Supporting Information for Publication Structure-Spectra Correlations in Anilate Complexes with Picolines Katarzyna Łuczyńska,* ab Kacper Drużbicki, bc Krzysztof Lyczko a and Jan Cz. Dobrowolski ad. a Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland. e-mail: k.luczynska@ichtj.waw.pl b Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna, Russia. c Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland. d National Medicines Institute, 30/34 Chełmska Street, 00-725, Warsaw, Poland. Contents: Table S1. Crystallographic data and structure refinement parameters for the studied set of picoline-anilic acid complexes. Table S2. The most prominent interatomic distances (r) in ClA : 2-MP (1:1); BrA : 2-MP (1:1); ClA : 3-MP (1:1) and BrA : 3-MP (1:2) form II. The results are collected from X-Ray diffraction at 100K (XRD) and from Born-Oppenheimer NVT MD simulations (AIMD) at 75, 225 and 375K, respectively. Table S3. Collection of experimental ( 13 C CP/MAS NMR at 298K) and theoretical (PBE) chemical shifts (δ [ppm]) for ClA : 2- MP (1:1); BrA : 2-MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), along with a detailed assignment. Table S4. The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. Table S5. The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. Table S6. The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. Table S7. Collection of the thermal stability limits for each powder sample studied. Figure S1. Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1) and BrA : 2MP (1:1) complexes. Figure S2. Hirshfeld surface analysis of the intermolecular interactions in ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. Figure S3. The fingerprint plots from Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1); BrA : 2MP (1:1); ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. Figure S4. Percentage contributions from particular close contacts derived from Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1) and BrA : 2MP (1:1) complexes. 1
Figure S5. Percentage contributions from particular close contacts derived from Hirshfeld surface analysis of the intermolecular interactions in ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. Figure S6. Room temperature FT-IR spectra of ClA : 2-MP (1:1); BrA : 2-MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), presented along with theoretical spectra calculated with DFPT (fixed-cell PBE) as based on the crystallographic and hypothetical structures. The transverse-optical (TO) components are given as black lines, while longitudinal-optical (LO) spectra are given as red curves as averaged over multiple grain orientations. Please note that the highest-wavenumber range is supplemented with proton power spectra (NH and OH) from BOMD simulations. Figure S7. Room temperature FT-RS spectra of ClA : 2-MP (1:1); BrA : 2-MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), presented along with theoretical quasi-harmonic spectra calculated with DFPT (transverse-optical components in fixed-cell PBE) as based on the crystallographic and hypothetical structures. Figure S8. