16 2016 22 DOI:10.15906/j.cnki.cn11-2975/s.20152206 :863 (2013AA102806) * 1 * 2 1 1 1 1 1 3 (1. 271000; 2. 261031;3. 130000) [] 300 3 5 20 () ; () 50% ; () 50% +2.0 :(1) (P < 0.05) (P < 0.05); (P < 0.05) (P < (2)24 d 38 d 28.93% 11.36% (P < 0.05); 24 d 38 d (3)38 d (P < 0.05); (P < 0.05) (4) B 1 53.53% 58.09% (P < 0.05) [ ] ; ; ; ; ; ; ; [ ] S816.7 [ ] A [ ] 1004-3314(2016)22-0016-05 [Abstract] The experiment was conducted to evaluate the detoxication effects of mycotoxin degradation strains with hydrated sodium calcium aluminosilicates on growth performanceimmune functionthe serum blood biochenmical indexes and liver toxin residue of broilers fed the grains contaminated with mycotoxins.three hundred one-day-old white feather chicken broiler chickens were randomly allotted into 3 groups with 5 replicates of 20 each.the chickens in the control group (Group )were only fed basal dietmoldy feed group (Group )were fed with 50% mycotoxins contaminated maize;mycotoxin removal agent group(group )were fed with 50% mycotoxins contaminated maize adding 2 mycotoxin detoxicant.the results showed that: (1)In every test periodcompared with the control groupthe average daily gain of broilers in group were significantly lower(p < 0.05)the feed/gain were significantly higher(p < 0.05);compared with the moldy feed groupthe average daily gain of broilers in mycotoxin detoxification agent group were significantly higher(p < 0.05)and the feed/gain were significantly lower (P < 0.05).(2)At the age of 24 days and 38 daysthe spleen index in group were 28.93% and 11.36% higher than that in group (P < 0.05)respectively;the bursa index in group were higher than those in group (P < 0.05).(3)At the age of 38 daysserum alanine aminotransferase (ALT) and oxalacetic aminotransferase(ast) in group were significant higher than those in group and Group (P < 0.05).serum total protein(tp) and albumin(alb) in group were significant lower than those in group (P < 0.05).(4)compared with group the contents of aflatoxin B 1 (AFB1) and zearalenone (ZEN) in group were all significantly decreased 53.53% and 58.09%respectively(P < 0.05). [Key words] hydrated sodium calcium aluminosilicates;probiotics;mycotoxin;white feather chicken;growth performance;immunity;serum biochemical indexes;liver toxin residue
2016 22 17 25% (ZEN)2512 μg/kg 50% 100 (ZEN)750.5 μg/kg B 1 500 μg/kg (AFB 1 ) A (OTA) 1.2 1 (ZEN) T-2 (Hussein 2001) 10 d 90% 300 3 5 ( 2003) 20 :(1) (): ;(2) (): 50% ;(3) (): +2.0 ( 2008; 2005) 1 ( ) 1 ~ 17 18 ~ 38 1 ~ 17 18 ~ 38 ( /% 60.35 62.55 /(MJ/kg) ) /% 30.00 27.37 /% 12.54 20.13 13.04 18.75 ( 2003) Devegowda (2001) 0.5% (HSCAS) /% /% 3.00 1.40 2.50 1.20 /% /% 5.74 0.97 7.22 0.83 B 1 ( 7.5 mg/kg) /% 0.30 0.30 /% 0.69 0.62 /% 3.00 4.50 /% 1.04 0.94 /% 0.75 /% 1.20 1.00 0.58 /% + /% 0.44 0.68 0.37 0.60 :(1) Mn 78 mgzn 70 mgfe 78 mgcu 9 mgi 0.49 mgse 0.32 mg A 10000 IU D 3 600 IU E 18 mg K 3 4.32 mg B 1 1.8 mg B 2 7.2 mg B 6 2.88 mgd- 10.50 mg 30 mg 0.9 mg 0.12 mg B 12 0.012 mg;(2) 1.3 7 21 28 1 10 1.1 32 ~ 36 2 25 22 ~ 25 55% ~ 60% B 1 38 d 5.0 10 8 cfu/g; 1.4 ( 23 ~ 28 65% ~ 85%) 20% ELISA B 1 75 μg/kg50% 1 1.4.1 10 17 24 31 38 (ADG) (F/G) 1.4.2 24 38 B 1 22.5 μg/kg 10 μg/kg; 3 ( )
