Order estimates of best orthogonal trigonometric approximations of classes of infinitely differentiable functions arxiv:8.06475v [math.ca] 6 Dec 08 Tetiana A. Stepanyuk Abstract In this paper we establish exact order estimates for the best uniform orthogonal trigonometric approximations of the classes of π-periodic functions, whose ψ,β derivatives belong to unit balls of spaces L p, p<, in the case, when the sequence ψk tends to zero faster, than any power function, but slower than geometric progression. Similar estimates are also established in the L s -metric, < s for the classes of differentiable functions, which ψ, β derivatives belong to unit ball of space L. Introduction Let L p, p <, be the space of π periodic functions f summable to the power p on[0,π, with the norm f p 0 ft p dt p ; L be the space of π periodic functions f, which are Lebesque measurable and essentially bounded with the norm f esssup ft. t Let f :R Rbe the function from L, whose Fourier series is given by where ˆfk π π ˆfke ikx, k fte ikt dt are the Fourier coefficients of the function f, ψk is an arbitrary fixed sequence of real numbers and β is a fixed real number. Then, if Institute of Analysis and Number Theory Kopernikusgasse 4/II 800, Graz, Austria, Graz University of Technology Institute of Mathematics of Ukrainian National Academy of Sciences, 3, Tereshchenkivska st., 060, Kyiv-4, Ukraine e-mail:tania$_{-}$stepaniuk@ukr.net
T. A. Stepanyuk the series k Z\{0} ˆfk ψ k eikx+ βπ signk is the Fourier series of some function ϕ from L, then this function is called the ψ,β derivative of the function f and is denoted by f ψ β. A set of functions f, whoseψ,β derivatives exist, is denoted by L ψ see [3]. β Let B 0 p :{ ϕ L p : ϕ p, ϕ }, p. If f L ψ β, and, at the same time f ψ β B0 p, then we say that the function f belongs to the class L ψ β,p. By M we denote the set of all convex downward continuous functions ψt, t, such that lim ψt 0. Assume that the sequence ψk, k N, specifying t the class L ψ β,p, p, is the restriction of the functions ψt frommto the set of natural numbers. Following Stepanets see, e.g., [3], by using the characteristic µψ;t of functions ψ from M of the form µtµψ;t : t ηt t, where ηtηψ;t : ψ ψt/, ψ is the function inverse to ψ, we select the following subsets of the set M: M + {ψ M: µψ;t }. M { ψ M + : K > 0 ηψ;t t K t }. The functions ψ r,α t exp αt r are typical representatives of the set M +. Moreover, if r 0,], then ψ r,α M. The classes L ψ β,p, generated by the functions ψ ψ r,α are denoted by L α,r β,p. For functions f from classes L ψ β,p we consider: L s norms of deviations of the functions f from their partial Fourier sums of order n, i.e., the quantities where ρ n f ; s f S n f ; s, s, S n f ;x n k n+ ˆfke ikx ; and the best orthogonal trigonometric approximations of the functions f in metric of space L s, i.e., the quantities of the form
Order estimates of best orthogonal trigonometric approximations 3 e m f s inf γ m f S γm f ; s, s, 3 where γ m, m N, is an arbitrary collection of m integer numbers, and S γm f ;x k γ m ˆfke ikx. We set E n L ψ β,p s sup ρ n f ; s, p,s, 4 f L ψ β,p e n Lψ β,p s sup e n f s, p,s. 5 f L ψ β,p The following inequalities follow from given above definitions 4 and 5 e nl ψ β,p s e n L ψ β,p s E n L ψ β,p s, p,s. 6 In the case when ψkk r, r>0, the classes L ψ β,p, p, β R are wellknown Weyl Nagy classes Wβ,p r. For