16 38 2012 09 16 Chinese Journal of Tissue Engineering Research September 16, 2012 Vol.16, No.38 doi:10.3969/j.issn.2095-4344.2012.38.020 [http://www.crter.org/crter-2012-qikanquanwen.html]. [J].2012 16(38): 7126-7130. * 300350 1975 1999 ( ) 300350 tjs.hhyywy@ yahoo.com.cn :R318 :B :2095-4344 (2012)38-07126-05 2012-04-20 2012-05-30 (20120306022/GW W) poly(lactic-co-glycolic acid PLGA 50 μm 26% 28% 50% 90 d 0.02 0.03 mg/l Preparation and release features of long-term slow-release two-component drug artificial bone Bao Yu-cheng, Zhang Wen-long, Wang Yong, Zhang Jie Abstract BACKGROUND: Studies have shown that rifampicin or isoniazid covered with biodegradable sustained release materials can be used to prepare pulmonary targeting microspheres with less than 50 μm sustained-release degradation, which are mainly used for lung targeted therapy via the intravenous injection. OBJECTIVE: To develop long-term slow-release two-component drug artificial bone and to select the optimal preparation process of drug release as well as to observe the characteristics of in vitro releases. METHODS: Orthogonal design was adopted to optimize the preparation technology using the emulsion-solvent evaporation method of preparation technology. We prepared rifampicin poly(lactic-co-glycolic acid) copolymer microspheres and isoniazid poly(lactic-co-glycolic acid) copolymer microspheres. Biological binder was used to process these two kinds of microspheres into long-term slow-release two-component drug artificial bone. RESULTS AND CONCLUSION: According to the process optimization, two kinds of poly(lactic-co-glycolic acid) copolymer microspheres carrying 26% rifampicin or 28% isoniazid were prepared successfully, which were used to prepare artificial bone at a quality of 50%. The drug concentrations were kept at 0.02 and 0.03 mg/l after 90 days of in vitro release. These findings indicate that this kind of artificial bone is expected to provide a new and effective treatment for bone tuberculosis. Bao YC, Zhang WL, Wang Y, Zhang J. Preparation and release features of long-term slow-release two-component drug artificial bone. Zhongguo Zuzhi Gongcheng Yanjiu. 2012;16(38): 7126-7130. 7126
. www.crter.org 0 5% 10% [1-2] [3-4] [5-6] [7] 50 μm [8-10] (poly (lactic-coglycolic acid) PLGA) 200 400 μm PLGA 200 400 μm PLGA ( ) 1 2010 06/2011 10 201011056 T2010226 PLGA( 80 20 150 000) (DCM) (a- ) LC-10A () N-2000 OLYMPUS IX71 Japan PLGA PLGA [11-12] PLGA 700 mg10 ml 2% 4 1.0 2.0 h PLGA4 (A) PLGA (B) (C) (D)3 1L 9 (3) 4 1 Table 1 Orthogonal experimental design factors and levels table Level T A ( ) PLGA/RFP B (ratio) Factor PVA C (%) Stirring speed D (r/min) 1 30 1.3:1 0.8 350 2 40 1.5:1 1.2 450 3 50 2.0:1 1.6 550 PLGA: poly(lactic-co-glycolic acid); RFP: rifampicin; PVA: polyvinyl alcohol; A: reaction temperature; B: PLGA and RFP quality ratio; C: the concentration of PVA mass fraction; D: mixing rate Bao Yu-cheng, Corresponding author: Wang Yong, Senior engineer, tjs.hhyywy@ yahoo.com.cn Supported by: the Science and Technology Foundation of Tianjin Health Bureau, No. 2010KY10* Received: 2012-04-20 Accepted: 2012-05-30 ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 7127