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 2-Methylpyridinium 2,5- dichloro-4-hydroxy-3,6-dioxocyclohexa-1,4-diene-1-olate (ClA : 2-MP 1:1) complex. Figure S9. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 2-Methylpyridinium 2,5- dibromo-4-hydroxy-3,6-dioxocyclohexa-1,4-diene-1-olate (BrA : 2-MP 1:1) complex. Figure S10. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5- dichloro-3,6-dioxocyclohexa-1,4-diene-1,4-diolate 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione-1,4-diolate (ClA : 3-MP 1:1) complex. Figure S11. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5- dibromo-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (BrA : 3-MP 1:2) complex, polymorphic form I. Figure S12. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5- dibromo-3,6-dioxocyclohexa-1,4-diene-1,4-diolate (BrA : 3-MP 1:2) complex, polymorphic form II. 2
Table S1. Crystallographic data and structure refinement parameters for the studied set of picoline-anilic acid complexes. Synthon :B:A: A: B: :B:A: A: B: :(B:A:B):A B:A:B B:A:B Molecular formula C 12H 9Cl 2NO 4 C 12H 9Br 2NO 4 C 24H 18Cl 4N 2O 8 C 18H 16Br 2N 2O 4 C 18H 16Br 2N 2O 4 Acronym ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) I BrA : 3-MP (1:2) II Formula weight (g mol -1 ) 302.10 391.02 604.20 484.15 484.15 T/K 100 100 100 100 100 λ [CuKa] (Å) 1.54184 1.54178 1.54184 1.54184 1.54184 Crystal system triclinic triclinic triclinic monoclinic monoclinic Space group P -1 P -1 P -1 P2 1/c P2 1/c a (Å) 7.3724(5) 7.4522(6) 5.0309(3) 8.9509(3) 8.4785(3) b (Å) 9.1550(8) 9.3219(7) 9.3565(6) 9.6049(3) 7.7972(3) c (Å) 9.7207(5) 9.9474(7) 13.3345(9) 10.4211(4) 13.5903(5) α ( ) 101.623(6) 101.166(6) 97.628(6) 90.00 90.00 β ( ) 103.978(5) 104.530(7) 98.641(5) 103.949(4) 100.300(4) γ ( ) 97.501(6) 99.201(7) 103.811(5) 90.00 90.00 Volume (Å) 612.42(7) 640.26(8) 593.24(6) 869.51(5) 883.95(6) Z 2 2 1 2 2 Dc (g cm -3 ) 1.638 2.028 1.691 1.849 1.819 μ (mm -1 ) 4.883 8.145 5.041 6.162 6.062 F (000) 308 380 308 480 480 Crystal size (mm) 0.12 0.10 0.02 0.16 0.12 0.04 0.20 0.12 0.10 0.12 0.08 0.06 0.18 0.16 0.06 Ɵ range for data collection ( ) 4.83-66.50 4.74-67.49 3.41-66.50 5.09-67.49 5.30-66.49 Reflections collected 3528 4639 3327 3058 2994 Independent reflections 2118 2294 2055 1562 1543 R int 0.0238 0.0165 0.0251 0.0194 0.0219 Absorption correction multi-scan multi-scan multi-scan multi-scan multi-scan Transmission, Tmin/Tmax 0.77971/1.00000 0.83566/1.00000 0.65880/1.00000 0.87884/1.00000 0.65428/1.00000 Data/restraints/parameters 2118/0/181 2294/0/181 2055/0/180 1562/0/122 1543/0/123 Goodness of fit on F 2 1.039 1.090 1.086 1.077 1.062 Final R indices [I > 2s(I)] R indices (all data) R 1 = 0.0329; wr 2 =0.0862 R 1 = 0.0384 ; wr 2 = 0.0908 R 1 = 0.0238; wr 2 = 0.0657 R 1 = 0.0245; wr 2 = 0.0666 R 1 = 0.0382; wr 2 =0.1105 R 1 = 0.0390 ; wr 2 = 0.1117 R 1 = 0.0227; wr 2 =0.0579 R 1 = 0.0248 ; wr 2 = 0.0597 R 1 = 0.0342; wr 2 =0.0965 R 1 = 0.0360; wr 2 =0.0985 Largest diff. peak/hole (e Å -3 ) 0.352 /-0.278 0.589 / -0.652 0.505/-0.489 0.297/-0.491 0.911/-0.954 3
