22 1 Vol. 22. 1 J OU RNAL OF THE CHIN ESE RARE EAR TH SOCIET Y 2004 2 Feb. 2004 Ξ TiO2 1 2 3 3 2 1 3 (1. 510650 ; 2. 510650 ; 3. 030024) : X (XRD) B ET X (XPS) Nd TiO 2 Nd Nd TiO 2 Nd ( Ti ) TiO 2 Nd 1. 2 % : ; ; ; ; ; : O643. 361 ; O644. 1 : A : 1000-4343(2004) 01-0075 - 06 TiO 2 TiO 2 TiO 2 TiO 2 [1 3 ] TiO 2 1 1. 1 Nd TiO 2 17 ml 40 ml A ; 1 ml 0. 1 mol L - 1 TiO 2 Nd (NO 3 ) 3 10 ml 40 ml [4 8 ] 9 ml 30 TiO 2 min B ; A B 1 h [9 10 ] Nd TiO 2 TiO 2 2 d ; 100 TiO 2 ; 500 2 h Nd 0. 2 % TiO 2 TiO 2 012 % Nd 3 + / TiO 2 ; 017 % Nd 3 + / TiO 2 112 % Nd 3 + / TiO 2 210 % Nd 3 + / X TiO 2 ; TiO 2 Nd (XPS) Nd (Nd/ Ti) TiO 2 1. 2 TiO 2 (25 1) 012 g Nd TiO 2 Nd TiO 2 Nd 200 ml 12 mg L - 1 Ξ : 2003-04 - 14 ; : 2003-06 - 16 : (010873 20203007) ; (010151) ; 2003 C1 : (1976 - ) ; : 3 ( E2mail : cefbli @hot mail. com)
76 22 10 h 2. 1 XRD 20 ml 100 r min - 1 30 min 0. 45 m TiO 2 Nd TiO 2 TU21800 PC Nd TiO 2 101 (101) 1. 3 TiO 2 8 W 101 Scherrer Nd a 1. 4 c ( 1) ; (25 1) 0. 2 g Nd TiO 2 200 ml 12 mg L - 1 2. 2 BET 1 h 1 Nd TiO 2 Nd TiO 2 20 ml 100 r min - 1 30 ; 0. 2 % Nd 3 + / TiO 2 min 0. 45 m TU2 TiO 2 ; 1800 PC 2. 3 XPS 1. 5 X D/ MAX 2500 X (XRD) Cu 40 kv 100 ma 0. 15418 nm ; a c Scherrer D = k cos (1) d = 2sin l d 2 = h2 + k 2 a 2 + l 2 c 2 (2) (1) D k 0. 89 ; (2) d h 1 X k l a c (1) TiO2 ; (2) 012 % Nd 3 + / TiO 2 ; (3) 017 % Nd 3 + / TiO2 ; (4) 112 % Nd 3 + / TiO2 ; (5) 210 % Nd 3 + / TiO2 XPS PHI ESCA (XPS) 1 Nd Mg K TiO 2 125316 ev 16 ma 1215 kv ; 1 Nd/ Ti/ 10-8 N m - 2 ; C1s28416 ev / (m 2 ; Multipak 610 A CE Sorptomatic 1990 B E T 77 K 101 / cps 591 363 381 266 338 2 1 X Nd TiO 2 10-2 (mol - 1 ) 0 0. 2 % 0. 7 % 1. 2 % 2. 0 % A 3 A A A A g - 1 ) 43. 29 73. 38 96. 26 92. 37 95. 97 / nm 32. 9 25. 8 19. 8 19. 2 17. 8 a/ nm 3. 780 3. 783 3. 783 3. 780 3. 780 c/ nm 9. 502 9. 498 9. 493 9. 498 9. 493 3 A =
1 TiO 2 77 2 TiO 2 Ti O C 3 Nd TiO 2 3 TiO 2 Nd Ti O O [11 ] ; Nd Ti O ; C O Ti X Ti ( ) Ti ( ) TiO 2 Ti - O C ; Nd TiO 2 Nd O1s XPS Nd Nd TiO 2 Ti2p Ti2p Ti Nd TiO 2 O1s XPS Ti2p 1/ 2 Ti2p 3/ 2 3 3 015 E b = E b ( Ti2p 1/ 2 ) - E b ( Ti2p 3/ 2 ) 517 ev Ti2p 3/ 2 Sanjin s 3 2 Ti : 530. 0 ev (M - O) Ti ( ) Ti ( ) Ti (531. 5 0. 5) ev ( ) 2 XPS (1) TiO2 ; (2) 012 % Nd 3 + / TiO 2 ; (3) 017 % Nd 3 + / TiO 2 ; (4) 112 % Nd 3 + / TiO 2 ; (5) 210 % Nd 3 + / TiO 2 3 2 Ti2p XPS Nd Ti/ (mol - 1 ) Ti2p 1/ 2 B E/ ev FWHM/ ev / % Ti2p 3/ 2 Ti ( ) Ti ( ) B E/ ev FWHM/ ev / % B E/ ev FWHM/ ev / % 0. 0 % 464. 66 1. 02 32. 88 457. 69 0. 98 0. 11 458. 98 1. 93 67. 01 0. 2 % 464. 60 1. 03 33. 42 457. 67 0. 98 0. 82 458. 93 1. 96 65. 76 0. 7 % 464. 78 1. 05 32. 57 457. 72 0. 83 0. 90 459. 11 1. 96 66. 53 1. 2 % 464. 38 1. 07 33. 66 457. 81 0. 98 2. 48 458. 73 2. 01 63. 86 2. 0 % 465. 19 1. 15 35. 46 458. 00 0. 44 4. 76 459. 57 2. 31 59. 78 3 FWHM : ; B E : ( )