these classes, the order estimates of quantities e n Lψ β,p s are known for < p,s< see [4], [5], for p<, s, r> p and also for p, <s<, r> s, s + s see [5], [6]. In the case, when ψk tends to zero not faster than some power function, order estimates for quantities 5 were established in [], [9], [] and []. In the case, when ψk tends to zero not slower than geometric progression, exact order estimates for e n Lψ β,p s were found in [0] for all p,s. Our aim is to establish the exact-order estimates of e n L ψ β,p, p<, and e n Lψ β, s, <s<, in the case, when ψ decreases faster than any power function, but slower than geometric progression ψ M. Best orthogonal trigonometric approximations of the classes L ψ β,p, < p<, in the uniform metric We write a n b n to mean that there exist positive constants C and C independent of n such that C a n b n C a n for all n. Theorem. Let < p<, ψ M ψt and the function ψ as t. Then, t for all β R the following order estimates hold e n L ψ β,p e nl ψ β,p ψnηn n p. 7 Proof. According to Theorem from [8] under conditions ψ M +, β R, p<, for n N, such that ηn n a>, µn b>the following esti-
4 T. A. Stepanyuk mate is true where E n L ψ β,p K a,b p p ψnηn n p, 8 K a,b { b π max b + } a, π. Using inequalities 6 and 8, we obtain e nl ψ β,p e n L ψ β,p K a,b p p ψnηn n p. 9 Let us find the lower estimate for the quantity e n Lψ β,p. With this purpose we construct the function fp,n t λ p f p,n ψ;t : ψnηn n p ψψn+ n + k ψkψn kcoskt+ n ψ kcoskt, p +. 0 p Let us show that fp,n Lψ. The definition ofψ,β derivative yields β,p fp,n tψ β λ n p ψn kcos kt+ β π ψnηn n p k n + ψk cos kt+ β π. Obviously f p,n t ψ λ p β ψnηn n p λ p < ψnηn n p n n k λ p ψk ψnηn n p ψn k+ n ψn+ ψk < n ψudu. To estimate the integral from the right part of formula, we use the following statement [7, p. 500]. Proposition. If ψ M +, then for arbitrary m N, such that µψ,m > the following condition holds m ψudu ψmηm m. 3 µm
Order estimates of best orthogonal trigonometric approximations 5 Formulas and 3 imply that f p,n t ψ λ p β ψnηn n p We denote ψn+ b b ψnηn n < < 5λ pb b ηn n p. 4 D k,β t : cos β π k + Applying Abel transform, we have j cos jt+ β π. 5 n ψn kcos kt+ β π k and n k ψn k+ ψn kd k,β t + ψn+d n,β t ψn cos β π 6 n Since ψk cos kt+ β π n ψk ψk+d k,β t N sinγ+ kt sin γ+ N k0 t sin Ny + ψnd n,β t ψnd n,β t. 7 sin t see, e.g., [, p.43], for N k+, γ β π, the following inequality holds cos kt D k,β t + β π sin k+ t sin t cos β π sin k+ t+ β π According to, 6, 7 and 9, we obtain 8 cos t sin β π sin t π, 0< t π. 9 t
6 T. A. Stepanyuk fp,n tψ β n + ψn + λ p ψnηn n p π t n ψn k ψn k +ψn+ k ψk ψk+ +ψn+ψn λ p π ψnηn n p t ψn++ψn 4πλ p ηn n p t. 0 So, 4 and 0 imply f p,n t ψ β p { 5b } λ p max b, 4π t ηn n { 5b } λ p max b, 4π + p Hence, for the embedding fp,n L ψ β,p is true. Let us consider the quantity I : inf ηn ndt+ ηn n p p ηn n t π { p 5b } λ p max b, 4π p p. λ p } p p max{ 5b b, 4π γ n where V n are de la Vallée-Poisson kernels of the form V m t : + m kcoskt+ Proposition A. from [3] implies dt p t p fp,n t S γ n fp,n ;tv ntdt, m km+ k coskt, m N. m I inf γ n f p t S γ n f p,n ;t V n e n f p,n V n. 3 Since see, e.g., [4, p.47] from 3 and 4 we can write down the estimate V m 3π, m N, 4
