ISSN 1007-7626 CN 11-3870 / Q http / / cjbmb bjmu edu cn Chinese Journal of Biochemistry and Molecular Biology 2013 4 29 4 383 ~ 388 PCR htert mrna 1 2 2 3 1 1 2 2 1 1 530021 2 530021 3 * 3 530021 human telomerase reverse transcriptase htert SKOV3 htert mrna htert LV4-pGLV-EF1a-EGFP-hTERT SKOV3 htert SKOV3 h SKOV3 b SKOV3 PCR 50 Ct P < 0 05 SKOV3 h htert mrna SKOV3 b SKOV3 P < 0 05 SKOV3 htert mrna htert PCR htert Q291 Q78 Detection of mrna Expression of htert at Single Cell Level by Real-time PCR LI Nan 1 HUANG Li 2 HE Bing 2 ZHONG Yan-Ping 3 LIN Ruo-Yun 1 LI Li 1 XUE Lin-Tao 2 WANG Shi-Kai 2 1 LI Dan-Rong 3 * 1 Department of Gynecologic Oncology Affiliated Cancer Hospital Guangxi Medical University Nanning 2 Center for Reproductive Medicine and Genetic The People s Hospital of Guangxi Zhuang Autonomous Region Nanning 3 Scientific Experiment Center Guangxi Medical University Nanning 530021 China 530021 China 530021 China Abstract The expression of human telomerase reverse transcriptase htert defines the cellular activity of telomerase A number of studies have shown that telomerase closely related to tumorigenesis and cell immortalization To detect the htert mrna expression at single cell level SKOV3 cells infected with lentiviral vector LV4-pGLV-EF1a-EGFP-hTERT SKOV3h was used and compared with empty vector infected SKOV3b and non-infected SKOV3 cells Less than 50 cells were sorted by flow cytometry for each group and the htert mrna expression were detected by real-time PCR The results showed that the Ct value was increased as the cells increased P < 0 05 The htert mrna 2012-11-11 2013-01-17 No 0992032-12 * Tel 0771-5358131 Email danrongli@ 163 com Received November 11 2012 Accepted January 17 2013 Supported by Natural Science Foundation of Guangxi Zhuang Autonomous Region No 0992032-12 * Corresponding author Tel 0771-5358131 E-mail danrongli@ 163 com
384 29 level of SKOV3h was higher than those of SKOV3b and SKOV3 The method was able to detect the htert expression of a single blastomere thus can be useful in applications of gene diagnosis for oncology research Key words single cell real-time PCR human telomerase reverse transcriptase htert flow cytometry polymerase chain reaction PCR DNA RNA PCR DNA PCR 80 Jeffreys 1 PCR DNA Kumar 2 PCR PCR Elerwin 3 RT- PCR 1 RT-PCR 10 5 ~ 10 7 1 1 mrna RT-PCR SKOV3 SKOV3 h SKOV3 SKOV3 b 3 RNA TPI htert 4 5 BECKMAN AmpliGrid AG480F slide BECKMAN ABI7500 PCR Sensiscript Reverse htert Transcription QIAGEN 2 6-8 htert Brilliant II SYBR Green Mix 7-AAD RNA DNA BECKMAN 1 2 8 htert mrna NM_ 198253 9 10 Primer Premier 5 0 htert PCR 20 μl PCR SKOV3 htert SKOV3 htert htert SKOV3 3 BD AmpliSpeed slide cycler SIGMA GAPDH Table 1 Table 2 The sequence of PCR primers for htert and GAPDH Genes Forward primers Reverse primers Amplified fragments / bp htert 5'-CTCCCATTTCATCAGCAAGTTT-3' 5'-CTTGGCTTTCAGGATGGAGTAG-3' 96 GAPDH 5'-GAAGGTGAAGGTCGGAGT-3' 5'-GAAGATGGTGATGGGATTTC-3' 226