Table S2. Most prominent interatomic distances (r) in ClA : 2-MP (1:1); BrA : 2-MP (1:1); ClA : 3-MP (1:1) and BrA : 3-MP (1:2) form II. The results are collected from X-Ray diffraction at 100K (XRD) and from Born-Oppenheimer NVT MD simulations (AIMD) at 75, 225 and 375K, respectively. Compound / Coordinate ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) II XRD AIMD XRD AIMD XRD AIMD XRD AIMD 100K 75K 225K 375K 100K 75K 225K 375K 100K 75K 225K 375K 100K 75K 225K 375K r(oh) [Å] 0.817 1.000 1.001 1.002 0.820 0.999 1.001 1.003 1.055 1.045 1.035 1.031 r(oh O) [Å] 1.955 1.808 1.829 1.868 1.965 1.788 1.811 1.837 1.533 1.525 1.573 1.602 1.077 1.069 1.066 r(nh) [Å] 0.909 1.061 1.060 1.057 0.860 1.061 1.059 1.057 0.931 1.054 1.055 1.055 0.941 1.073 1.071 1.070 r(nh O) [Å] 1.814 1.653 1.666 1.690 1.875 1.644 1.660 1.678 r(ch O) [Å] 1.942 1.868 1.885 1.888 1.784 1.612 1.627 1.635 2.088 1.990 2.005 2.033 2.301 2.350 2.369 2.395 C(6)H O(4) C(6)H O(2) 2.587 2.492 2.524 2.550 C(12)H O(2) 2.440 2.304 2.319 2.343 2.454 2.293 2.314 2.355 C(2)H O(3) 2.457 2.304 2.322 2.329 C(5)H O(2) 2.450 2.316 2.338 2.362 C(4)H O(4) 2.511 2.330 2.342 2.373-2.350 2.192 2.217 2.252 H H [Å] - C(5)H C(6)H 2.099 2.072 2.076 2.092 - Table S3. Collection of experimental ( 13 C CP/MAS NMR at 298K) and theoretical (PBE) chemical shifts (δ [ppm]) for ClA : 2-MP (1:1); BrA : 2- MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), along with a detailed assignment. ClA : 2-MP (1:1) BrA : 2-MP (1:1) Cla : 3-MP (1:1) Bra : 3-MP (1:2) [P2 1/c] 298K [P-1] 298K [P-1] Assignment 298K [P-1] [P1] Assignment 298K I II Assignment δ exp δ PBE δ exp δ PBE No. Unit δ exp δ PBE PBE No. Unit δ exp δ PBE δ PBE No. Unit 177.2 176.1 176.9 175.8 C(11) 13 C=O 176.9 174.9 177.0/176.9 C(12) 13 C=O 175.4 171.5 171.9 C8 13 C=O HN 171.1 169.2 169.5 170.2 C(12) C=O HN 173.3 174.6 173.6/170.8 C(9) C=O HN 171.2 171.5 169.8 C9 C=O HN 169.1 167.2 169.3 166.7 C(8) C=O HO 168.4 168.5 168.4/164.9 C(8) C=O HO 156.6 158.9 158.6 160.5 C(9) 13 C-OH O 157.9 158.4 162.2/158.2 C(11) C-OH O 154.1 153.7 154.1 153.6 C(2) 13 C-CH 3 147.4 148.0 148.4/148.4 C(4) 13 C-H 147.5 148.5 148.3 C4 13 C-H 147.7 147.7 148.0 147.4 C(4) 13 C-H 142.2 141.3 143.1/142.6 C(2) N- 13 C-H O- 139.5 143.7 142.8 C2 N- 13 C-H O= 141.1 140.9 141.2 140.7 C(6) N- 13 C-H O= 137.9 141.0 142.3/141.9 C(3) 13 C-CH 3 139.5 137.1 139.6 C3 13 C-CH 3 129.2 132.1 129.5 131.7 C(3) 13 C-H 137.8 137.1 136.9/135.3 C(6) N- 13 C-H O= 135.7 133.6 137.5 C6 N- 13 C-H O= 125.6 127.1 125.3 126.6 C(5) 13 C-H 127.2 129.7 129.3/128.3 C(5) 13 C-H 128.3 130.8 128.2 C5 13 C-H 109.1 113.5 101.8 116.9 C(10) 13 C-X1 109 114.4 114.4/114.0 C(10) 13 C-X2 106.8 112.3 97.4 114.7 C(7) 13 C-X2 108 113.7 113.3/112.1 C(7) 13 C-X1 98.3 114.4 113.6 C7 13 C-X 18.4 17.2 18.4 17.6 C(1) 13 CH 3 20 19.7 20.1/19.7 C(1) 13 CH 3 17.1 15.0 16.0 C1 δ ref 167.23 ref 166.89 δ ref 167.48 δ ref 167.23 168.10 a 0.976 a 0.971 a 0.982 a 0.976 1.008 13 CH 3 4
