrices and Determinants

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Section 8.3 Trigonometric Equations

Three coupled amplitudes for the πη, K K and πη channels without data

Solar Neutrinos: Fluxes

Finite Field Problems: Solutions

HERA. Halle NORD (H1) Hall NORTH (H1) Hall nord (H1) Halle OST (HERMES) Hall EAST (HERMES) Hall est (HERMES)

Durbin-Levinson recursive method

Lecture 34 Bootstrap confidence intervals

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

The Simply Typed Lambda Calculus

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Solutions to Exercise Sheet 5

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

Section 9.2 Polar Equations and Graphs

Approximation of distance between locations on earth given by latitude and longitude

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Forced Pendulum Numerical approach

derivation of the Laplacian from rectangular to spherical coordinates

The challenges of non-stable predicates

2 Composition. Invertible Mappings

Right Rear Door. Let's now finish the door hinge saga with the right rear door

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Assalamu `alaikum wr. wb.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Section 7.6 Double and Half Angle Formulas

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Statistical Inference I Locally most powerful tests

CERN-ACC-SLIDES

5.4 The Poisson Distribution.

Homework 3 Solutions

Αναερόβια Φυσική Κατάσταση

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Example Sheet 3 Solutions

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Inverse trigonometric functions & General Solution of Trigonometric Equations

PARTIAL NOTES for 6.1 Trigonometric Identities

Areas and Lengths in Polar Coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

4.6 Autoregressive Moving Average Model ARMA(1,1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Homework 8 Model Solution Section

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CE 530 Molecular Simulation

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

UV fixed-point structure of the 3d Thirring model

( ) 2 and compare to M.

Nuclear Physics 5. Name: Date: 8 (1)

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CONSULTING Engineering Calculation Sheet

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Other Test Constructions: Likelihood Ratio & Bayes Tests

Monolithic Crystal Filters (M.C.F.)

Second Order RLC Filters

Derivation of Optical-Bloch Equations

[1] P Q. Fig. 3.1

Higher Derivative Gravity Theories

Μηχανική Μάθηση Hypothesis Testing

EE 570: Location and Navigation

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

Αναζητώντας παράξενα σωµατίδια στο ALICE

Στο εστιατόριο «ToDokimasesPrinToBgaleisStonKosmo?» έξω από τους δακτυλίους του Κρόνου, οι παραγγελίες γίνονται ηλεκτρονικά.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Numerical Analysis FMN011

Risk! " #$%&'() *!'+,'''## -. / # $

Lecture 26: Circular domains

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 21: Scattering and FGR

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Transcript:

Belle Hawaii activities in Belle New particles in BES & Belle S. L. Olsen

Belle highlights 2002-03 1 st measurement of φ 2 from B!π + π 1 st observation of B!K*l + l Discovery of a new charmonium state 1 st measurement of φ 3 (B!KD 0 Dalitz plot) Hint of new physics in B!φK S Measurement of Br(B!π 0 π 0 ) 1 st radiative charm decay D!φγ SM Belle has submitted/published 70 papers (30 since August 2002)

Papers primarily from Hawaii group New charmonium state (hep-ex/0309032) S.-K. Choi, S.L. Olsen et al., B!D CP K (hep-ex/0304032) S.K. Swain, T.E. Browder et al., (accepted by PRD) B B mixing with B!D*π (partial recon) PRD 67 092004 (2003) Y.H. Zheng, T.E. Browder et al., B!η c K* 1 st observation PRL 90, 071801 (2003) F. Fang, et al., B!hh PRD 66, 092002 (2002) B.C.K. Casey, et al., η c discovery PRL 89, 102001 (2002) S.-K. Choi, S.L. Olsen, et al., B!ppK 1 st observation (PRL --- F. Fang) A CP for B!h + h (PRD --- B. Casey) B-!K 1 (1270) J/ψ (PRL --- S.-K. Choi, S.L. Olsen))

Hawaii service in Belle TOF system (essential for all CPV studies) Calibration: Mike Jones Reconstruction: Mike Peters Tracking (essential to all analyses) Kalman filter (fitting): Karim Trabelsi K S!π+π selection: Fang Fang Trigger Level 0: Hulya Guler Level 1.5 (SVD-CDC matching): Kirika Uchida Background simulations (for SVD upgrade) Spent particles: Karim Trabelsi Synchrotron radiation: Sanjay Swain MC generator tuning: Rolf Seuster Event generation: Eric Dodson