4 PCR htert mrna 385 1 3 SKOV3 10% 100 U / m L 100 m g / ml RPMI-1640 37 5% CO 2 2 d PCR 1 80% 1 8 PCR 1 4 SKOV3 30 3 PBS 1mL 0 25% 1 AmpliGrid AG480F slide SKOV3 5 min cdna PCR PCR 1 μl cdna 1 000 r / min 0 2 0 5 0 6 0 7 5min PBS 2 ~ 3 1 ~ 2 ml PBS 3 ~ 5μL 7-1 PBS PBS AAD 20 min 5 10 25 50 100 250 500 1 000 1 9 AmpliGrid AG480F slide 3 SPSS 13 0 3 ± 5 3 "x ± s SKOV3 h SKOV3 b SKOV3 5 P < 0 05 3 1 5 cdna QIAGEN 2 1 PCR 1 μl 0 1 μl 10 0 1 μl dntp Mix 5 μmol / L each dntp 0 1 μl Oligo dt 10 μmol / L 0 05 μl RNase 10 units / μl 0 05 μl Sensiscript 0 6 μl RNase-free water 37 60 min AmpliGrid AG480F slide 1 μl 5 μl Ct AmpliSpeed slide cycler Ct 3 μl RNase-free water 3 μl 0 2 ml EP - 20 50 1 6 PCR htert mrna 20 μl 10 μl 2 Brilliant II SYBR Green Mix 3 μl cdna 0 2 μl htert sense 0 2 μl htert antisense RNase-free water 2 Brilliant II SYBR Green Mix 95 10 min 95 15 s 60 1 min 40 0 2 μl 0 5 μl cdna 1 μl 2 μl 3 μl cdna 1 μl 2 μl 3 μl 0 2 μl 0 5 μl 1 7 5 μl PCR 1 5% 0 8 μl 6 3 2 1 μl PCR Ct Ct 100 250 500 1 000 5 Fig 1 20 μl PCR 10 μl 2 Brilliant II SYBR Green Mix 3 μl cdna 0 2 μl htert sense 0 2 μl htert antisense RNase-free water cdna 2 2 htert Ct cdna PCR cdna F = 6 183 P = 0 018 < 0 05 Ct 3 5 25
386 29 Fig 1 Melting curve and amplification curve of different number of cells after real-time quantitative PCR Different number of SKOV3 cells were sorted by flow cytometry onto AmpliGrid AG480F slide The different number were 5 10 25 50 100 250 500 1 000 The cells were reacted with reverse transcription reagents in AmpliSpeed slide cycler Then 3 μl of the reverse transcription products could react as templates for real-time PCR repeated 3 times respectively Melting curve A and amplification curve B showed that only 5 10 25 50 cells were detected by effective amplification The graph represented one of three independent experiments 50 Ct P < 0 05 5 10 Ct P = 0 215 > 0 05 10 25 50 Ct P = 0 071 > 0 05 Table 2 Table 2 Different number of cells of htert gene amplification in Ct value Cell number Ct mean 5 32 120 ± 0 487 10 32 523 ± 0 401 25 33 020 ± 0 334 * 50 33 307 ± 0 168 * * P < 0 05 compared with the Ct value of 5 cells PCR 5-8 5 10 25 GAPDH PCR 2 4 htert mrna 50 Fig 2 Electrophoresis analysis of the real-time PCR products The htert mrna expression of 5 10 25 50 cells were determined by real-time PCR 5 μl PCR products were run on 1 5% agarose gel electrophoresis 1-4 showed htert gene in 5 10 25 50 cells 5-8 showed GAPDH gene in 5 10 25 50 cells M Gradient DNA standard 9 Control 2 3 PCR SKOV3 h htert mrna 5 10 25 50 SKOV3 b SKOV3 cdna PCR 5 μl PCR 1 5% SKOV3 h SKOV3 29 504 SKOV3 b SKOV3 23 926 P < 0 05 PCR Fig 3 Fig 2 1-4 5 10 25 50 htert 2 5 PCR PCR 1 μl cdna 9 0 2 μl 0 5 μl 0 6 μl 0 7 μl 0 8 μl 6 Ct F = 14 675 P = 0 000 < 0 05 PCR SKOV3 Ct Table 3 htert mrna 0 2 μl Ct PCR P < 0 05 0 2 μl Ct SKOV3 SKOV3 h SKOV3 b 5
4 PCR htert mrna 387 Fig 3 Real-time PCR analysis of htert mrna expression in different groups of SKOV3 cells Every 5 cells were sorted by flow cytometry in different groups respectively htert mrna expression was detected by realtime PCR From left to right the SKOV3 untreated group SKOV3 SKOV3 infected with htert vecor group SKOV3h SKOV3 infected with empty vector group SKOV3b htert mrna expression of the htert vector infected group was the highest than that of empty vector infected group The untreated group was the lowest The graph and data represented