Order estimates of best orthogonal trigonometric approximations 7 Notice, that e n f p,n 3π I. 5 fp,nt S γn fp,n;t λ p ψnηn n p ψ k ψn k e k n, ikt + n k n, ψ k e ikt, 6 where ψ0 : ψ Whereas { e ikt e imt 0, k+m 0, dt π, k+m0, and taking into account, we obtain k,m Z, 7 f p,nt S γn f p,n;tv n tdt 8 λ p 4ψnηn n p + ψ ke n k n, ikt + n k n, e ikt + 0 k n n k λ p π ψnηn n p ψkψn ke 0 k n, ψ ikt k e e ikt + k n, n+ k 4n ikt + ikt ψ k ψn k e n+ k, k e ikt dt 9 4n ψ k ψn k + ψ k n k n, The function φ n t : ψtψn t decreases for t [,n]. Indeed ψt φ nt ψ t ψ ψn t n t ψ t ψ 0, n t because ψt ψ t for large n. Thus, the monotonicity of function φ n t and 30 imply. 30
8 T. A. Stepanyuk πλ p I ψ n+ ψ k ψnηn n p n+ k n πλ p > ψnηn n p > n ψ πλ p k ψnηn n p ηn n ψ tdt πλ p ψnηn n p ψ ηnηn n πλ p 8 ψnηn n p. 3 By considering 5 and 3 we can write Theorem is proved. e nl ψ β,p e n f p,n 3π I λ p 4 ψnηn n p. 3 Remark. Let ψ M +, β R, < p<, p + p, and the function ψt ψ t for t. Then for n N the following estimates hold K b,p ψnηn n p e n Lψ β,p e n Lψ β,p K a,b,p ψnηn n p, 33 where K a,b,p { b π max b + } a, π p p. 34 K b,p }. 35 48max{ 5b b, 4π p p 3 Best orthogonal trigonometric approximations of the classes L ψ β, in the uniform metric Theorem. Let ψ M +. Then for all β Rorder estimates are true e n Lψ β, e n Lψ β, ψnηn n. 36 Proof. According to formula 48 from [8] under conditions ψ M, β R, for all n N the following estimate holds Using Proposition, we have E n L ψ β, π k ψk<, ψk. 37
Order estimates of best orthogonal trigonometric approximations 9 e n Lψ β, e n Lψ β, E n L ψ β, ψk π ψn+ ψudu ψn + b π π b ηn n. 38 n Let us find the lower estimate for the quantity e n Lψ β,. We consider the quantity I : inf γ n fn t S γ n fn ;tv ntdt, 39 where V m are de la Vallée-Poisson kernels of the form, and fm t m f m ψ;t : 5πm ψ+ k kψkcoskt+ m km+ m+ kψk coskt. 40 In [4, p. 63 65] it was shown that f m ψ β, i.e., f m belongs to the class L ψ β, for all m N. Using Proposition A. from [3] and inequality 4, we have I inf γ n f n t S γ n f n ;t V n 3π e n f n. 4 Assuming again ψ0 : ψ, from and 40, we derive I 0πn inf γ n e ikt + k n 0n inf γ n > 0n inf γ n n k ψ k e ikt + k n, n+ k 4n k n, k ψ k + k ψ k k n, > 0 ψk> 0 ηn Formulas 4 and 4 imply n k 4n n+ k 4n, 0n n+ k 4n, e ikt dt nψn+ k ψ k 4n n + ikt 4n+ k ψ k e kψk ψtdt > ψnηn n. 4 0
0 T. A. Stepanyuk Theorem is proved. e n Lψ β, e n f n 3π I > 60π ψnηn n. Remark. Let ψ M + and β R. Then for n N, such that µn b> the following estimate hold 60π ψnηn n e nl ψ β, e n L ψ β, π b + b ψnηn n. b 43 Corollary. Let r 0,, α > 0, p < and β R. Then for all n N the following estimates are true e n L α,r β,p exp αn r n r p. 44 4 Best orthogonal trigonometric approximations of the classes L ψ β, in the metric of spaces L s, <s< Theorem 3. Let <s<, ψ M and function ψt ψ t as t. Then for all β R order estimates hold e n Lψ β, s e n Lψ β, s ψnηn n s, s +. 45 s Proof. According to Theorem from [8] under conditions ψ M +, β R, <s for n N, such that ηn n a>, µn b> the following estimate holds E n L ψ β, s K a,b s s ψnηn n s. 46 Using inequalities 6 and 46, we get e n Lψ β, s e n Lψ β, s K a,b,s s s ψnηn n s. 47 Let us find the lower estimate of the quantity e n Lψ β, s. We consider the quantity I 3 : inf γ n f n t S γ n f n ;t f s,n tdt, 48 where f m t 3π V mt,