ClA : 2MP (1:1) a-axis b-axis c-axis BrA : 2MP (1:1) Figure S1. Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1) and BrA : 2MP (1:1) complexes. 5
ClA : 3MP (1:1) a-axis b-axis c-axis BrA : 2MP (1:1) Figure S2. Hirshfeld surface analysis of the intermolecular interactions in ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. 6
ClA : 2MP (1:1) ClA : 3MP (1:1) ClA 2MP ClA 3MP BrA : 2MP (1:1) BrA : 3MP (1:2) ClA 2MP BrA 3MP Figure S3. The fingerprint plots from Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1); BrA : 2MP (1:1); ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. 7
35 30 25 20 15 10 5 0 X-X X-O X-C X-H O-C O-H C-C C-H ClA:2MP (1:1) BrA:2MP (1:1) ClA:3MP (1:1) BrA:3MP (1:2) II BrA:3MP (1:2) II ClA:3MP (1:1) BrA:2MP (1:1) ClA:2MP (1:1) H-H Figure S4. Percentage contributions from particular close contacts derived from Hirshfeld surface analysis of the intermolecular interactions in ClA : 2MP (1:1) and BrA : 2MP (1:1) complexes. 50 40 ClA:2MP (1:1) BrA:2MP (1:1) ClA:3MP (1:1) BrA:3MP (1:2) II 30 20 10 0 X-H O-C O-H C-C C-H H-H N-H BrA:3MP (1:2) II ClA:3MP (1:1) BrA:2MP (1:1) ClA:2MP (1:1) Figure S5. Percentage contributions from particular close contacts derived from Hirshfeld surface analysis of the intermolecular interactions in ClA : 3MP (1:1) and BrA : 3MP (1:2), Form II complexes. 8
Figure S6. Room temperature FT-IR spectra of ClA : 2-MP (1:1); BrA : 2-MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), presented along with theoretical spectra calculated with DFPT (fixed-cell PBE) as based on the crystallographic and hypothetical structures. The transverse-optical (TO) components are given as black lines, while longitudinal-optical (LO) spectra are given as red curves as averaged over multiple grain orientations. Please note that the highest-wavenumber range is supplemented with proton power spectra (NH and OH) from BOMD simulations. 9
Figure S7. Room temperature FT-RS spectra of ClA : 2-MP (1:1); BrA : 2-MP (1:1) ClA : 3-MP (1:1) and BrA : 3-MP (1:2), presented along with theoretical quasi-harmonic spectra calculated with DFPT (transverse-optical components in fixed-cell PBE) as based on the crystallographic and hypothetical structures. 10
Table S4 The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. 1 2 3 4 ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) ra : -1 ] Tentative Band 298K PBE 298K PBE 298K PBE 298K PBE Assignment [Compound No.] IR RS IR RS IR RS IR RS [A [A [A u] [A u] [A g] [A g] [A u] [A u] [A g] [A g] [A u] [A u] [A u/b u g] [A g] [A u] [A g] ] g/b g] 3159 3137 3158 3132 ν(oh)[1 2] 3109 3166 3108 3162 ν(ch)[1 2] 3042 3047 3081 3082 3039 3039 3050 3050 ν(ch)[3] / ν ass(ch 3)[4] 2935 2978 2933 2976 2932 2973 2933 2978 ν ss(ch 3)[1-4] 2625 2621 2719 2722 2619 2610 2712 2716 2760 2927 2447 2516 2521 ν(nh)[1-4] 2553 2342 