www.crter.org. S 1 S 2 S(=S 1 +S 2 ) [13] S 200 300 μm 500S 1 =( /) 100% S 2 =( / ) 100% 2 2 2.1 PLGAPLGA PLGA200 300 μm 26% 1aPLGA200 300 μm 28% 1b 2 L 9 (3) 4 Table 2 L 9 (3) 4 orthogonal experimental design and results Test No Factor A B C D S 1 S 2 S 1 1 1 1 1 45.2 25.3 70.5 2 1 2 2 2 50.3 20.1 70.4 3 1 3 3 3 30.4 19.8 50.2 4 2 1 3 3 27.9 15.4 43.3 5 2 2 2 1 60.5 19.3 79.8 6 2 3 1 2 55.4 26.0 81.4 7 3 1 3 2 20.4 20.2 40.6 8 3 2 1 3 32.3 17.3 49.6 9 3 3 2 1 43.2 15.6 58.8 K 1 191.1 154.4 201.5 209.1 K 2 201.5 199.8 199.8 192.4 K 3 149.0 190.4 134.1 143.1 R 52.5 45.4 67.4 66.0 a: PLGA microsphere carrying rifampicin A: reaction temperature; B: poly(lactic-co-glycolic acid) and rifampicin quality ratio; C: the concentration of polyvinyl alcohol mass fraction; D: mixing rate; S 1 : micro-sphere diameter distribution percentage; S 2 : microspheres drug loading; S=S 1 +S 2 PLGA PLGA [11-12] PLGA 26% 28% 100 mg30 mg 1h 35% 60 mg ph=7.4 PBS 3 ml 30 ml ph=7.4 PBS 37 30 ml 30 ml [ HPLC LC-10A, Shim-pack VP-ODS (5 µm 250 mm 4.6 mm)] b: PLGA microsphere carrying isoniazid Figure 1 Light microscope images of poly(lactic-co-glycolic acid) (PLGA) copolymer microspheres carrying rifampicin and isoniazid ( 10) 1 ( 10) 2.2 4 PLGA ( ) A 2 B 3 C 1 D 2 A 2 B 3 C 1 D 2 3 PLGAPLGAPLGA (200 300 μm) 60% 26% PLGA(200 300 μm) 65% 28% 50% 2a 2b 7128
. www.crter.org 3 20 d 90 d 0.02 0.03 mg/l3 3 a: Artificial cross-sectional digital image b: Digital photo of artificial bone after in vitro degradation Figure 2 Digital images of two-component drug artificial bone 2 Drug concentration (mg/l) 0.30 0.25 0.20 0.15 0.10 0.05 0 0 20 40 60 80 100 Time (d) RFP: rifampicin; INH: isoniazid RFP INH Figure 3 In vitro drug release curve of two-component drug artificial bone 3 [14] [15] (PLGA) PLGA Sachs [16-17] PLGA 90 d 0.02 0.03 mg/l [18] 4 [1] Huang JS,Shen M,Sun YL,et al.zhonghua Jiehe he Huxi Zazhi. 2000;23(10):606-608,,,.[J].,2000,23(10):606-608 [2] Wang X,Jing X,Cui HC.Zhongguo Jiaoxing Waike Zazhi. 2005; 13(24):1909-1910.,,. [J].,2005,13(24):1909-1910. [3] Xu PY.Yixue Zongshu. 2010;16(19):2982-2984..[J].,2010,16(19): 2982-2984. [4] Zhang H,Jiang SW.Zhongguo Yixue Kexueyuan Xuebao. 2009;31(4):393-395.,.[J].,2009,31(4):393-395. [5] Xu XQ.Xibu Yixue. 2011;23(12):2468-2468..1 [J].,2011,23(12): 2468-2468. [6] Huang JT.Yaowu Buliang Fanying Zazhi.2010;12(3):182-187.. [J].,2010,12(3):182-187. ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH 7129
www.crter.org. [7] Zhang WL,Wang Y,Bao YC.Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(3):503-506.,,. [J].,2011,15(3):503-506. [8] Yang YN,Lou L,Liang QZ,et al.gaodeng Xuexiao Huaxue Xuebao. 2004;125(1):62-165.,,,. [J].,2004,125(1):62-165. [9] Luo PP,Zuo Y,Sun B,et al.gongneng Cailiao. 2011;2(8): 1410-1414.,,,. [J].,2011,2(8):1410-1414. [10] Zhang S,Gao X,Shen K,et al.evaluation of poly(d,l-lactideco-glycolide) microspheres for the lung-targeting of yuanhuacine, a novel DNA topoisomerase I inhibitor.j Drug Target.2009;17(4):286-293. [11] Ye XY,Sun X,Jia HW,et al.zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2011;15(51):9608-9612.,,,. / - [J].,2011,15(51): 9608-9612. [12] Xie HJ,Li M,Deng Y,et al. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu.2009;13(51):10039-10044.,,,.- - : [J].,2009,13(51): 10039-10044. [13] Jin H,Wu C,Mei XG.Zhongguo Yaoxue Zazhi. 2006;5(22): 1723-1725.,,. [J].2006,5(22):1723-1725. [14] Liu RZ,Huang JF,Liang JH.Guangxi Zhongyi Xueyuan Xuebao. 2010;3(3):69-70.,,.[J].,2010,3(3):69-70. [15] Ye XY,Zhen P,Li XF. Zhongguo Jiaoxing Waike Zazhi. 2010; 18(23):1981-1986.,,. [J].,2010,18(23): 1981-1986. [16] Sachs E,Cima M,Williams P,et al.three-dimensional printing: Rapid tooling and prototypes directly from a CAD model.j Eng Ind.1992;114(4):481-488. [17] Wu WG,Zheng QX,Guo XD.Zhongguo Shengwu Yixue Gongcheng Xuebao. 2010;29(1):137-142.,,. - - [J].,2010,29(1):137-142. [18] Jiang NX.Beijing:Renmin Weisheng Chubanshe. 1989: 353-354.. [M].3.:,1989:353-354. (2010KY10) PLGA PLGA 90 d 0.02 0.03 mg/l PLGA 200 400 μm PLGA 7130