Hawaii service in Belle (cont d) Utilities Run-by-run CM energy calibration: Sanjay Swain N(BB) determination: Sanjay Swain General event selection criteria: Brendan Casey SVD upgrade Electronics: Gary Varner Opto-Mechanical: Marc Rosen Software: Karim Trabelsi & Kirika Uchida Upgrades DAQ: Gary Varner & Yang Heng Zheng Pixels: Fang Fang Administrative Analysis coordinator: Tom Browder Co-spokesperson: S. Olsen

Other analyses underway CPV in B!D*ρ (Trabelsi & Peters) CPV in B!η c K S (Fang) CPV in B!D CP K (Swain, Kent) Charm fragmentation (Seuster) B!Kππ J/ψ & B! Kππψ ππψ (Guler) Search for 1 h c1 (i.e. 1 P c1 cc state) (Fang) B!η (980)X (Uchida) New particle searches (Olsen)

New particles in Belle & BES New state in B!K π + π J/ψ M ππj/ψ = 3872 MeV (= M D + M D* ) inconsistent with a cc state Low mass pp enhancement in J/ψ!γpp (BES) B! pp h (Belle) B Kpp??? J/ψ γ ψ γpp??? m(pp)

New state in B!K π + π J/ψ

DD* threshold DD threshold charmonium levels ψ ( 3 D c1 ) ψ 1 D c2 3 D c2 3 D c3 These are narrow if M<M D +M D* m=? η c 1 h 1? we found this last year in B!K K s Kπ η c η c J/ψ χ c0,1,2 cc level diagram:

B!K K S Kπ (η c studies) M bc for 40 MeV K S Kπ mass bins η c region what is this??? D c2!ggg? veto η c

Look for it in B!K π + π J/ψ (less background, better resolution) γχ c1 & B!K γχ 3 D c2!ππ J/ψ & γ χ c1 " allowed Γ(γ χ c1 ) > ~5 Γ(ππ J/ψ) 1 D c2!ππ J/ψ & γ χ c1 " not allowed

M(π + π l + l ) M(l + l ) ψ!ππ ππj/ψ?

M bc for 10 MeV M(ππ ππj/ψ) bins ψ!ππ ππj/y X!ππ ππj/ψ signal!!

Magnify signal region

E plots shows similar signal X!ππ ππj/ψ signal

3-d unbinned fit to ψ region (B!K ψ! K ππj/ψ) N ψ = 489 ± 23 events M bc M ππj/ψ E M bc =5279.1 ± 0.1 σ(m bc )=2.6 ± 0.1 M ππj/ψ σ(m ππ =3685.5 ± 0.2 ππj/ψ )=3.3 ± 0.2 E=-1.96 ± 0.4 σ( E)=11.6 ± 0.4 f_tail = 3.6 ± 1.5%

3-d unbinned fit to X(3872) region N X = 35.7 ± 6.8 events M bc M ππj/ψ E M bc =5279.1 (fixed) σ(m bc )=2.6 (fixed) M ππj/ψ σ(m ππ =3871.5 ± 0.5 ππj/ψ )=2.5 ± 0.5 E=-1.96 (fixed) σ( E)=11.6 (fixed) f_tail = 3.6 % (fixed)

reference mass to ψ M X = M meas (ππ ππj/ψ) M meas (ψ ) + M PDG (ψ ) M X = 3872 ± 0.6 (stat) ± 0.5 (syst) MeV This comes from comparing M meas (ψ ) with PDG value BW fit: Γ = 1.4 ± 0.7 MeV < 2.3 MeV @ 90% CL

M π+π tends to peak near limit background estimated from M bc - E sidebands

ρ!ππ + bkgd fits pretty well

Look for X(3872)!γχ an allowed E1 transition; should be > 5 X!ππJ/ψ (Eichten, Lane & Quigg) Select: B!K γ γ J/ψ: K and J/ψ same as before E γ >40 MeV plus π0 veto 15 < M γj/ψ -M χc1 <10MeV γχ c1 ( χ c1!γ J/ψ)

Do 2-d (M bc and M γχc1 ) fits γχ ψ region N evts = 34.1 ± 6.9 ± 4.1 events expect 26 ± 4 events (ψ!γχ c1! γj/ψ) M bc M γχc1