ν(oh)[3] 2111 2114 2155 2096 Difference Bands: ν(nh)[1,2,4] / ν(oh)[3] 1683 1679 1656 1639 1677 1675 1654 1637 1671 1666 1640 1633 1638 1643 1635 1631 δ(nh O); ν(c=o)[1,2] / ν(c=o); δ(oh O)[3] / δ(nh O); ν(c=c) [MP] ; ν(c=o)[4] 1642 1646 1636 1619 1639 1642 1635 1618 1636 1635 1626 1607 1625 1627 1614 1627 δ(nh O); ν(c=o); ν(c=c) [MP] [1,2,4] / δ(nh O); δ(oh O); ν(c=o); ν(c=c) [MP] [3] 1622 1627 1597 1592 1618 1619 1592 1588 1618 1622 1587 1591 1611 1598 δ(oh O); ν(c=c) [XA] [1-3] / ν ss(c=c) [XA] [4] 1610 1579 1600 1558 δ(nh O); ν(c=o); ν(c=c) [MP] [4] 1544 1539 1542 1540 1565 1558 1568 1548 δ(nh O); ν(c=c) [XA] ; ν(c=c) [MP] ; β(ch)[1,2,4] / δ(nh O); δ(oh O); ν(c=c) [XA] ; ν(c=c) [MP] ; β(ch)[3] 1528 1543 1533 1545 1528 1511 1531 1508 1523 1519 1514 1515 δ(nh O); δ(oh O); ν(c=c) [XA] ; β(ch)[1-4] 1476 1475 1470 1466 1476 1475 1469 1464 1473 1481 1463 1472 1465 1468 1458 1461 β(ch); δ as(ch 3); β(nh)[1-2] 1445 1436 1445 1433 1438 1443 1418 1435 1439 1447 1420 1437 δ as(ch 3); β(ch)[1-4] 1405 1409 1400 1416 1404 1406 1398 1414 β(ch); δ as(ch 3)[1-2] 1381 1355 1387 1366 δ ss(ch 3); ν(c=c) [XA] ; δ(oh O)[3] / δ ss(ch 3); β(ch); δ(nh O)[4] 1388 1357 1378 1353 1377 1369 1352 1352 δ(oh O); ν(c=c) [XA] [1-2] / δ(nh O); ν(c=c) [XA] [4] 1379 1348 1373 1347 1366 1373 1349 1355 ν(c=c) [XA] [1-2] / ν(c=c) [XA] ; δ ss(ch 3); δ(oh O)[3] 1369 1368 1353 1366 1356 1366 δ ss(ch 3)[1-2] / δ ss(ch 3); ν(c=c) [MP] [3] 1354 1334 1357 1343 1324 1332 δ(oh O); ν(c=c) [XA] ; β(ch); δ(nh O)[3] / ν(c=c) [XA] ; β(ch); δ(nh O)[4] 1342 1346 1322 1326 1330 1335 1314 1321 1333 1331 δ(oh O); ν(c-o) [XA] [1-2] / δ(oh O); ν(c-o) [XA] ; ν(c=c) [XA] [3] 1316 1320 1288 1280 δ(nh O); β(ch)[4] 1308 1288 1291 1239 δ(oh O); ν(c=c) [XA] [3] / ν(c=c) [XA] ; β(ch)[4] 1294 1279 1279 1266 1284 1278 δ(nh O); δ(oh O); β(ch); ν(c=c) [XA] [1,2,3] 1283 1268 1272 1250 δ(nh O); β(ch); ν(c-o) [XA] ; ν(c=c) [XA] ; ν(c-x) [XA] [1-2] 1267 1253 1254 1243 δ(nh O); δ(oh O); β(ch); ν(c=c) [XA] [1,2] 1235 1228 1250 1268 1225 1227 δ(oh O); δ(nh O); β(ch); ν(c=c) [XA] ; ν(c-x) [XA] [3] / δ(nh O); β(ch); ν(c=c) [XA] ; ν(c-x) [XA] [4] 1234 1241 ν(c-ch 3); β(ch)[4] 1253 1242 1248 1228 1241 1238 1234 1235 1233 1236 1222 1217 δ(oh O); ν(c-ch 3); β(ch); ν(c=c) [XA] [1-3] 1174 1159 1202 1193 δ(oh O); β(ch)[2-3] 1188 1172 1168 1156 1191 1154 δ(oh O)[1,3] / δ(oh O); β(ch)[2] 1177 1184 1176 1182 γ(nh O); β(ch)[4] 1171 1179 1160 1161 β(ch)[1] 1171 1149 1170 1138 δ(oh O); ν(c-x) [XA] [1-2] 1125 1132 1118 1127 γ(nh O); γ(oh O); β(ch)[3] 1118 1121 1113 1112 β(ch)[4] 1115 1114 1114 1111 γ(nh O); β(ch)[1-2] 1109 1095 1113 1092 1091 1094 γ(nh O)[1-2] / γ(nh O); γ(oh O)[3] 1089 1086 γ(oh O); γ(nh O)[3] 1048 1045 1048 1044 1043 1041 1048 1046 β [MP] [1-4] 1046 1030 1024 1019 1046 1033 1022 1017 1046 1032 1037 1018 1046 1023 1032 1014 ρ(ch 3); γ(ch)[1-4] 1021 1015 ρ(ch 3); γ(ch); β [MP] [1-4] 1008 1008 997 999 1010 1008 995 996 ρ(ch 3); γ(ch); β [MP] [1-2] 982 984 982 982 987 990 979 979 997 986 996 999 ρ(ch 3); γ(ch); β [MP] [1-2] / ρ(ch 3); β [MP] [3] / ρ(ch 3); γ(ch); β [MP] [4] 985 976 β [XA] ; β(cco) [XA] [3] 11