one of three independent experiments * P < 0 05 vs SKOV3 group Ct P = 0 208 > 0 05 10 0 5 μl 2 6 PCR 100% 10 1 Ct 33 012 10% 9 Ct 3 htert RNA DNA 9 htert mrna htert SKOV3 mrna htert PCR 1 1 PCR htert mrna 30 PCR Table 3 Ct value of different primer contents of single blastomere after real-time PCR Primer μl 0 2 0 5 0 6 0 7 0 8 Ct value 28 277 ± 0 190 25 183 ± 1 701 * 25 086 ± 0 078 * 24 397 ± 0 162 * 23 825 ± 0 338 * * P < 0 05 compared with the Ct value of 0 2 μl primer PCR 15 ~ 20 μl 1 20 μl PCR fluorescence activated cell sorting FACS 50 11-13 10 25 50 5 PCR laser capture microdissection LCM 14 DNA 1 2 3 PCR 2 40 ~ 45 15 1 PCR PCR 1
388 29 DNA 10% PBS cells J tip AmpliGrid AG480F slide PCR RNA RNase 30 min 10 16 Sci References 1 Jeffreys A J Wilson V Thein S L Hypervariable minisatellite regions in human DNA J Nature 1985 314 6006 67-73 2 Kumar R Barbacid M Oncogene detection at the single cell level J Oncogene 1988 3 6 647-651 3 Eberwine J Yeh H Miyashiro K et al Analysis of gene expression in single live neurons J Proc Natl Acad Sci U S A 1992 89 7 3010-3014 4 Kim N W Piatyszek M A Prowse K R et al Specific association of human telomerase activity with immortal cells and cancer J Science 1994 266 5193 2011-2015 5 Meeran S M Patel S N Tollefsbol T O Sulforaphane causes epigenetic repression of htert expression in human breast cancer cell lines J PLoS One 2010 5 7 e11457 6 Bodnar A G Ouellette M Frolkis M et al Extension of lifespan by introduction of telomerase into normal human cells J Science 1998 279 5349 349-352 7 Counter C M Meyerson M Eaton EN et al Telomerase activity is restored in human cells by ectopic expression of htert hest2 the catalytic subunit of telomerase J Oncogene 1998 16 9 1217-1222 8 Wen J Cong Y S Bacchetti S Reconstitution of wild-type or mutant telomerase activity in telomerase-negative immortal human Hum Mol Genet 1998 7 7 1137-1141 9 Stampfer M R Yaswen P Human epithelial cell immortalization as a step in carcinogenesis J Cancer Lett 2003 194 2 199-208 J Li J Xie C Pei XT Recent advance of studies on telomerase function in stem cells J Prog Physiol 2004 35 2 149-151 11 Asami M Nakatsuka T Hayashi T et al Cultivation and characterization of planarian neuronal cells isolated by fluorescence activated cell sorting FACS J Zoolog Sci 2002 19 11 1257-1265 12 Anderson S Bankier A Barrell B G et al Sequence and organization of the human mitochondrial genome J Nature 1981 290 5806 457-465 13 Maryanski J L Attuil V Bucher P et al A quantitative single-cell PCR analysis of an antigen-specific TCR repertoire selected during an in vivo CD8 response direct evidence for a wide range of clone sizes with uniform tissue distribution J Mol Immunol 1999 36 11-12 745-753 14 Bhattacherjee V Mukhopadhyay P Singh S et al Laser capture microdissection of fluorescently labeled em bryonic cranial neural crest cells J Genesis 2004 39 1 58-64 15 - PCR J Kuang XY Chen F Guo J L et al Laser capture microdissection-single-cell PCR technology applied research J Acta Acad Med Mil Tert 2009 31 5 464-466 16 Pfaffl M W A new mathematical model for relative quantification in real-time RT PCR J Nucleic acids Res 2001 29 9 e45