18 2016 22 12 h 2 /(g/d) 10 ~ 17 d 18 ~ 24 d 25 ~ 31 d 32 ~ 38 d 10 ~ 17 d 18 ~ 24 d 25 ~ 31 d 32 ~ 38 d 36.35±1.05 49.66±0.77 /(mg/g)= / b b 70.64±1.76 b 106.17±1.89 b 1.42±0.07 a 1.68±0.03 a 1.74±0.07 a 1.85±0.11 a 31.37±0.82 a 40.34±0.89 a 62.67±1.86 a 94.50±3.33 a 1.65±0.07 b 1.86±0.01 b 1.93±0.04 b 2.14±0.08 b 1.4.3 38 38.28±1.09 b 55.41±0.82 c 75.62±1.92 b 112.33±2.98 b 1.43±0.08 a 1.64±0.05 a 1.75±0.03 a 1.83±0.06 a 3 ( )12 h 4000 r/min 7020 (ALT) (AST) (TP) (ALB) (BUN) (P < 0.05); 1.4.4 : 38 3 (P > 0.05) ( )12 h 2.2 5 g 125 ml 60% 25 ml 20 ml 10 min ; 24 d 38 d (P > 0.05) 10 ml 125 ml 20 ml 3 min 10 ml 20 ml 65 60% 5 ml 24 d 38 d 24 d 38 d 2 ml6 ml 20% : AFB 1 ZEN 1.34±0.12 ab 1.21±0.22 a 1.56±0.15 b 1.33±0.12 a 1.32±0.16 a 1.47±0.11 b 1.98±0.13 b 1.75±0.12 a 2.16±0.14 c 0.7±0.05 b 0.46±0.06 a 0.69±0.07 b : 3 1 μg/kg 10 μg/kg 1.5 Excel 24 d 38 d SPSS 13.0 Oneway ANOVA LSD 2.3 ± P < 0.05 2 2.1 (P < 0.05) 2 (P < 0.05) (P < 0.05) ALT AST : (P > 0.05) (P < 0.05); (P < 0.05) 3 :24 d 38 d 28.93% 11.36% (P < 0.05); 3 mg/g (P < 0.05); 4 38 d ALT 39.33% 47.09% (P < 0.05); AST
2016 22 19 4 (2015) Neeff (2013) (2009) ALT/(U/L) AST/(U/L) TP/(g/L) ALB/(g/L) BUN/(μmol/L) 4.17±0.25 a 184.85±5.05 a 36.02±0.78 b 17.43±0.52 ab 0.82±0.07 5.81±0.23 b 211.15±4.04 b 33.15±0.55 a 16.39±0.22 a 0.89±0.01 3.95±0.29 a 192.45±1.93 a 37.35±1.04 b 18.19±0.19 b 0.82±0.02 TP : 7.97% 11.24% (P < 0.05);ALB : (P < 0.05) (P > 0.05); BUN (P > 0.05) 3.2 Leeson (1995) 2.4 5 (2006) (2008) (2006) 10 μg/g AFB 1 ZEN 55% 33% 15.11% 6.93% (2008) AFB 1 ZEN 7.02% 2.90% AFB 1 ZEN 53.53% 58.09% (P < 0.05) 2.0 5 μg/kg 3.3 AFB 1 ZEN ND a ND a ALT AST 3.4±0.25 c 51.99±1.6 c 1.58±0.41 b 21.79±1.2 b :ND ; AFB 1 22.5 μg/kgzen 750.5 μg/kg 3 3.1 ALT AST (Aravind 2003; Raju 2002) Raju (2000) ALT AST (2012) ALT AST ( 2010;2009) ALT AST ALT AST
20 2016 22 2.0 ( 2003) Scott (Scott [1] 1982) [6] 20068:10 ~ 1147. ( 2008) [7] 201542(6):1449 ~ 1457. [8]. [J]. [9] 200318(3):85 ~ 88. [10] [J]. : [11] [J]. 200335(11):11 ~ 14. 3.4 [12] [J]. 20087:27 ~ 2933. [13] [D].: 2008:40 ~ 41. (2007) [14] 100 μg/kg AFB 1 [J]. (2013) AFB 1 AFB 1 ; AFB 1 200382:570 ~ 576. [18] Devegowda G. AFB 1 200122(4):44 ~ 45. AFB 1 15.11% AFB 1 on humans and animals[j].toxicology2001167:101 ~ 134. 7.02% AFB 1 118. ZEN ZEN James (1982) ZEN (40 mg/kg) 4 ZEN 78 ~ 128 μg/kg ZEN 28 d (1):131 ~ 137. ZEN 51.99 μg/kg 6.93% 2.90% ZEN. [J]. 200526(5):41 ~ 42. [2]. [J]. 2010(21):32 ~ 33. [3]. [D].: 2012.30 ~ 32. [4]. B1 [J]. 200936(8):5 ~ 10. [5]. [J]. 20084:73 ~ 74. ( 36 ). [J].. [J]. B1 201325(4):812 ~ 818.. [J].. 200735(6):55 ~ 59..5.. [J].. 200324:53 ~ 54. [15]. 