Table S5. The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. 1 2 3 4 ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) ν [cm -1 ] Tentative Band 298K 10K DFPT 298K 10K DFPT 298K 10K DFPT 298K 10K DFPT Assignment [Compound No.] IR RS IR RS INS [A [A u] [A u] [A g] g] [A u] [A INS [Au] [Ag] IR RS IR RS [A INS [A g] [A u] [A u] [A g] INS u [A g g] [A u] [A g] /B u] /B g] γ(ch); ρ(ch 954 962 966 941 965 970 3); β [XA] ; β(cco) [XA] [1] / β [XA] ; β(cco) [XA] [2] / ρ(ch 3); β [MP] [4] 952 959 964 966 955 β [XA] ; β(cco) [XA] [1] / γ(ch); ρ(ch 3)[2] 955 954 936 941 942 [u] 935 937 927 925 931 [g] 926 926 γ(ch); ρ(ch 3)[1,3,4] 879 900 [u] 895 [u 891 880 ] 891 917 915 [g] 902 γ(oh O)[1,2] / γ(ch); ρ(ch 3)[3] 886 878 [g] 875 890 875 [g] 870 874 894 882 884 905 γ(ch); ρ(ch 3)[1,2,4] / ν(c-x) [XA] [3] 843 [g] 854 851 [g] 852 862 860 γ(oh O)[1,2] / ν(c-x) [XA] [3] 840 834 818 814 841 825 β [XA] Trigonal [1,3] 814 809 805 [u] 801 804 824 803 β [MP] Trigonal ; ν(c-ch 3)[1] / β [MP] Trigonal ; ν(c-ch 3); ν(c-x) [XA] [2] 819 823 [u] 800 824 806 β [MP] Trigonal ; ν(c-ch 3)[2] / β [MP] ; γ(ch)[3] 810 800 807 803 809 [u] 808 802 793 806 [u] 798 800 β [MP] ; ν(c-ch 3); ν(c-x) [XA] [2] / β [MP] ; ν(c-ch 3)[4] / γ(ch); ρ(ch 3); β [XA] [3] 802 779 794 796 β [XA] Trigonal [2] / β [MP] ; ν(c-ch 3)[4] 794 774 794 769 782 [u] 788 γ [XA] [1,2] / γ(ch); ρ(ch 3)[4] 778 763 787 775 780 769 β [XA] Twist [1] / γ [XA] [3] / β [XA] Trigonal [4] 762 [g] 753 770 775 [g] 752 753 771 770 772 780 γ(ch); ρ(ch 3)[1,2] / β [XA] Twist [3] / ν(c-x) [XA] [4] 761 744 760 742 γ(ch)[1,2] 752 739 767 739 746 763 γ [XA] [1,2] / β [XA] Twist [4] 709 708 706 [u] 709 708 708 709 718 [u] 709 708 γ [MP] [1,2] 683 684 680 [g] 687 686 684 687 685 [u] 683 682 γ(ch)[3,4] 627 627 632 [u] 624 624 627 629 632 [u] 624 623 627 630 629 [u] 627 628 616 622 616 [g] 625 623 δ(cnc)[1-4] 582 573 β [XA] Trigonal [1] 571 577 573 [g] 563 566 554 556 547 548 576 569 559 553 γ [XA] [1-4] 554 554 551 543 β [XA] Quadratic [3-4] 549 546 β [XA] Trigonal [3] 541 542 536 [u] 537 538 537 542 545 [g] 531 536 539 536 [u] 531 534 β [MP] Quadratic ; β [XA] Quadratic [1-3] 517 519 512 508 β [XA] [2] 510 509 499 498 503 495 526 518 534 532 [g] 527 γ [XA] [1-2] / β [XA] Quadratic ; γ [XA] [3] / β [MP] Quadratic [4] 532 524 β [XA] [4] 494 486 489 515 γ [XA] [3-4] 476 475 472 [g] 472 470 475 475 479 [g] 472 469 464 470 465 [u] 465 464 469 468 466 [u] 464 466 γ [MP] [1-4] 434 440 439 445 δ(cc=o)[3] 409 [u] 407 γ [MP] [3] 407 404 405 402 408 401 β [XA] ; γ [MP] [1-3] 413 [u] 404 γ [MP] [4] 405 403 404 [u ] 401 415 416 405 406 γ [MP] ; δ(cc=o)[1,2,4] 398 [u] 402 389 387 396 401 396 [u] 396 401 γ [MP] [1] / β [XA] ; γ [MP] [2] / γ [MP] ; δ(cc=o)[4] 394 386 387 388 γ [MP] ; δ(cc=o)[1] / β [XA] Quadratic [3] 364 369 361 [g] 355 354 361 [u] 350 376 374 378 [u] 377 372 371 δ(cc=o); δ(coh); Lib.