78 22 3 TiO 2 Nd TiO 2 O1s XPS Nd/ Ti/ O1s 1/ 3 O1s 2/ 3 O1s 3/ 3 (mol - 1 ) B E/ ev FWHM/ ev / % B E/ ev FWHM/ ev / % B E/ ev FWHM/ ev / % 0. 0 % 530. 16 1. 19 87. 46 531. 67 1. 66 12. 54 - - - 0. 2 % 530. 24 1. 22 82. 77 532. 01 1. 76 15. 69 528. 61 1. 08 1. 53 0. 7 % 530. 39 1. 20 76. 18 532. 01 1. 76 22. 30 528. 83 0. 76 1. 52 1. 2 % 529. 98 1. 19 82. 20 531. 38 1. 76 13. 49 528. 67 0. 94 4. 31 2. 0 % 531. 61 1. 69 55. 31 533. 14 1. 62 41. 58 529. 75 1. 69 3. 11 (533 1) ev TiO 2 [12 ] Nd 3 Nd XPS O1s TiO 2 TiO 2 530. 6 532 1. 2 % Nd 3 + / TiO 2 533. 2 ev 3 530. 6 ev Nd Nd 2 O 3 O1s Nd 3 + (0. 099 nm) Ti 4 + Nd (0. 068 nm) Nd TiO 2 [13 ] [15 3 530 ] 1 ev O1s (M - O) a c TiO 2 Ti - O Nd Nd - O ; 532 ev O1s Nd TiO 2 ( 1) OH ; 528 ev O1s Nd Ti - O Nd 3 + Nd - O Ti - O 4 Nd Nd TiO 2 [O ]/ [ Ti ] Ti ( ) 210 % Nd 3 + / TiO 2 [O ]/ [ Ti ] Ti ( ) 210 % Nd 3 + / TiO 2 [ O ]/ [ Ti ] 4 [16 TiO 2 [O ]/ [ Ti ] 2 ] O 5 Nd TiO 2 [14 ] Nd 1. 2 % Nd 3 + / TiO 2 Nd TiO 2 O O Nd (O H) 3 Nd 2O 3 2. 4 4 [ O] / [ Ti] Ti( ) Nd TiO 2 ; Nd TiO 2 2. 5 [ O ]/ [ Ti ] Ti ( ) / [ Ti ( ( ) + Ti ( ) ] TiO 2 2. 11 0. 16 0. 2 % Nd 3 + / TiO 2 2. 23 1. 23 0. 7 % Nd 3 + / TiO 2 2. 46 1. 35 1. 2 % Nd 3 + / TiO 2 2. 48 3. 74 2. 0 % Nd 3 + / TiO 2 10. 8 7. 04 3 Nd TiO 2
1 TiO 2 79 TiO 2 ; ; ; - Ti ( ) + O 2 Ti ( ) + O 2 (3) 4 Ti ( ) ( ) TiO 2 ; ( ) 0127 %Nd 3 + / TiO 2 ; ( ) 017 %Nd 3 + / ; 3 TiO 2 ; ( ) 112 %Nd 3 + / TiO 2 ; ( ) 210 %Nd 3 + / TiO 2 5 TiO 2 0. 2 % Nd 3 + / TiO 2 0. 7 % Nd 3 + / TiO 2 1. 2 % Nd 3 + / TiO 2 2. 0 % Nd 3 + / TiO 2 K/ 10-4 s - 1 2. 0318 2. 4189 2. 7439 4. 6082 2. 8341 R 2 0. 9965 0. 9960 0. 9983 0. 9975 0. 9977 TiO 2 Ti ( ) Ti ( ) (O - 2 ) [17 19 ] : [20 ] ; Ti ( ) 4 XPS Nd [ O ]/ [ Ti ] Ti ( ) 2. 0 % Nd ; 2. 0 %Nd 3 + / TiO 2 Ti ( ) [O ]/ [ Ti ] 1. 2 % Nd 3 + / TiO 2 Nd (Nd (O H) 3 ) [5 ]. TiO 2 [J ]. 2002 60 (3) : 463. (Nd 2 O 3 ) / 3 Nd 1. 2 % Nd [1 ] Fujishima A Honda K. Electrochemical p hotolysis of wa2 ter at a semiconductor electrode [ J ]. Nature 1972 238 (5358) : 37. [ 2 ] Hoff man M R Martin S T Choi W et al. Environmental applications of semiconductor photocatalysis [ J ]. Chem. Rev. 1995 95 : 69. [3 ] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J ]. Chem. Rev. 1993 93 : 267. [4 ]. TiO 2 2 B [J ]. 2000 21 (6) : 958. [ 6 ] Li F B Li X Z. Photocatalytic properties of gold/ gold ion2 modified titanium dioxide for wastewater treat ment [J ]. Ap2 plied Catalysis A : General. 2001 5910 : 1. [ 7 ] Jos A. Nav o Gerardo Col n Manuel Mac as et al. Iron2doped titania semiconductor powders prepared by a sol2 gel method. Part I : synthesis and characterization [J ]. Ap2 plied Catalysis A : General. 1999 177 : 111. [ 8 ]. [J ]. 2001 59 : 1072. [9 ]. / TiO 2
80 22 [J ]. 2002 20 (1) : 74. [ 10 ] Li Fangbai Gu Guobang Li Xinjun et al. Preparation [J ]. 2001 19 (3) : 225. characterization and p hoto2catalytic behavior of Y 2O 3/ TiO 2 composite semiconductor nanopowder [J ]. Journal of Rare Eart hs 2001 19 (3) : 187. [11 ]. TiO 2 XPS [J ]. 2000 14 (2) : 203. [12 ] Sanjin s R Tang H Berge H et al. Electronic structure of anatase TiO 2 oxide [J ]. J. Appl. Phys. 1994 75 : 2945. [13 ]. XPS Nd [19 ] Mills A Morris S. Photomineralization of 42chlorop henol [J ]. 