200916:29 ~ 31. [16] Aravind K LPatil V SDevegowdaet al.efficacy of modified glucomannan to counteract mycotoxicosis in naturally contaminated feed on performanceserum biochemical and hematological parameters in bioilers[j].poult.sci. [17] Cast G.Mycotoxins:Risks in plantanimaland Human Systems[R].Council for Agricultural Science and Technoloy Task Force Report2003.139 ~ 146. - [J]. [19] Hussein S HJeffrey M B.Toxieitymetabolismand impact of mycotoxins [20] James L JSmith T K.Effect of dietary alfalfa on zearalenonc toxicity and metabolism in rats and swine[j].journal of animal scicnce198255(1):110 ~ [21] Leeson SDiaz GSummers J D.Poultry Metabolic Disorders and Mycotoxins[M].Canada:University Books1995.114 ~ 118. [22] Neeff DVLedoux D RRottinghaus G Eet al.invitro and in vivo efficacy of a hydrated sodium calcium aluminosilicate to bind and reduce aflatoxin residues in tissues of broiler chicks fed aflatoxinb1[j].poultry Science201392
36 2016 22 [12]. [J]. [J]. 200524(2):8 ~ 10. 20004:32 ~ 36. [23] Raju MELNDevegowda G.Esterified glucomannan in broiler chicken [13]. diets contaminated with aflatoxinochratoxin and T-2 toxin:evaluation of its :[ ][D].: 2004. binding ability (in vitro)and efficacy as immunnomodulatory [J].Asian-Aust.J. [14]. [J]. 20102:18 ~ 20. Anim.Sci.200215(7):1051 ~ 1056. [15]. [J]. 200710: [24] Raju Mvl NDevegowda G Influence of estenfied -glucomananan on 29 ~ 32. performance and organ morphologyserum biochemistry and haematology m [16]. broilers exposed to individual and combined mycotoxicosis (aflatoxin.ochratoxm and T-2 toxm)[j] British Poultry Science200041:640 ~ 650. [17]. [J]. [25] Scott M LNesheim M CYuong R J.Nutrition of the Chicken[M].3rd 2010(12):37 ~ 38. [18]. [J]. 201212:22 ~ 25. [19]. [J]. 201536(17):18 ~ 22. [20] Bao ZLi YZhang Jet al.effect of particle size of wheat on nutrient digestibilitygrowth performanceand gut microbiota in growing pigs [J].Livestock Science2015183:33 ~ 39. [21] Fastinger N DMahan D C.Effect of soybean meal partical size on amino acid and energy digestibility in grower-finisher swine[j].journal of Animal Science200381(3):697 ~ 704. [22] Giesemann M ALewis A JHancock J Det al.effect of particle size of corn and grain sorghum on growth and digestibility by growing pigs[j].j.anim. Sci199068(1):104. [23] Healy B JHancock J DKennedy G Aet al.optimum particle size of corn and hard and soft sorghum for nursery pigs[j].journal of Animal Science 199472(9):2227 ~ 36. [24] Huang CZang JSong Pet al.effects of particle size and drying methods of corn on growth performancedigestibility and haematological and immunological characteristics of weaned piglets [J].Archives of Animal Nutrition 201569(1):30 ~ 45. [25] Lawrence K RHastad C WGoodband R Det al.effects of soybean meal particle size on growth performance of nursery pigs[j].journal of Animal Scicncc200381(9):2118 ~ 2122. [26] Ludovic LahayePhilippe GanierJean-No 觕 l Thibaultet al.technological processes of feed manufacturing affect protein endogenous losses and amino acid availability for body protein deposition in pigs[j].animal Feed Science and Technology2004113:141 ~ 156. [27] MavromichalisHancock J DSenne