(in-plane) [MP] ; δ(c-c-ch 381 3) [MP] [1-2] / δ(cc=o); δ(coh)[3] / β [XA] [4] 346 344 350 359 342 345 364 349 349 [g] 353 346 350 346 [u] 335 δ(coh); δ(c-c-ch 3) [MP] [1-2] / δ(cc=o); δ(c-c-ch 3) [MP] [3] / Lib.(in-plane) [MP] ; δ(c-c-ch 3) [MP] [4] 316 296 γ [XA] [1] 284 289 286 [g] 281 283 293 301 302 [u] 292 298 298 298 299 294 δ(cc=o); δ(cc-o)[1-2] / γ [XA] [3] / Lib. [XA] [4] 267 269 268 [g] 267 266 286 285 [g] 283 γ [XA] [2]; β [XA] Quadratic ; γ [XA] [3] 237 240 236 240 234 233 [u] 230 247 240 246 253 βtwist[xa] [1,3] / γ [MP] ; Lib.(out-of-plane) [MP] ; γ(c-ch 3) [MP] [2] / γ [XA] [4] 236 [g] 226 225 222 232 [g] 234 231 228 [u] 222 Lib.(out-of-plane) [MP] ; γ(c-ch 3) [MP] [1-4] 214 210 [g] 209 208 211 205 212 225 223 216 210 δ(cc-x) [XA] [1,3-4] 203 202 196 204 γ [XA] [1,4] 198 196 195 188 β [XA] Quadratic [2,4] 195 198 [g] 190 189 199 199 [u] 197 184 188 [u] 183 γ [XA] [2] / δ(cc-x) [XA] [3] / γ [XA] ; τ(cccc) [MP] [4] 179 171 δ(cc-x) [XA] ; τ(ch 3)[2] / τ(ch 3)[3] 163 158 157 162 Lib.(out-of-plane) [MP] [2] 150 [u] 160 156 [g] 157 156 147 [u] 171 160 τ(ch 3)[1] 141 144 128 [g] 130 145 155 τ(ch 3); Lib.(out-of-plane) [MP] [1,2,3] 126 121 [u] 131 144 148 131 140 [g] 130 τ(ch 3); ν(n O)[1,3] / τ(ch 3); Lib.(out-of-plane) [MP] [4] 130 132 127 [u] 125 γ(c=o) [XA] ; Lib.(out-of-plane) [MP] [3,4] 119 122 115 116 120 [u] 118 117 120 124 [g] 129 121 γ(c=o) [XA] ; Lib.(out-of-plane) [MP] [1] / ν(n O); τ(ch 122 3)[2,3] / γ(c=o) [XA] ; ν(n O); Lib.(out-of-plane) [MP] [4] 118 121 ν(n O); Lib.(out-of-plane) [MP] ; Lib.(out-of-plane) [XA] [4] 12
Table S6. The collection of the FT-IR, FT-RS and INS wavenumbers observed experimentally in the range above 120 cm -1 presented against the results of theoretical plane-wave DFT calculations (CASTEP PBE), performed under the experimental 293K cell-volume. The theoretical wavenumbers affected by the LO-TO splitting term are given in parentheses. The phonons symmetry defined by A u and A g species. ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) Form II P -1 P -1 P-1 P1 P2 1/c c11: -1 ] Tentative ν [cm -1 ] Tentative ν [cm -1 ] Tentative ν [cm -1 ] Tentative ν [cm -1 ] Tentative 298K 10K DFPT Band 298K 10K DFPT Band 298K 10K DFPT Band Band 298K 10K DFPT Band DFPT THz INS [A u/a g] Assignment THz INS [A u/a g] Assignment THz INS [A u/a g] Assignment Assignment THz INS [A u/a g] Assignment 100 111.6 [Au] τ(n O)[τ(MP)] 102 111.8 [Au] γ(c=o)[xa] ; Lib.(out-of-plane) [MP] 109 114.7 γ(c=o) [XA] / ν(n O) 106 113.1 [Au] τ(n O)[τ(MP)] / τ(ch 3) / Lib.(in-plane) [MP] / 97 108.6 [Ag] Lib.(in-plane) [MP] 99 102 109.9 [Au] γ(c=o)[xa] ; γ(xa); ; ν(o O); ν(o O) Lib.(in-plane) [MP] 112.8 98 106.7 [Au] γ[xa] / τ(ch 3) / Lib.(in-plane) [MP] [Au] Lib.(out-ofplane) [XA] 89 87 98.5[Au] τ(n O)[τ(MP)] 90 103.5 [Au] γ(c=o)[xa] ; γ(xa); ν(o O) Lib.(in-plane) [MP] 93 101.6 Lib.(in-plane) [MP] 94.3 91 86 103.8 [Au] γ(n O) / τ(ch ; τ(ch 3) / ν(o O) 3) 85 90 96.0 [Au] Lib.(in-plane) [MP] [Au] Lib.(in-plane)[MP] 85 91.1 90 98.7 [Au] ν(n O) / Transl. [MP] Lib.