Order estimates of best orthogonal trigonometric approximations and fs,n is defined by formula 0. On the basis of Proposition A. from [3] we derive I 3 inf γ n f nt S γn f n ;t s f s s e n f n s. 49 On other hand, using formulas 7, we write λ I 3 s inf πψnηn n s γ n k n λ s 6ψnηn n s λ s 6ψnηn n s λ s > 6ψnηn n s e k n, ψ k ψn k e ikt + inf γ n k n, ψ n+ ηn n k n ikt + n+ k 4n, ψ k e dt ikt ψ k ψn k + ψ k n k n, n + Hence, formulas 49 and 50 imply Theorem 3 is proved. n ψ k λ > 6πψnηn n s k e ikt 4n n ψ k ψ tdt > λ s 4 ψnηn n s. 50 e nl ψ β, s e n f s s I 3 λ s 4 ψnηn n s. 5 Note, that functions e αtr t γ, α > 0, r 0,], γ R; e αtr lnt+ K, α > 0, r 0,], K > e, etc., can be regarded as examples of functions ψ, which satisfy the conditions of Theorem and Theorem 3. Remark 3. Let ψ M +, β R, p< and function ψt for all n N, such tthe following estimates are true ψ t as t. Then K b,s ψnηn n s e n Lψ β, s e n Lψ β, s K a,b,s ψnηn n s, 5 where K a,b,s and K b,s are defined by formulas 34 and 35 respectively.
T. A. Stepanyuk Corollary. Let r 0,, α > 0, < s < and β R. Then for all n N the following estimates are true e n Lα,r β, s exp αn r n r s, s +. 53 s Acknowledgements The author is supported by the Austrian Science Fund FWF project F5503 part of the Special Research Program SFB Quasi-Monte Carlo Methods: Theory and Applications References. A. S. Fedorenko, On the best m-term trigonometric and orthogonal trigonometric approximations of functions from the classes L ψ β,p, Ukr. Math. J., 5: 999, 945 949.. I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow 963. 3. N. P. Korneichuk, Exact Constants in Approximation Theory, 38, Cambridge Univ. Press, Cambridge, New York 990. 4. A. S. Romanyuk, Approximation of classes of periodic functions of many variables, Mat. Zametki, 7: 00, 09. 5. A. S. Romanyuk, Best trigonometric approximations of the classes of periodic functions of many variables in a uniform metric, Mat. Zametki, 8: 007, 476. 6. A. S. Romanyuk, Approximate Characteristics of Classes of Periodic Functions of Many Variables [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv 0. 7. A. S. Serdyuk, Approximation by interpolation trigonometric polynomials on classes of periodic analytic functions, Ukr. Mat. Zh., 64:5 0, 6987; English translation: Ukr. Math. J., 64:5, 0, 79785. 8. A. S. Serdyuk, T. A. Stepaniuk, Order estimates for the best approximation and approximation by Fourier sums of classes of infinitely differentiable functions, Zb. Pr. Inst. Mat. NAN Ukr. 0: 03, 55-8. [in Ukrainian] 9. A. S. Serdyuk, T. A. Stepaniuk, Order estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of low smoothness, Ukr. Math. J., 67:7 05, -4. 0. A. S. Serdyuk, T. A. Stepaniuk, Estimates of the best m-term trigonometric approximations of classes of analytic functions, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, No. 05, 3 37. [in Ukrainian]. V. V. Shkapa, Estimates of the best M-term and orthogonal trigonometric approximations of functions from the classes L ψ β,p in a uniform metric, Differential Equations and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, : 04, 305 37.
Order estimates of best orthogonal trigonometric approximations 3. V. V. Shkapa, Best orthogonal trigonometric approximations of functions from the classes L ψ β,, Approximation Theory of Functions and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, :3 04, 35 39. 3. A. I. Stepanets, Methods of Approximation Theory, VSP: Leiden, Boston 005. 4. T. A. Stepaniuk, Estimates of the best approximations and approximations of Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics, Zb. Pr. Inst. Mat. NAN Ukr. :3 04, 4-69. [in Ukrainian]