B Wet al.enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs [J].Anim Sci 200078:3086 ~ 3095. [28] Svihus BKlovstad K HPerzeet al.physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill [J].Animal Feed Science and Technology2004117:281 ~ 293. [29] Valencia D GSerrano M PLázaro Ret al.influence of micronization (fine grinding)of soya bean meal and fullfat soya bean on productive performance and digestive traits in young pigs [J].Animal Feed Science & Technology2009147(4):340 ~ 356. [30] Wondra K JHancook J DBehnke K Cet al.effects of mill type and particle size uniformity on growth performancenutrient digestibilityand stomach morphology in finishing pigs [J].Journal of Animal Science199573 (9):2564 ~ 2573. ( 20 ) Edition.Ithaca:Cornell University1982. ( 28 ) [29] Huitao LWeifang WKangsen M.Effect of Dietary Olaquindox on the Growth of Large Yellow Croaker(Pseudosciaena crocea R.)and the Distribution of Its Residues in Fish Tissues [J].Oceanic and Coastal Sea Research 201413(5):820 ~ 824. [30] Liu Z.The metabolism of olaquindox in ratschickens and pigs[j].toxicology Letters2011200:24 ~ 33. [31] Song JQiao XChen H.Molecularly imprinted solid -phase extraction combined with high-performance liquid chromatography for analysis of trace olaquindox residues in chick feeds [J].SCI Food Agric201191:2378 ~ 2385. [32] Sniegocki T.Determination of carbadox and olaquindox metabolites in swinemuscle by liquid chromatography/mass spectrometry[j].journal of Chromatography B2014944:25 ~ 29. [33] Song CLiu QZhi A.Development of a Lateral Flow Colloidal Gold Immunoassay Strip for the Rapid Detection of Olaquindox Residues[J].Journal of Agricultural and Food Chemistry201159:9319 ~ 9326. [34] Song XXu SChen L.Recent advances in molecularly imprinted polymers in food analysis [J].Journal of Applied Polymer Science2014131(16). [3 5] Wang LZhang JCui D.A Monoclonal Antibody -Based Indirect Competitive Enzyme- Linked Immunosorbent Assay for the Determination of Olaquindox in Animal Feed [J].Analytical Letters201447 (6):1015 ~ 1030. [36] Wollenberger LHalling -Sorensen BKusk K O.Acute and Chronic Toxicity of Veterinary Antibiotics to Daphnia Magna [J].Chemsophere 200040(7):723 ~ 730. [37] Xu TLei ZhangJichun Yang.Development of electrochemical method for the determination of olaquindox using multi -walled carbon nanotubes modified glassy carbon electrode[j].talanta2013109:185 ~ 190. [38] Yang HHe LLiu Y.Determination of Quinoxalines and Their Two Main Metabolites in Environmental Water Samples by Liquid Chromatography Tandem Mass Spectrometry [J].Analytical Letters201447 (8):1421 ~ 1433. [39] Zhang HWei YZhou J.Preparation and Application of a Molecular Imprinting Matrix Solid Phase Dispersion Extraction for the Determination of Olaquindox in Chicken by High Performance Liquid Chromatography[J].Food Anal.Methods20136:915 ~ 921. [40] Zou JChen QJin X.Olaquindox induces apoptosis through the mitochondrial pathway in HepG2 cells[j].toxicology2011285:104 ~ 113.