(out-of-plane) [XA] c-axis 89.2 / γ(xa XA) / Lib.(in-plane) [MP] 87 94.2 [Au] γ(c=o) [XA] / γ(n O) / τ(ch 3) 79 92.6 [Au] 81 88.9 [Au] ν(o O) / Transl. [XA] Lib.(in-plane) [MP] / γ c-axis 79.6 [XA] 82 91.5 [Au] γ(c=o) [XA] / τ(ch 3) γ(xa XA) 74 80.5 [Au] γ(n O) / Lib.(in-plane) [MP] Transl. [MP] c-axis 77 86.8 [Au] Lib.(out-of-plane) [MP] 75.9 73 77.5 [Au] τ(n O) / τ(xa XA) 75 74 82.9 [Au] τ(n O)[τ(MP)] / ν(n O) 73 67 80.1 [Au] Lib.(in-plane) [MP] Lib.(out-ofplane) [XA] 66 75.9 [Au] γ [XA] ; Lib.(in-plane) [MP] 66 67.3 [Au] Transl.[XA] c-axis Lib.(in-plane) [XA] 62 65.7 [Au] / Transl. [XA] 72.1 67 68.5 [Au] b-axis / ν(o O) / ν(n O) / ν(o O) / ν(o O) [Au] 59 62.2 [Ag] Lib.(out-ofplane) 58 61.1 [MP] Lib.(in-plane) [MP] / τ(xa XA) 57 61.9 [Au] Transl. [MP] c-axis 62.0 50 52 56.9 [Au] Transl. [MP] c-axis 60 58.4 [Au] γ(n O) / Lib.(in-plane) [MP] 65.0 Lib.(out-of-plane) [XA] / Lib.(in-plane) [MP] 55 64.1 [Au] Transl. [XA] b-axis 54 49 46.4 [Au] / ν(o O) τ(n O)[τ(MP)] / γ [XA] 53 57.8 [Au] Lib.(in-plane) [XA] 43 49 49.1 [Au] Lib.(in-plane) [MP] 47 47 39.1 [Au] Lib.(in-plane) [MP] / ν(o O) 54.8 Lib.(in-plane) [MP] 39 50.0 [Au] 47 53.0 [Au] Lib.(in-plane) [MP] 38 43.3 [Au] Lib.(in-plane) [XA] 27 Acoustic 23 Acoustic 24 Acoustic Acoustic 27 Acoustic NOTES Thermal Analysis Thermal stability of the powder samples was examined in argon atmosphere at the heating rate of 5 o C/min, using a TA SDT Q600 thermogravimetric analyzer. The calorimetric analysis was performed with a TA DSC Q2000 calorimeter, varying the temperature from 100K up to the decomposition point. Large sample along with the heating/cooling rate of 20K/min were used in search of weak second order phase transitions. No phase transitions were observed and these results are collected in the supplementary materials. Table S7. Collection of the thermal stability limits for each powder sample studied. Compound ClA : 2-MP (1:1) BrA : 2-MP (1:1) ClA : 3-MP (1:1) BrA : 3-MP (1:2) Form I BrA : 3-MP (1:2) Form II Decomposition Point 129 o C 125 o C 123 o C 49 o C 84 o C 13
Fig. S8. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 2-Methylpyridinium 2,5-dichloro-4-hydroxy-3,6- dioxocyclohexa-1,4-diene-1-olate (ClA : 2-MP 1:1) complex. 14
Fig. S9. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 2-Methylpyridinium 2,5-dibromo-4-hydroxy-3,6- dioxocyclohexa-1,4-diene-1-olate (BrA : 2-MP 1:1) complex. 15
Fig. S10. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5-dichloro-3,6- dioxocyclohexa-1,4-diene-1,4-diolate 2,5-dichloro-3,6-dihydroxycyclohexa-2,5-diene-1,4-dione-1,4-diolate (ClA : 3-MP 1:1) complex. 16
Fig. S11. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5-dibromo-3,6- dioxocyclohexa-1,4-diene-1,4-diolate (BrA : 3-MP 1:2) complex, polymorphic form I. 17
Fig. S12. Thermogravimetry (top) and differential scanning calorimetry (bottom) curves for 3-Methylpyridinium 2,5-dibromo-3,6- dioxocyclohexa-1,4-diene-1,4-diolate (BrA : 3-MP 1:2) complex, polymorphic form II. 18