2001 50 (1) : 79. [14 ]. TiO 2 of carbon dioxide photogeneration [J ]. J. Photochem. Pho2 [J ]. 2000 15 (2) : 347. [ 15 ] Xu AnWu Gao Yuan Liu HanQin. The preparation characterization and their photocatalytic activities of rare2 eart h2doped TiO 2 nanoparticles [ J ]. Journal of Catalysis 2002 207 : 151. [16 ]. Y 2O 3/ TiO 2 [17 ] Liu H Ma H T Li X Z et al. The enhancement of TiO 2 photocatalytic activity by hydrogen thermal treat ment [J ]. Chemosp here 2003 50 (1) : 39. [ 18 ] Madhu Kumar P Badrinarayanan S Sastry M. Nanocrys2 talline TiO 2 studied by optical F TIR and X2ray p hotoelec2 tron spectroscopy : correlation to presence of surface states [J ]. Thin Solid Films 2000 358 (1-2) : 122. sensitized by titanium dioxide : a study of the initial kinetics tobiol. A : Chem. 1993 71 : 75. [20 ] Li FangBai Li Xinjun Li Xiangzhong et al. Photoelec2 trocatalytic properties and reactivity of Ti/ Au2TiO 2 mesh electrodes [J ]. Transactions of Nonferrous Metals Society of China 2002 12 (6) : 1180. Enhancement of Photo2Catalytic Properties and Activity of Nd 3 + 2Doped TiO 2 Po wders Hou Meifang 1 Li Fangbai 2 3 Li Ruifeng 3 Wan Hongfu 2 Zhou Guoyi 1 Xie Kechang 3 ( 1. S out h Chi na I nstit ute of B ot any Chi nese A cadem y of S ciences na ; 2. Guangz hou 510650 Chi2 Guangdong Key L aboratory of A gricult u ral Envi ron ment Poll ution I ntegrated Con2 t rol Guangdong I nstit ute of Eco2Envi ron ment an d S oil S cience Guangz hou 510650 Chi2 na ; 3. T aiy uan U ni versity of S cience an d Technology S t ate Key L aboratory of Carbon 1 Chem ist ry an d Technology T aiy uan 030024 Chi na) Abstract : The crystal pattern and parameter t he specific area t he surface chemical state of p ure TiO 2 and Nd 3 + 2doped TiO 2 powders prepared by t he sol2gel met hod were characterized by means of X2ray diffraction ( XRD ) X2ray p hotoelectron spectroscopy ( XPS) and B E T met hod respective2 ly. The met hyl orange (MO) was chosen to be t he probe compound to measure t heir adsorptive prop2 erties and p hoto2catalytic activit y. The result s shows t hat t he N d doping hinders t he crystal t ransformatio n and decreases t he relative intensity of (101) peak. The crystallite sizes of Nd 3 + 2doped TiO 2 powders decrease while t heir specific surface area increase owing to t he N d doping. The XPS measurement show t hat t he surface chemical state can be improved and t he content of t heir surfaces increases wit h t he Nd doping. Ti ( ) on The relatio nship bet ween t he p hysicochemical p roper2 ties and t he p hoto2catalytic activity of t he p hoto2 catalyst s was discussed. The enhancement of p ho2 to2catalytic activity of Nd 3 + 2doped TiO 2 powders increase because of t heir adsorp tio n capacit y and t he suitable percent of Ti ( ) on t he surface. The adsorp tio n and p hoto2degradatio n experiment s show t hat t he optimum molar content of Nd may be 1. 2 %. Key words : catalitic chemistry ; photo2catalysis ; TiO2 ; Nd ; met hyl orange ; rare eart hs