M bc and M γχc1 fits to X(3872) region γχ No signal!! M bc M γχc1 N X = 3.7 ± 3.7 ± 2.2 events (<9.2 events @ 90% CL)

Limit on Γ(X!γχ c1 ): Γ(X!γχ c1 )/ Γ(X!ππ ππj/ψ /ψ) = 0.35 ± 0.36 ± 0.21 < 0.89 @ 90% CL

Summary we see a ~10σ signal for B K X where: X! π + π J/ψ, M X = 3872.0 ± 0.6 ± 0.5 MeV; Γ<2.3 MeV (90%CL) Γ(X!γχ c1 )/Γ(X! π + π J/ψ) < 0.89 (90%CL) hep-ex/0309032! PRL is this the 3 D 2 cc charmonium state? Mass is too high (3872 vs 3810 MeV) Γ(X!γχ c1 )/Γ(X! π + π J/ψ) too small (<0.89 vs > 5) angular analysis is necessary (but hard). M X ~ M D0 + M D0*. =3871.3 ± 1.0 MeV could it be a D-D* bound state?

Low mass pp enhancement in J/ψ!γ pp (BES)

Use BESII s 58M J/ψ decays Select J/ψ!γpp 4-C kinematic fit de/dx for proton id non-pp bkg small main bkg from J/ψ!π 0 pp J/ψ!γη c ;η c! pp (calibration reaction)???? J/ψ!γpp

Study J/ψ!π 0 pp bkg with MC & data J/ψ!π 0 pp (data) J/ψ!π 0 pp!γpp (MC) three-body phase space Monte Carlo M(pp)-2m p (GeV)

Really protons and antiprotons de/dx pid verified by BSC response Not bkgd from J/ψ! hadrons No hint of peaking in J/ψ!π 0 pp data Not a QED background E γ pulls are symmetric cosθ γ distribution not peaked not seen in off-j/ψ data The signal is real

Fit to data acceptance weighted BW fitted peak location J/ψ!γpp M=1859 ± 3 +5-25 MeV Γ < 30 MeV (90% CL) χ 2 /dof=56/56 3-body phase space 0 0.1 0.2 0.3 M(pp)-2m p (GeV) acceptance

Is M peak really less than 2m p? weight events by q 0 /q: (i.e remove threshold factor) No turnover at threshold #peak mass must be <2m p M(pp)-2m p (GeV)

P-wave fit?? OK!! M=2m p!! M=1876 ± 3 +? -?? MeV Γ < 30 MeV (90% CL) χ 2 /dof=59/56

D-wave fit?? NG!! M=1885 ±? +? -?? MeV Γ < 30 MeV (90% CL) χ 2 /dof=1405/56

cosθ γ distribution 1+cos 2 θ γ (expected for J/ψ!γ0 + ) M(pp)<1.9 GeV sin 2 θ γ

include possible biases as (asymmetric) systematic errors (at least for now) M=1859 ± 3 +5-25 MeV Γ < 30 MeV (90% CL)

Summary A large enhancement seen near 2m p in the M pp distribution for J/ψ!γpp decays. Not apparent in J/ψ!π ο pp decays Not consistent with any PDG meson state If it is an S-wave resonance: M peak is below 2m p (M=1859 ±3 +5 25 MeV) full width is narrow (Γ<30 MeV) dn/dcosθ γ consistent with J PC = 0 + PRL 91, 022001 (2003)

Comments peak near but below 2m p : a pp bound state? narrow width: why so long-lived? similar patterns seen in baryon-antibaryon systems produced in B meson decays B!ppK B!ppD B!pΛπ B!pΛ c π

Belle sees low-mass pp systems in B decays F. Fang B ppk B ppπ M pp M pp B ppk S B ppk* M pp M pp

low-mass pp peaks in all (?) B!baryon decays B D 0 pp M pp

Strange & charmed systems B 0!pΛπ B!pΛ c π M(Λp) (GeV) (in these cases, the peaking doesn t seem to be right at threshold) M(Λ c+ p) (GeV)

hh bound states (hadronium)?? There is lots & lots of literature about this possibility deuteron: attractive nuclear force hadronium: attractive force?? + π n h h π loosely bound 3-q color singlets with M d = 2m p - ε loosely bound 3-q or q-q color singlets with M b = 2m p -δ

hadronic molecules a new spectroscopy?